
.r--

PRACTICAL TAKE-GRANT SYSTEMS:

DO THEY EX]ST?

A Thesis

Submitted to the Faculty

of

Purdue University

r-
by

Ma tt Bishop

]n Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 1984

/'"

ii

~

to my mother, Linda Allen

,~

VITA

"...-....

",...-....

iii

~

ACKNOWLEDGEMENTS

This thesis could not have been written without the support and advice of

Dorothy Denning and Lawrence Snyder. Larry first interested me in the

Take-Grant Model, and Dorothy suggested studying the problem which led to

this thesis. She also encouraged me when my spiritsflagged. Both have had a

very major influence on my graduate studies, and both were very cooperative in

dealing with my tight time schedules.

] also owe thanks to the other member of my committee, Peter Denning, for

his time and effort,again under rather tight deadlines.

,,--....
Several people at Purdue contributed to the writing of my thesis. Kevin

Smallwood, Larry Petersen, and Dan Reed helped me findthe macros written by

Jeff Brumfield to aid forma tUng this thesis. Subhash Agrawal encouraged my

writing several utilitieswhich made the mechanics of keeping numberings con-

sistent very easy. The systems programmers on the staff of the Purdue Univer-

sity Computer Center (in particular,JeffSchwab), the Physics Department (in

particular, Mike DeMoney and Charles LaBree), and the Department of Com-

puter Sciences (in particular, Steve Stone and Kevin Smallwood), were quite

tolerant of my (open) attempts to break system security,and discussed many

security problems with me.

Many friends have made my lifeat Purdue enjoyable. Special thanks go to

Subhash Agrawal, Sean Arthur, Andre Bondi, Bob Brown, Ken and Ellen Dickey,

Rich Hyde, and Paul McNabb.

,r--

iv

] completed this thesis in absentia from Purdue, and would like to thank

everyone at Megatest Corporation for all their help. They were very under-

standing in letting me use Megatest's computer facilities to type and print this

thesis.] would especially like to thank Dawn Maneval, Larry Mongin, and Karen

Van Dusen for helping me tame the laser printer.

Research leading to this thesis was made possible by support from the

National Science Foundation.

v

~.

TABLE OF CONTENTS

Page

ABSTRACT .vii

CHAPTER I.- INTRODUCTION 1

1.1.Statement of the Problem ~ 1
1.2.The Take-Grant Model 3
I.3. Introduction to Hierarchies.. 13

1.4.Take-Grant Modellingof Systems 14

CHAPTER II.- HIERARCHICAL TAKE-GRANT PROTECTION SYSTEMS 16

II.1.Introduction .16

II.2.A De Facto HierarchicalProtectionSystem 19
II.3.Combining De Facto and De Jure Rules 25

CHAPTER III.- MORE NEW RESULTS AND PROOFS
INTHE ORIGINALMODEL 34

III.1.Introduction 34
III.2.A New Proof of Can-Know 34

III.3.Definitionand Proof of Can-Snoop 42

CHAPTER IV.- SOME EXTENSIONS TO THE TAKE-GRANT MODEL 48

IV.l.

IV.2.

IV.3.

IV.4.

IV.5.

Introd uction """""""""""""""""""""""""""""""""""" 48
The One-Many Extension.., 50
The Many-One Extension 70
The Many-Many Extension 91
Discussion 112

CHAPTER V. - APPLICATIONS OF THE MODEL

AND ITSEXTENSIONS .114

V.l.
V.2.
V.3.
V.4.
V.5.
V.6.
V.7.

Introduction .114

What is a "SecurityBreach"? 115
Reference Monitors 117

Mod ellingUNIX """""""'" .118
FilesWriteable by Anybody ..123
Processes and Memory 125
SetUID Processes .126

VI

Page

CHAPTER VI. - CONCLUSlON , 130

VI.1. Hierarchies """"""""""""""""""""""""""""""""""" 130
VI.2. Computer Systems 133

BIBLIOGRAPHY 136

VITA.. """"" 139

vii

ABSTRACT

Bishop, Matt. Ph.D., Purdue University, May 1984. Practical Take-Grant
Systems: Do They Exist? Major Professor: Dorothy Denning.

The Take-Grant Protection Model is a theoretical model of computer

safety. This thesis considers whether this model can be applied to non-

theoretical computer systems. First, a model of hierarchical systems is

presented; then, some new results are presented, and three extensions are pro-

posed. These new results and extensions are used to model reference monitors

.~ and examine an existing computer system for security weaknesses; methods of

fixing these weaknesses are also derived. The thesis concludes that, with the

proper extensions, the Take-Grant Protection Model can indeed be used to

examine existing systems for security flaws.

,--

.~

1

r-"""

Chapter I

Introduction

1.1. Statement of the Problem

In the past, studies have tended to focus on the design and implementation

of secure computing systems; this began with the concept of a reference moni-

tor [ANDE72] and grew into such projects as the MITRE security kernel for the

PDP-11/45t [MILL76, SCHI75], the UCLA Data Secure UNrx+ system for the PDP-

, 11/45 [POPE79], the various flavors of the Kernelized Secure Operating System

(KSOS) [BERS79, BROA76], and the Provably Secure Operating System (PSOS)

[FEIE79]. In addition, ways to test the security of existing systems have been

explored (for example, [LIND75]). The aim of this thesis is to combine the two

approaches. The thesis proposes a model for proving (or disproving) the secu-

rity of a system, for identifying specific security flaws when the system is not

secure, and for determining what must be done to correct these flaws.

The model is based on the Take-Grant Protection Model, which represents

a computer system as a graph showing active and passive objects and authori-

ties in the system. Changes in the system are reflected by graph rewriting

rules, which add objects, and add and delete authorities. We have extended this

model to include information flow [BISH79] and shall use this extension

tPDP is a Trademark of Digita1 Equipment Corporation.
;UNIX is a Trademark of Be11Laboratories.

~

--

2

because it has been explored and many useful properties about itare known.

One comment about the model and the extensions used here: The graph

rewriting rules we use are merely one possible set. Other rules are possible;

and in a later chapter, we shall change the rewriting rules in order to examine

the security of the UNIX operating system

The conditions for a computer system to be secure can be stated without

tying the statement to any particular set of graph rewriting rules. The intro-

duction of new rules requires that we determine conditions under which infor-

mation and authorities can be transferred. To abstract these from the rules,

we define predicates the truth or falsityof which are the basis for defining a

secure system. The formal definitions and necessary and sufficil'mtconditions

for the predicates to hold do depend on the set of rewriting rules chosen, but

the conditions for security can be stated simply in terms of the predicates.

The thesis is organized into several topics. The remainder of this chapter

is spent reviewing the Take-Grant Protection Model as it now exists. From that

point on, new results are presented. In Chapter IIwe explore the concept of

hierarchies and how they may be modelled in the Take-Grant Protection Model.

Chapter IIIgives a new proof for a theorem about information flow,and then

examines the idea of theft of information. Chapter IV extends the model even

farther; in that chapter, we add the concept of groups or classes to the model.

Chapter V gives some examples of the practical application of these extensions;

we examine reference monitors and several security loopholes in an existing

system, demonstrating that the extensions can be used in practise. Finally,

Chapter VI summarizes what has been done, and suggests areas for future

research.

3

1.2.The Take-Grant Model

Now that we have stated the problem, let us describe the tool we shall use.

It is called the Take-Grant Protection Model and was first presented as a

theoretical model in [JONE76]. This section will describe what the model is, and

cite several important results. The reader interested in the proofs of these can

consult the referenced papers.

Let a finite, directed graph called a protection graph represent a system to

be modelled. A protection graph has two distinct kinds of vertices, called sub-

jects and objects. Subjects are the active vertices, and (for example) can

represent users; they can pass information and authority by invoking graph

rewriting rules, Objects, on the other hand, are completely passive; they can

(for example) represent files, and do nothing.

.r--- In protection graphs, the subjects are represented by. and objects by 0.

Vertices which may be either subjects or objects are represented by @. Pictures

are very often used to show the effects of applying a graph rewriting rule on the

graph; the symbol r- is used to mean that the graph following it is produced by

the action of the graph rewriting rule on the graph preceding it. The rewriting

rule itself is often written after the derived graph. The symbol f-! represents

several rule applications. The term witness'means a sequence of graph rewrit-

ing rules which produce the predicate or condition being witnessed, and a wit-

ness is often demonstrated by listing the graph rewriting rules that make up

the witness (usually with pictures.)

The edges of a protection graph are labelled with subsets of a finite set R

of rights. Suppose that fr,w,t,gj C R, where r, w, t, and g represent read, write,

take, and grant rights, respectively. When written as labels on a graph, the set

braces are normally omitted.

4

The Take-Grant Model permits users with certain rights to transfer rights

from one vertex to another. The rules governing the transfer of rights are

called de jure rules [BISH79] and are as follows[JONE76]:

RULE R1.1: take

Let x. y. and z be three distinct vertices in a protection graphGo. and let x be a

subject. Let there be an edge from x to y labelled 7 with t E:7. an edge from y to

z labelled {J. and CXC-{J.Then the take rule defines a new graphG 1 by adding an

edge to the protection graph from x to z labelled cx. Graphically.

.x t~
Y

{J~ z f- ~
X Y z

The rule is written: x takes (exto z) from y.

RULE R1.2: grant

Let x. y. and z be three distinct vertices in a protection graphGo. and let x

be a subject. Let there be an edge from x to y labelled 7 with g E:7. an edge

from x to Z labelled {J. and exC-{J. Then the grant rule defines a new graph G 1 by

adding an edge to the protection graph from y to z labelled cx. Graphically.
,

~
x y z

f- ~
x y z

The rule is written: x grants (ex to z) to y.

RULE R1.3: create

Let X be any subject in a protection graph Go and let exbe a subset of R. Create

defines a new graph G 1 by adding a new vertex y to the graph and an edge from

x to y labelled ex. Graphically.

.
x

f- .
x

cx~
y

5

The rule is written: x creates (ex to new) vertex y.

RULE R1.4: remove

Let x and y be any distinct vertices in a protection graph G 1 such that x is a

subject. Let there be an explicit edge from x to y labelled ex, and let (:3be any

subset of R. Then remove defines a new graph G 1 by deleting the (:3labels from ex.

If exbecomes empty as a result, the edge itself is deleted. Graphically,

.
x

ex:;.@
y

r- . ex-(:3~fi!J
x y

The rule is written: x removes «(:3to) y.

The edges which appear in the above graphs are called explicit because

they represent authority known to the protection system.

Note that there is a duality between the take and grant rules when the

edge labelled t or 9 is between two subjects. Specifically, with the cooperation
,r-

of both subjects, rights can be transmitted backwards along the edges. The fol-

lowing two lemmas demonstrate this:

LEMMA1.1: Let there be an edge labelled t from one subject x to another sub-

ject y, and let x have exrights over a vertex z. Then y may obtain exrights over z.

Graphically,

~
x y z

r- ~
x y z

PROOF: See [JONE76]. .

LEMMA1.2: Let there be an edge labelled 9 from one subject x to another sub-

ject y, and let y have exrights over a vertex z. Then x may obtain exrights over z.

Graphically,

6

f'
.x g~

y
cx~z r- ~X Y

PROOF: See [JONE76]. .

As a result, when considering the transfer of authority between subjects,

neither direction nor label of the edge is important, so long as the label is in

the set ft,g~.

In order to state the main theorem concerning the transfer of authority

between subjects. we need some preliminary definitions ([JONE76]. [LIPT77]):

DEFINITION D1.1: A tg-pathis a nonempty sequence Vo. . . . ,V/c of distinct ver-

tices such that for all i, O~i <k, Vi is connected to VHl by an edge (in either

direction) with a label containing t or g.

DEFINITION D1.2: Vertices are tg-connected if there is a tg-path between them.

~

DEFINITION D1.3: An island is a maximal tg-connected subject-only subgraph.

Any right that one vertex in an island has can be obtained by any other

vertex in that island. In other words, an island is a maximal set of subject-only

vertices which possess common rights.

With each tg-path, associate one or more words over the alphabet

~ l, t. g. § ~ in the obvious way. If the path has length 0, then the associated

word is the null word 1/.

DEFINITI'ON D1.4: A_vertex Vo initially spans to V/c if Vo is a subject and there is

a tg-path between Vo and V/c with associated word in ~ l, 9 ~ U ~I/~.

DEFINITION D1.5: A vertex Vo terminally spans to V/c if Vo is a sub-

ject and there is a tg-path between Vo and V/c with associated word in ~ l. ~.

~

7

DEFINITION D1.6: A bridge isa tg-pathwithVo and Vk both subjects and the

path's associated word in ~ r., r., r.gr-, r.gr. j.

An initial span is a tg-path along which the first vertex in the path can

transmit authority; a terminal span is a tg-path along which the first vertex in

the path can acquire authority. As a note, a bridge is said to be directed away

from vo. The following diagram illustrates these terms:

islands:
bridges:
initial span:
terminal span:

11=~p ,U j.l2=~w LI3=~Y ,s 'j
U,V,w and w,x,y

p with associated word: j./
s',s with associated word: r

The following predicate formally defines the notion of transferring author-

ity:

DEFINITION D1.7: The predicate can-share(ex, x, y, Go) is true for a right exand

two vertices x and y if and only if there exist protection graphs G 1. . . . , Gn such

that Go~ Gn using only de jure rules, and in Gn there is an edge from x to y

labelled ex.

In short, if x can acquire exrights to y, then can-share(ex, x, y. Go) is true.

The theorem which establishes necessary and sufficient conditions for this

predicate to hold is:

THEOREM 1.3: The predicate can-share(ex, x, y, Go) is true if and only if there is

an edge from x to y in Go labelled ex, or if the following hold simultaneously:

C1.l. there is a vertex s EO:Go with an s-to-y edge labelled ex;

19

s' t s
r =-

O. t 9I

>0

t
g .E: go

U v w x y

B

C1.2. there exist subject vertices p' and s' such that

a. p' initially spans to x, and

b. s' terminally spans to s;

C1.3. there exist islands II, . . . ,Iv such that p' is in II, s' is in lv, and

there is a bridge from I; to 1;+1(l~j<v).

PROOF: See [LIPT77]. .
The de jure rules control the transfer of authority only; they say nothing

about the transfer of information. The two are clearly different; for example, if

a user is shown a document containing information which he does not have

authority to read, the information has been transfered to the user. The de jure

rules do not model cases like this. Instead, we use a different set of rules,

called de facto rules, to derive paths along which information may flow.

In order to describe transfers of information, we cannot use explicit edges,

because no change in authority occurs. Still, some indication of the paths

along which information can be passed is necessary. Hence, we use a dashed

line, labelled by r, to represent the path of a potential de facto transfer. Such

an edge is called an implicit edge. Notice that implicit edges cannot be mani-

pulated by the de jure rules, since the de jure rules can affect only authorities

recorded in the protection system, and implicit edges do not represent such

authority.

A protection graph records all authorities as explicit edges, so when a de

jure rule is used to add a new edge, an actual transfer of authority has taken

place. But when a de facto rule is used, a path along which information can be

transferred is exhibited; the actual transfer may, or may not, have occurred. It

is impossible to tell this from the graph, because the graph records authorities

and not information. For the purposes of this model, however, we shall assume

--- -----

9

~ that if it is possible for information to be transferred from one vertex to

another, such a transfer has in fact occurred.

One set of proposed de facto rules was introduced in [BISH79] to model the

transfer of information. Although these are not the only rules possible, their

effects have been explored, and so we shall use them.

RULE Rl.5: post

Let x, y, and z be three distinct vertices in a protection graph Go and let x and z

be subjects. Let there be an edge from X to y labelled IX, where r E: IX, and an

edge from z to y labelled {3,where W E:{3. Then the post rule defines a new graph

G 1 with an implicit edge from x to Z labelled ~d. Graphically,

v
y

f-

r

V
y

r
RULE R1.6: pass

Let x, y, and z be three distinct vertices in a protection graph Go, and let y be a

subject. Let there be an edge from y to X labelled IX, where W E: IX, and an edge

from y to z labelled {3, where r E: {3. Then the pass rule defines a new graph G1

with an implicit edge from x to Z labelled ~d. Graphically,

v
y

f-

r

V
y

RULE R1.7: spy

Let x, y, and z be three distinct vertices in a protection graph Go, and let x and

y be subjects. Let there be an edge from x to y labelled IX,where r E: IX, and an

edge from y to Z labelled {3,where r E:{3. Then the s'PY rule defines a new graph

/"" G 1 with an implicit edge from x to Z labelled ~d. Graphically,

10

v
y

f- v
y

RULE R1.B: find

Let x. y. and z be three distinct vertices in a protection graph Go. and let yand

z be subjects. Let there be an edge from y to x labelled a. where W E:a. and an

edge from z to y labelled {3.where W E:{3. Then the find rule defines a new graph

G I with an implicit edge from x to Z labelled 1d. Graphically.

v
y

f-

v-

y

Note that these rules add implicit and not explicit edges. Further, as these

rules model information flow. they can be used when either (or both) of the

edges between x and y.or yand z.are implicit.

Now. consider the conditions necessary for a potential de facto transfer to

exist in a graph.

DEFINITIOND1.B: The predicate caneknowef(x. y. Go) is true if and only if there

exists a sequence of graphs G 10. . . . Gn (O~n). such that Gt:f-!-GHI (O~i <n) by

one of the de facto rules and in Gn either a x-to-y edge labelled r exists or a y-

to-x edge labelled w exists and if the edge is explicit. its source is a subject.

Intuitively. caneknowef(x. y. Go) is true if and only if x has the authority to

read y. y has the authority to write to x. or an implicit edge from x to y can be

added by means of the de facto rules. Note the duality of read and write. If x

can write to y. then y effectively can read x. All x has to do is write to y any

information that y wants to see. This duality will play an important role in

later results.

11

~ DEFINITIOND1.9: An rw-path is a nonempty sequence Vo. Vk of distinct ver-

tices such that for all i. O~i <k, Vi is connected to Vi+l by an edge (in either

direction) with a label containing an r or a w.

With each rw-path, associate one or more words over the alphabet

~ r, r, w, w j in the obvious way; for instance, the protection graph

. r w
~ . rwc;: 0

has associated rwr and rww. If the path has length 0, then the associated

word is the null word 1/.

DEFINITION D1.10: An rw-path Vo.Vk, k ~1, is an admissible rw-path if and

only if:

C1.4. it has an associated word a la2 . . . ak in the regular language

(fuw)"; and

C1.5. if ai =r then Vi-l is a subject and if ai =w then Vi is a subject.

Note that there cannot be two consecutive objects on an rw-admissible path.

THEOREM 1.4: Let X and y be vertices in a protection graph Go. Then

can-know-f(x, y, Go) is true if and only if there is an admissible rw-path

between x and y.

PROOF: See [BISH79]. .

This can be extended to include both de jure and de facto rules.

DEFINITION D1.11: can-know(x, y. Go) is true if and only if there is a sequence

of protection graphs G 10. . . . Gn such that Go~ Gn and in Gn either a x-to-y

edge labelled r exists, or a y-to-x edge labelled w exists and, if the edge is

explicit. its source is a subject.

r

12

This is merely can -know -f(x, y, Go) without the restriction on the types of

rules used.

DEFINITION D1.12: An Twig-path is a nonempty sequence vo.Vk of distinct

vertices such that for all i, Qs;i<k, Vi is connected to Vi+1 by an edge (in either

direction) with a label containing at, g, r, or a w.

With each rwtg-path, associate one or more words over the alphabet

~ {. t, U.!J,r. r. w. 11;j in the obviousway.

DEFINITION D1.13: The vertex Vo rw-initially spans to Vie if Vo is a subject and

there is an rwtg-path between Vo and Vk with associated word in ~ {.w j.

DEFINITION D1.14: A vertex Vo rw-terminally spans to Vk if Vo is a subject and

there is an rwtg-path between Vo and Vk with associated word in! {.r j.

DEFINITION D1.15: A bridge is an rwtg-path with associated word in the regular

language

B= ~ {.u f. u {.Uf. u {.!J{. ~

(Note that this is the same as the definition given earlier in this section.) A con-

nection is an rwtg-path with associated word in the regular language

c =! {.r u 11;f. u (.r11;f. ~

The next result characterizes the set of graphs for which can-know is true:

THEOREII1.5:can-know(x, y. Go) is true if and only if there exists a sequence of

subjects u 1.Un in Go (ls;n) such that the following conditions hold:

C1.6 X=U1 or U1 rw-initially spans to x,

C1.7 Y =Un or un rw-terminally spans to y,

---~

13

C1.B for all i, 1~i <n, there is an rwtg-path between Ui and Ui+l with an

associated word in BuG.

PROOF: See [BISH79]. .

Now that we have seen the basic model, let us consider the two questions which

this thesis will attempt to answer.

1.3. Introduction to Hierarchies

A hierarchy is "a graded or ranked series" [WEBS73]. When used in the

context of security, it means that there are gradations of access to certain

information. The most famous example of this is the classification system used

by the federal government today, where documents are labelled UNCLASSIFIED

(the least secret level), CONFIDENTIAL,SECRET,or TOPSECRET(the most secret level),

depending on their content. Each person who may need access to these docu-

ments is given a security clearance indicating the most secret level of docu-

ments which he may see; for example, a person with SECRETclearance may read

documents labelled UNCLASSIFIED,CONFIDENTIAL,or SECRET, but not documents

labelled TOP SECRET.

Such systems, rather obviously, are meant to protect information, and for

this reason, people are not to reveal information to those with a lower security

clearance. How can this be done, assuming that no-one in the hierarchy can be

trusted? The problem was first approached mathematically in [BELL74] in the

context of operating systems. Often, computer systems are designed

with several levels of security; two examples of this are the THE operating

system [DIJK6B] and PSOS. The first application of the Take-Grant

Protection Model [WUBO] was to hierarchical systems in general, not

r--, \ just operating systems, and we shall extend those results as well as explore

14

some other means of ensuring a secure hierarchy.

The remainder of this thesis will explore the use of the Take-Grant model

in a practical setting.

1.4. Take-GrantModelling of Systems

It has long been believed that the Take-Grant Protection model has little

if any practical use; indeed, one criticism of it is that one could not represent

hierarchies using that model. Considering the model was introduced to explore

theoretical matters, this belief is not surprising.

This requires some explanation. The terms security and safety are often

used interchangeably; in fact, they are not synonyms. The term "safe" applies

to an abstract model; its initial state is called "safe" if it is not possible to

reach a new state in which a right can be transferred. The term "secure"

applies to a nonabstract system; it requires not only that the abstract model of

the system be safe, but also that the nonabstract system correctly implement

the abstract model. Harrison, Ruzzo, and Ullman showed that in general, it

cannot be determined whether or not a system is safe:

THEOREM 1.6: It is undecidable whether a given state of a protection system is

safe for a given generic right.

PROOF: See [HARR76]. .
The Take-Grant model describes a simpler type of system, called a

mono-operationalsystem (because each command performs a single primitive

operation. For such systems,

THEOREM 1.7: there is an algorithm that decides whether a given

mono-operational system and initial state is safe for a generic right.

15

PROOF: See [HARR76]. .

In fact, safety in the Take-Grant system is not only decidable even if the

number of objects which can be created is unbounded, but it is decidable in

time linear in the size of the graph.

The first attempt to use the Take-Grant Protection System to model a

computer system was presented in [JONE7B], where it was used to model a secu-

rity flaw in Multics. Unfortunately, the modelling was done ad hoc; rather than

present a definition of security and then test the flaw against it, the flaw was

simply modelled. This thesis takes a slightly different approach.

In general, it is hard to use the Take-Grant Protection System to model a

computer system because it has no concept of groups in it. With most com-

puter systems, one process or one user will perform actions that affect many

files and processes, rather than just one. The Take-Grant rules, however,

require that one actor operate on one target at a time. It is this point which

this thesis considers. First, we extend the model to include the concept of theft

of information; then we introduce graph rewriting rules which allow actors to

act upon more than one target, and which allow one actor to affect many other

objects. Finally, we define security in terms of the theoretical results and show

how these results can be applied to a computing system.

Ideally, one tests models of abstract systems, fixing the theoretical flaws

which appear, until the model is safe; then, and only then, is the model imple-

mented. In this thesis, however, we are trying to test existing systems for secu-

rity flaws; hence, we shall go from an existing system to the abstract model.

Hence, the term secure will mean not just the safety of the abstract model, but

also that the abstraction captures the essential details of the system we are

examining for flaws.

~

..........

16

Chaptern

Hierarchical Take-Grant

Protection Systems

D.l. Introduction

The problem of secure hierarchies was discussed briefly in section 1.3. In

previous works using the Take-Grant Protection Model to model hierarchies,

there has always been an underlying assumption that at least some of the ver-

tices were honest. For example, [WUBO] presents a model of hierarchical pro-

tection systems involving only take and grant rules; but if two directly-

connected subjects conspire to breach the security of the system, they can

easily do so by using the two lermnas 1.1 and 1.2. For example, this situation

L3

L2

Ll

can be breached by applying the take rule and then lermna 1.1:

L3

L2

Ll

~~ ~-- - -- - - -- - - --

17

Previous models have also discussed at great length the transfer of rights:

under what circumstances can it occur assuming the subjects are honest, what

rights can a subject steal from a higher-level one, and the like. But little has

been said about the transfer of information.

Briefly, in the model of hierarchical protection systems developed here, we

are concerned with preventing transfers of information to subjects with a lower

security level than the information has, as well as preventing the lower-level

subject from obtaining authority to read the information. Because of the dual-

ity of reading and writing, subjects must also be prevented from writing to

lower-level ones (otherwise, a dishonest high-level subject could just read

high-level information and then write it to a lower-level subject, thereby

breaching security). This raises some interesting questions. Is is possible to

prevent information from being transfered using the graph rewriting rules for

transferring authority and information without modification? If so, would res-

tricting these rules provide any additional benefits? What kinds of restrictions

should be considered? We shall try to answer these questions, among others.

The strength of proposed restrictions will be considered as well. Let T be a

set of graphs with some (arbitrary) property, and let R be a set of graph rewrit-

ing rules. Then R will be called sound if applying any finite sequence of those

rewriting rules to a graph t E T will produce a graph t 'ET. Let s, t ET be any

two graphs such that s ~ t using the rules in R; Then, if s ~ t using only ele-

ments of a subset R'c.R, the subset R' is said to be complete. (Note that subset

includes restricted rewriting rules as well.) A graph is said to be secure if there

is no finite sequence of rewriting rules that will enable a subject to obtain

information at a higher security level than the subject. The soundness and

completeness of restrictions with respect to the property secure will be dis-

cussed.

18

We shall use one result in this chapter not presented earlier.

LEMMA2.1: Let Go be a protection graph. and let X and y be vertices in the same

island. Then can-know(x. y. Go) and can-know(y. x. Go) are both true.

PROOF: There are four cases to be considered:

Case 1:

~ --- --~-

rw
y creates (rw to new) n

w

x takes (w to n) from y

w

post rule
X t y n

Case 2:

rw
X creates (rw to new) n

9 9

w

X grants (w to n) to y
9

w

post rule
n x 9 y

Case 3:

8..:
t

8 see case 2
x y

Case 4:

8.0: 9 8 see case 1
x y

19

]n all cases, an implicit read edge from x to y, and one from y to x, can be

obtained. .

0.2. A De Facto Hierarchical Protection System

DEFINITION D2.1: An rw-LeveL is a set of vertices in a protection graph Go such

that for every pair of vertices x and y in the set, can-know-f(x, y, Go) is true.

]ntuitively, vertices x and yare on the same rw-Ievel if they have de facto

access to exactly the same information, and can communicate with each other.

PROPOSITION 2.2: Let Go be a protection graph, and let X and y be any two ver-

tices in Go. Then x and yare in the same rw-Ievel if and only if there is an

rw-admissible path between them.

PROOF:]mmediate by theorem 1.4 .
DEFINITION D2.2: Two subject vertices X and yare said to be rw-joined if

can-know-f(x, y. Go) is true and can-know-f(y, x, Go) is false.

]ntuitively, this definition says that if a vertex X can obtain any informa-

tion that another vertex y can, but not conversely, then x and yare rw-joined.

Those two ideas can be combined into one relation.]n a protection graph

Go, say that a vertex x is higher than a second vertex y if, for any path from x

to y. there exist vertices a and b such that can-know-f(x, a, Go) and

can -know -f(b, y, Go) are true, and a is rw-joined to b.]n this case, y is said to

be Lower than x. (We write this as x >y.) Two vertices x and yare said to be at

the same height (or LeveL) if x and yare at the same rw-Ievel. Analogously, one

rw-Ievel L2 is said to be higher than another rw-Ievel L1 if for every vertex 12

in L2 and for every vertex 11 in Ll' h>11' Again, in this case L1 is said to be

Lower than £2.

20

Informally, an rw-Ievel is a security classification; and the higher an

rw-Ievel is, the more highly classified the security level is.

In what follows, unqualified statements about the relation higher apply to

both the relation between vertices and the relation between rw-Ievels. When

the distinction between the two relations is important, it will be explicitly

stated, or be obvious from the context.

LEMMA2.3: Let L1 and L2 be two different rw-Ievels in a protection graph Go

such that L2 is higher than L1. Let 11 be a vertex in L1 and h be a vertex in L2.

Then can.know.f(h, 11, Go) is true and can.know.f(IIo h, Go) is false.

PROOF: As L2 is higher than L1' there exist vertices X in L2 and y in L1 such that

X is higher than y. By definition, can.know.f(I2, X, Go) and can.know.f(y, 110

Go) are both true. By the definition of higher, can.know.f(x, y, Go) is true, so

two applications of the spy rule show that can.know.f(h, 11, Go) is true. Now,

let X be any vertex in L1 and let y be any vertex in L1 such that x and yare

rw-connected. As L2 is higher than LIo the path from y to X is not an

rw-admissible path; hence, can.know.f(y, x, Go) is false. As any path from 11 to

h must pass through an edge from L1 to L2, by proposition 2.2, no such edge is

rw-admissible, so there is no rw-admissible path from 11 to h. Hence, by

theorem 1.4, can .know .f(IIo 12, Go) is false. .

Lemma 2.3 says that if one rw-Ievel is higher than another, vertices in the

higher level can obtain information from vertices in the lower level. However,

no vertex in the lower level can access information which is available only to

vertices in the higher level only. In effect, this is a hierarchical classification

system of two levels. Generalizing this result to an arbitrary number of levels

gives

21

,........ THEOREII2.4: Let L1,Ln be rw-Ievels ina protection graph Go such that for

i=2 ,n. Lt>Lt-1' Let it be a vertex in Lk and Ij be a vertex in Lj. where

j<k. Then can-know-f(lj. it, Go) is true and can-know-f(lk ,lj' Go) is false.

PROOF: By induction on k-j.

BASIS: When k -j=1. the claim holds by lemma 2.3.

INDUCTION HYPOTHESIS: For k-j=1, . . . ,l-1. the claim holds.

INDUCTION STEP: Let l-j=l. By the hypothesis. for any vertex lk-1 in Lk-lo

can-know -f(lo\<. lk-1. Go) is true. and can-know-f(lk-1. it. Go) is false. By

lemma 2.3 can-know-f(lk-lo Ij. Go) is true. whence can-know-f(it. 1j. Go) is

true. Also by lemma 2.3. there is no vertex it in Lk such that can-know-f(lj.

10\<-1.Go) is true. whence can-know-f(lj. it. Go) must be false. .

The arrangement of rw-Ievels described in theorem 2.4 will be called a

r-- structure; indeed. theorem 2.4 provides the Take-Grant Protection Model with

the structure needed to model a hierarchical classification system. For exam-

pIe. consider the linear classification scheme

L4

~3

£2

£1

This classification scheme has 4 levels. namely L4, L3. L2. and L1 (in descending

order). This classification hierarchy is easily modeled by a structure of this

kind:

,---..

22

t' - rw

r

rw

rw

r

r

rw

However, the structure provided can be used to model more complicated

hierarchical systems such as those the levels of which are not linear. Recall

that a partial ordering is an ordering which is transitive and irrefiexive

[ENDE77].

PROPOSITION 2.5: The relation higher is a partial ordering.

PROOF: First, consider the relation with respect to vertices. For transitivity,

merely apply the spy rule; for irrefiexivity, merely note that rw-joined vertices

are on different rw-Ievels. The proof for the relation with respect to rw-Ievels

follows irrunediately by definition. .
This theorem has two irrunediate consequences. The first is obvious; if

L;.!5Lj!5L;., then L;.=Lj. This emphasizes the hierarchical nature of the structure

described in theorem 2.4. Secondly, at most one of the relations 14.<Lj, 14.=Lj,

and L;.>Lj is true. Note that none need be true, which means that there can be

rw-Ievels which are incomparable. Thus, while there is at least one minimal

---"- - - ----

23

and one maximal level (with respect to the highest relation) in any such struc-

ture, there need not be a lowest or a highest level.

This enables a classification system which uses a partial, rather than a

linear, ordering to be modelled. One such classification system is the Military

Classification System (eg., see [DENN76, DENNB2]):

CATEGORY

ABC

(A, 3) (E,3) (C,3)

~I I
(E,2) (C,2)

/1 I
(A, 1) (E,1) (C,1)

~I/
(E,O)

AUTHORITY

LEVEL

top secret (3)

secret (2)

confid entia I (1)

unclassified (0)

Such a configuration is easily translated into this model:

rw rw rw

24

each security level Lt representing an authority level and a category.) In partic-

ular, note that while two subjects may have the same security classification, the

model makes no assumptions about their being able to communicate with each

other.

This representation of hierarchical classification systems has an extremely

important effect. Recall that the de facto rules spy, post, and find require the

cooperation of two subjects. Thus, in many cases, if two subjects conspired to

breach the security of a hierarchical system, they could do so. Specifically,

suppose a subject were willing to violate security. Under other proposed

representations, this would mean that all inferior subjects would be suspect,

because the superior could conspire with them to breach security. But by

theorem 2.4, in this representation such a conspiracy is impossible. Preventing

any breaches in security, rather than trusting any subject to be honest, makes

this model so useful.

Thus far we have only been concerned about subjects. It is reasonable to

assume that if people (subjects) have a certain security classification, some

information also has that classification. As documents are inactive, they are to

be represented by object vertices; it is therefore necessary to define what the

security level of an object vertex is, and show that under such a definition

information cannot flow from a higher level to a lower.

DEFINITION 02.3: An object vertex v is said to belong to the lowest rw-Ievel in

which a subject vertex has either read or write access to it.

Intuitively, this says that a document has the same security level as the

lowest level of users with access to it. The central result of this section can

now be proven:

25

THEOREIoI2.6: Let Go be a protection graph, and let L1o . . . ,Ln be rw-Ievels such

that for i=2, . .. ,n, £;'>£;'-1. Let Ij be an object vertex in Lj. Then for any sub-

ject vertex Ii in £;.,i<j, can-know-f(Ii,lj, Go) is false.

PROOF: In order that can-know-f(li, Ij, Go) be true, there must be an

rw-admissible path from Ii to Ij by theorem 1.4. Bul as Ij is in a higher

rw-Ievel than Ii, there is no such path (as there is no rw-admissible path from

x to any vertex in Lk, where k <i). Hence can -know -f(li, 1 j, Go) is false. .

This theorem states that unless a user has a security level equal to or greater

than that of a certain document. he cannot obtain access to it regardless of

how many (possibly corrupt) people do have access to it.

We have seen how lo model hierarchical sturctures where security is concerned

only with the passing of information. Now. let us consider this in conjunction

with the passing of authority.

B.3.Combining De Factoand De Jure Rules

Inordertoincludede jure rules in the model of a hierarchical protection

graph. some of the definitions of the last section must be generalized.

DEFINITION D2.4: An rwtg-level is a set of subjects in a protection graph Go

such that for every pair of vertices x and y in the set. can-know(x. y. Go) and

can-know(y. x, Go) are true.

The notion of higher discussed in the previous section can also be

extended in the obvious way to include rwtg-Ievels and vertices in those levels.

In particular, the relation is still a partial order. A protection graph Go is

secure if for all vertices x and y such that x is lower than y, can-know(x. y. Go)

is false.

26

These definitions require that information cannot flow from a higher lo a

lower level. The notion of an rwtg-Ievel merely combines the concept of an

island with that of an rw-level, and coincides with the notion of a security

classification level. More formally,

LEMMA2.13: Every island is contained in exactly one rwtg-Ievel.

PROOF: By lemma 2.1 and the definition of an rwtg-Ievel, an island is itself an

rwtg-Ievel; hence, an island is contained in at least one rwtg-Ievel. So, assume

that an island has vertices 11 and 12 in distinct rwtg-Ievels L1 and L2, respec-

tively. By definition of island, can-know(ll> 12, Go) is true; hence, by transitivity

of can-know and the definition of rwtg-Ievel, 11 and 12 are in the same

rwtg-Ievel, contradicting the assumption that L1 and L2 are distinct. Hence,

each island is contained in at most one rwtg-Ievel. This proves the theorem. .
In what follows, the definition of rw-joined is exactly the same as in II.2.

THEOREM 2.7.: A protection graph Go is secure if and only if there are no

bridges or connections between rwtg-Ievels.

PROOF: Let 1i and 1j be two vertices in two distinct rwtg-Ievels Li and Lj

(respectively) such that Li>Lj. We must show that can-know(lj, Ii, Go) is false

if and only if there are no bridges or connections between Li and Lj.

(~) Assume can-know(lj, Ii, Go) is false. Then apply theorem 1.5. As C1.6 and

C1.? are trivially true for any rwtg-Ievel, C1.8 must be false (or else

can-know(lj, Ii, Go) would be true, contradicting assumption). The result fol-

lows immediately from the definition of island and theorem 2.13.

(~) Assume now there are no bridges or connections between Li and Lj. It must

be shown that can-know(lj' Ii, Go) is false. Note first that by hypothesis there

is no connection between Ij and Ii' So consider condition C1.3 ofTheorem 1.3.

~

As there are no bridges between rwtg-Ievels, there are no bridges between

27

islands; hence condition C1.3 is false, so can-know(lj' It, Go) is false.

This proves the theorem. .
Notice that this theorem agrees quite nicely with theorem 1.5. The nature

of an rwtg-Ievel ensures that vertices are rw-initially and rw-terminally con-

nected to all other vertices in the rwtg-Ievel. The remaining conditions in

theorem 1.5 are that no bridges or connections exist between the two vertices,

and hence the two rwtg-Ievels, involved. So this result makes sense.

This result states that the weakest way to ensure that information flows

only from lower levels to higher ones in Go is to prevent the transfer of any

right from an rwtg-Ievel to a lower rwtg-Ievel. This is probably overly restric-

tive; it may be necessary to allow some rights (but not read or write) to be

transferred from one rwtg-Ievel to another, without regard to which rwtg-Ievel

is the higher. So let liS consider the kinds of restrictions possible.

There are three basic types of restrictions possible:

R2.1. restrict the directions of the take and grant edges between

rwtg-Ievels,

R2.2. restrict the application of the take and grant edges between

rwtg-Ievels, or

R2.3. combine the above two restrictions.

Consider these restrictions one at a time. In the following definitions, let T

be a set of graphs with some (arbitrary) property, and let R be a set of graph

rewriting rules.

28

---- DEFINITION D2.6: R is sound if applying any finite sequence of elements of R to

some t€T produces a graph t '€T .

DEFINITION D2.7: Let s, t €T, and sf-! t using the rules in R. Then if for some

R'r;;:.R, sf-! t using only elements of R', the subset R' is complete. (Note that sub-

set includes restricted rewriting rules as well.)

Restrictions of Direction

Restrictions of direction are those restrictions which require the take or

grant edge being used to manipulate rights to point in a certain direction. For

example, if the take rule could only be applied to rights which a vertex has over

a lower-level vertex, that restriction would be a restriction of direction.

Restrictions of direction are sound but not complete. To show soundness,

merely note that by theorem 1.5, as there are no bridges or connections in the

original protection graph between rwtg-Ievels one of which is higher than the

other, it will be impossible to pass rights of any kind between the two levels, so

restricting the directions in which a vertex can apply the de jure rules will not

matter. Thus, as the original graph is secure, so will any other graph derived by

these rules. However, the rules restricted in this way are not complete, because

rights other than read and write cannot be passed from one rwtg-Ievel to a

lower level.

,..-

29

The above argument can be made more rigorous, and shows:

LEMMA2.8: Restrictions of direction are sound but not complete.

Restrictions of Application

Restrictions of application are those restrictions which prevent the take

or grant edge from manipulating certain rights. For example, if the take rule

could only be applied to read rights, that restriction would be a restriction of

application.

Restrictions of application, like restrictions of directions, are sound but

but not complete. To show soundness, merely note that there are no bridges or

connections in the original protection graph between rwtg-Ievels one of which

is higher than the other. Thus, by theorem 1.5, it is impossible to pass rights of

any kind between the two levels, and so limiting the kinds of rights which can

be passed has no effect. Thus, as the original graph is secure, so will any other

graph derived by these rules. However, the rules restricted in this way are not

complete. For example, if the take rule is restricted so that it cannot act on

read rights, this will prevent a higher-level vertex from taking read rights to a

lower-level vertex.

The above argument can be made more rigorous, and shows:

LEMMA2.9: Restrictions of application are sound but not complete.

Restrictions of Direction and Application

Both restrictions of application and restrictions of direction have one

severe shortcoming: under them, the de jure rules are not complete. Hence,

consider a combination of the first two restrictions. The object is to modify the

30

take and grant rules so that no explicit or implicit read edges go from a higher

to a lower rwtg-level after a finite number of de jure and de facto rule applica-

tions. We propose the following restriction, in which a directed path begins at a

source vertex and ends at a target vertex:

R2.4. No de jure rule may be applied if, as a result, either of the following

connections would be completed:

a. r with the source vertex lower than the terminal vertex, or

b. w with the source vertex higher than the terminal vertex.

In more formal language, let R be a de jure rule, and let G r-RG '. This is an

invalid step in a derivation if there exist vertices x, y EO:G such that x >y, no

edge from x to y has associated word wand no edge from y to X has associated

word r.

There is an intuitive basis for these restrictions. First, notice that the rea-

son bridges are included in theorem 2.13 is that rights are transmitted over

bridges, and so in the sequence of rule applications to move the right along the

bridge, one of the three. (forbidden) connections must occur. (A read edge from

one vertex to a higher one violates restriction R2.4a, and a write edge from one

vertex to a lower one violates restriction R2.4b. For the third possible connec-

tion, the object which is the target of the write edge belongs to the lower level,

so it reduces to restriction R2.4a.) Thus, not the construction of bridges, but

only the transmission of read or write rights along them, need be restricted.

In addition, there is no restriction on any rights other than read and write.

In particular, other rights can be freely passed from one level to another. This

is an advantage of these restrictions, and enables us to show the main result:

31

~ THEOREM 2.10: The de jure and de facto rules, under the restriction stated

above, are both sound and complete.

PROOF: SOUNDNESS: This follows immediately from theorem 2.7, the nature of

the restriction, and the fact that if read or write rights are passed along

bridges, there will be a connection before the right is acquired by the target

vertex,

COMPLETENESS: Let Go, . . . ,Gn be a sequence of protection graphs such that

Go and Gn are secure (but G I, . . . ,Gn-l need not be secure). Let po, . . . ,pn-l be

a set of unrestricted de jure and de facto rules such that

Gol-po GII-Pl ,. . , , Gn-ll-Pn-l Gn. Then we must find a sequence PI', .. . ,Pic' of

rewriting rules such that Gol-Po' G l'l-Pl' , . . , , GIc-l'I-Pk-l' GIc' and GIc'=Gn.

As Go and Gn are secure, no connections exist in either. If none of the res-

tricted connections were made by any of po, . . . ,Pn-l, then we are done (just
/"'"

take this sequence to be the sequence satisfying the restrictions.) So suppose a

connection was made by some rule application, say, p;o' Only an implicit read

edge could have been added via this connection. Let P;l' ' . , ,P;". be the set of

rules that manipulate this implicit edge. Clearly, none of these rules can

change any explicit edges in the graph (by inspection of the de facto rules); and

when the connection made by P;o is broken (as it must be, for there are no con-

nections in Gn), all implicit edges made by the rules P;l' . . . ,P;". will be deleted

from the protection graph. Hence, the existence of the connection in the

derivation has no effect on the final graph, because any edges added as a result

of its existence will be deleted by the end of the derivation. Thus, we may

delete p;o' . . . ,p;". from the derivation. Repeat these deletions for every res-

tricled connection formed during the derivation; as no restricted connection is

r

32

formed by the remaining sequence of rule applications, it is the one sought. .
Note that a greater number of secure graphs may be formed by using the

restricted rules than by using the unrestricted ones, because without the res-

triction the only way to prevent connections is to ban all bridges as well.

An example will emphasize this result. Consider the following protection

graph:

tarw

In this graph, e stands for the right to execute a file. Under the unrestricted de

jure and de facto rules, Go is not secure, because by using the take rule, y can

obtain a write edge to x, and hence can pass information to another vertex in a

lower rwtg-level. But under the restricted de jure and de facto rules, y cannot

obtain a write edge to x, because completing the required connection would

violate restriction R2.4b. Yet, notice that y can still obtain the right to execute

x; that is not constrained by the restrictions.

The next question is the complexity of the result. How hard is it to test

whether or not a given graph meets the restriction, and how hard is it to test

whether or not application of a given rule violates the restriction? Clearly, to

test for a violation, we need only look at each edge labelled r and each edge

labelled w. Thus:

- - - --~-------

33

COROLLARY2.11: Testing a graphfor violation of the restriction may be done in

time linear in the number of edges of the graph.

PROOF: Immediate from theorem 2.10. .
COROLLARY2.12: Determining whether or not an application of a de jure rule

violates the restriction may be done in constant time.

PROOF: Immediate from theorem 2.10. .

34

Chapter III

More New Results and Proofs

in the Original Model

ill.l. Introduction

In chapter II,we saw how hierarchiescould be modelled using the

Take-Grant Protection System. We shallnow begin to consider how to model a

computer system.

r--
We wish to capture two types of theft in our model: thefts of rights and

thefts of information. The former we can describe exactly, by the predicate

can-steal; but the latter we cannot yet describe. This chapter proposes a new

predicate, called can-snoop, which will describe thefts of information just as

the predicatecan -steal describes thefts of rights.

ill.2 A New Proof of Can-Know

Before we do so,however, we will give an alternate proof of the necessary

and sufficientconditionsfor can -know to be true. The proof given in [BISH79]

is very complex and does not generalize readily to the other cases we

shall touch upon in the next chapter. Because many of the results and proofs

in the extensions to the model are quite similar to those of the original

model, we wish to emphasize this parallel development between

35

the original model and each of the extensions.

In the interests of clarity, we need the following two lemmas:

edge to y.

LEMMA3.1: If there is a bridge from x to y.then x can obtain an implicit read

PROOF: By the take rule and the definition of bridge, it suffices to prove the

lemma for bridges of length 2 or less. Six cases arise.

Case 1:

~ t y

Case 2:

f--r'1

~ rw

~ t
y creates (rw to new) z

~

r

~ t
x takes (r to z) from y

~ ~
x t y z

post rule

~ rw

~ y creates (rw to new) z

~

r

~ lemma 1.2

~ ~
x t y z

post rule

36

".-....... Case 3:

rw x

V I- ~y X create'(rwtonew)v
z z

rw x

I- ~y xgrants(wtov)toz
z

~~
~y

~~
~y z

y takes (w to v) from z

post rule

Case 4:

r--

84Et
x

.
y

see case 1

Case5:

84Eg
x

.
y

see case 2

Case6:

vz

see case 3

In all cases. x gets implicit read rights over y. proving the claim. .

LEMMA 3.2: Let x and y be subjects with a bridge or connection between them.

Then at least one of the following is true:

/"'-

--~

37

C3.1. an explicit read edge from X to y exists or may be added;

C3.2. an implicit read edge from x to y may be added; or

C3.3. an expli cit write edge from y to X exists or may be added.

PROOF: If there is a bridge between x and y.case C3.1 holds by Lenuna 3.1. So.

suppose there is a connection from X to y. If the associated word is in r#r, by

using the take rule, x can obtain an explicit read edge to y, establishing case

C3.1. If the associated word is in w[#, by using the take rule, y can obtain an

explicit write edge to x. establishing case C3.3. If the associated word is in

r#rwP, x and y can each apply the take rule until x obtains a read edge to a

vertex to which y has a write edge (or vice versa); then x and y can use the post

rule to add an implicit read edge from x to y (case C3.2.) .
The last lenuna is the most important. because it states a set of conditions

which must be met before can -know is true. Hence. the theorem given next

really only tries to establish when there will be a series of bridges or connec-

tions from a vertex q to another vertex p along which information can be sent.

(Note condition C3.5. which was implied but not explicitly stated. in the earlier

version of the theorem.)

THEOREII 3.3: Let p and q be vertices in a protection graph Go. Then

can-know(p. q. Go) is true if. and only if. one of the following conditions holds:

C3.4. can-share(r. p, q. Go) is true;

C3.5. can-share(w, q. p, Go) is true;

C3.6. all of the following conditions hold:

a. There is a subject p' such that p' :: p or p' is rw-initially con-

nected to p;

.r--

~ -

38

b. There is a subject q' such that q' = q or q' is rw-terminally con-

nected to q;

c. There is a sequence of islands !Jj 11 !fj!fmj such that thereisa

bridge or connectionfrom Ij to Ij+1o 1!f j!fm, and p' E: 1J, and q'

E: 1m.

INFORMAL ARGUMENT: To prove the "if" part, note that conditions C3.4 and C3.5

imply by definition that can-know is true. For condition C3.6, part C3.6a says

that p' can send any information it gets to p, and part C3.6b says that q' can

obtain any information it needs from q. Part C3.6c simply says that q' can send

the information to a vertex Z J in Im-1o which can in turn send it to a vertex z 2 in

Im-2' and so on, until a vertex Zm-J in 11 gets the information. By the properties

of an island, this means that p' can get the information. Putting all this

together, can -know is true.

Going the other way involves considering the rule applications needed to

produce a witness. We can require all de facto rules to be applied last, and

examine the conditions needed for them to be applied. For example, in the

pass rule. there is a vertex y for which can-share(w, y. p, Gn) and can-share(r.

y, p, Gn) are true. From the conditions required for both can-share rules to

hold, condition C3.6 of the theorem must be true. (In the formal proof, we will

show this for the post and spy rules; the formal proof for the pass and find rules

are left as an exercise for the reader.) And if no de facto rules are used to gen-

erate a witness to can-know, obviously one of conditions C3.4 or C3.5 must

hold.

PROOF: (~) By definition of can-know, if either condition C3.4 or condition

C3.5 holds, can-know is true. So assume neither condition C3.4 nor condition

C3.5 holds.

39

~ Consider condition C3.6a. As p' is rw-initially connected to p, it either has

or can obtain (through the take rule) a write edge to p. Similarly, by condition

C3.6a, ifq' is rw-terminally connected to q. it either has or can obtain (using

the take rule) a read edge to q. Thus, it suffices to show can -know(p'. q', Go) is

true by condition C3.6c; merely apply the spy rule (ifq '~q), and then the post

rule (if P '~p), to obtain can -know(p, q, Go).

We show condition C3.6c implies can-know(p', q', Go) by inducting on m,

the number of islands in that condition.

BASIS: Let m =1. Then p' and q' are in the same island, whence by lemma 2.1,

can-know(p', q', Go) is true.

INDU CTION BYPOTH ESIS: For m =1 k, if condition C3.6c holds,

can-know(p', q', Go) also holds.

INDUCTION STEP: Let m =k + 1. Let Zk be the subject in Ik that bounds the
~

bridge or connection between hand Ik+l; let Zz+l be Zk'S counterpart in Ik+l'

By lemma 3.2, can-know(zk+l' q', Go) holds; by lemma 3.1, this means

can-know(zko q', Go) holds; and by the induction hypothesis, can-know(p', Zko

Go) holds; whence by the spy rule, can-know(p', q'. Go) is true. This proves the

induction hypothesis, and hence the "if" part of the theorem.

(::;:.) Now assume can-know(p, q. Go) is true, and consider a minimal set of rule

applications Pi needed to produce a witness. Without loss of generality, we may

reorder the Pi'S so that all de jure rule applications precede any de facto rule

applications, since de facto rule applications do not change the state of the

protection graph. If no de facto rules are applied, the witness will end with

either an explicit read edge from p to q. in which case condition C3.4holds, or

an explicit write edge from q to p, in which case condition C3.5holds. So sup-

pose that at least one de facto rule application is needed.

40

Induct on the number m of such de facto rule applications.

BASIS: Let m =1. Each of the de facto rules must be considered. We will give

the proof for the post rule; the other rules are treated similarly.

Consider the post rule. In order to apply this rule, there must be a vertex

x such that can8share(r, p. x. Go) and can8share(w, q, y, Go) are true. By

theorem 1.3, this means that there is a sequence of islands II , . . . ,Ii with P E:

110 and a vertex a E: Ii which terminally spans to another vertex a', which has a

read edge to x:

terminal
span

a' r x

II 12 Ii

Similarly, there is a sequence of islands 11 Ik, with q E:Ik, and a ver-

tex bE:l 1 which terminally spans to another vertex b', which has a write edge

to x:

x w b' terminal
span

11 Ik-l Ik

Now, combining these two facts, relabel the islands 11 Ik as

Ii+l , . . . ,Ii+k' Note that, as a terminal span has associated word in r., we have

a connection r. rwt. from a to b:

terminal
span

a' r x w b' terminal
span

Ii 11 =Ii+l

41

r---- This is condition C3.6c. Taking p' =p and q' =q, conditions C3.6a and

C3.6b hold.

]NDUCTION HYPOTHESIS: Let m =1 , . . . , k. Then after n de facto rule applica-

tions, if can-know(p, q, Go) is true, conditions C3.6a, C3.6b, and C3.6c hold.

]NDU CTION ST EP: Let n =k + 1, and assume the k +1 st rule applied is a spy rule

(proofs for the other three rules are similar.)

As the spy rule is used, p is a subject, and there is a subject vertex X such

that can -know(p, X, Go) and can-know(x, q, Go) are true. By the induction

hypothesis, the first can-know ensures that there is a subject p' such that

p' =p or p' rw-initially spans to p, giving condition C3.6a; the second

can-know ensures that there is a subject q' such that q' =q or q' rw-

terminally spans to q, giving condition C3.6b. By the induction hypothesis, con-

dition C3.6c is assumed to hold for both can-know(p, X, Go) and can-know(x, q,
,..-...

Go). So, let II , . . . , Ij and J 1 Jk be the sets of islands for can-know(p, X,

Go) and can-know(x, q. Go), respectively. Thus, the configuration is:

II

~ bridge

... ~ ... connection(q8
Ij J1 Jk

Again. relabel J 1 Jk to be Ij+1 , Ij+k; also, recall that an rw-

terminal span between subjects is a connection. This establishes condition

C3.6c, proving the induction hypothesis and the claim.

Hence, theorem 3.3 has been proven. .

...----

42

DI.3. Definition and Proof of Can .Snoop

Up to this point, we have been considering cases where all vertices

cooperate in sharing information, so all de facto rules may be applied with

impunity. Suppose this is not true; suppose all vertices which have the right to

read a vertex flatly refuse to pass the information along. Under what condi-

tions can a vertex which does not have read rights over a second vertex obtain

information from the second vertex?

An example will help show what the problem is. Suppose Alice works for a

firm which has proprietary information that its competitors need desperately

to see. Alice, who works with this information quite a bit, has the authority to

read the documents containing the proprietary information whenever she likes,

with the understanding she is not to pass this sensitive data to anyone else,

including co-workers. The situation, in Take Grant terms, is:

... .. . T
Allce ci£.a

Go

.
co-workers

Any documents as sensitive as those which Alice consults must be kept

under lock and key. Alice's company has a large vault, which is opened by a key

that Alice has. One of her co-workers, Bobby, is not cleared to read these docu-

ments and does not have a key to the vault. While passing Alice's desk, he notes

a key lying on top of it. Were Bobby to take that key, he would be "taking"

Alice's right to read the documents, because she could no longer open the vault;

in effect, he would have illicitly obtained the right to read those documents. He

could also pass this information on to someone else. This is an example of

Alice's sharing (albeit unknowingly) her right to read the documents:

43

... .. ~ t . rBo by MIce d2.a
Gl

.
co-workers

Because he is honest, Bobby does not take the key, but merely suggests to

Alice that she be a bit more careful. (He is taken aback when she tells him it is

her car key and not the key to the vault!) Later in the day, Alice takes a sensi-

tive document out of the vault, goes back to her desk, and begins to read the

document. Unfortunately, Robin, who sits directly behind Alice in her office,

can see what Alice is reading just by looking over Alice's shoulder. In Take

Grant terms, this situation is:

... .. r r
Rot~ - -~ce d~a G2

.
co-workers

By the spy rule, Robin can read anything Alice can (the .Robin-to-Alice edge,

being unauthorized, is implicit); hence, can-know(Robin, "proprietary data",

G2) is true as long as Robin can look over Alice's shoulder; if Alice read the

document elsewhere, such as in the vault, Robin would no longer be able to read

the document over Alice's shoulder, so the spy rule would not be applicable

since there would be no (implicit or explicit) Robin-to-Alice edge. Notice the

difference between can-know(Robin, "proprietary data" , G2) and

can-know(Bobby, "proprietary data", Gl); in the latter case, the can-know is

true whether or not Alice cooperates by (knowingly or unknowingly) allowing

her shoulder to be looked over. The can -know predicate fails to capture this

distinction.r-

44

,.-----.. We define a new predicate, called can-snoop. This predicate will be true if

can -know is true and no-one who has any rights over the information being

snooped for cooperates with the snooper. For example, can-snoop(Robin,

"proprietary dala", G::J is false, since Alice has to pass the information to

Robin (by letting Robin look over her shoulder, in this example), whereas

can-snoop(Bobby, "proprietary data", G1) is true, since Bobby could see the

documents whether or not Alice cooperated, once Bobby had "taken" them.

More formally, we define:

DEFINITION D3.1: The predicate can-snoop(p, q, Go) is true if, and only if, one of

the following holds:

C3.7. can-stealer, p, q, Go) is true; or

C3.B. there exists a sequence of graphs and rule applications

GOr-PI . . . r-PnGn for which all of the following conditions hold:

a. there is no explicit edge from p to q labelled r in Go;

b. there is an implicit edge from p to q labelled r in Gn;

c. neither q nor any vertex directly connected to q is an actor in a

grant rule or a de facto rule resulting in a read edge with q as its

target.

Before we state necessary and sufficient conditions for can-snoop to be

true, let us examine the definition more closely. The predicate is rather clearly

the de facto analogue of can - steal, just as can -know is the de facto analogue of

can - share. If p can steal read rights to q. clearly no-one who owns those rights

over q can prevent p from obtaining information from q. Similarly, if p has

authority to read q, it would strain the meaning of what we are trying to define

to say can-snoop(p, q. Go) is true. In Gn, note that any read edge from p to q

must be implicit, for if not, can-stealer. p, q, Go) would have been true, meeting

45

condition C3.7. And for the purposes of this discussion, we willassume that q

will not cooperate (either wittingly or unwittingly) with any snooping; it would

be equally reasonable to assume that q would cooperate, in which case what

follows must be modified somewhal.

THEOREM 3.4: For distinct vertices p and q in a protection graph Go with expli-

cit edges only, can-snoop(p, q, Go) is true if and only if one ofthe followingcon-

ditions holds:

C3.9. can -steal(r,p, q, Go) is true; or,

C3.10. all of the following hold simultaneously:

a. there is no edge labelled r from p to q in Go;

b. there is a subject vertex p' such that p' = p or p' rw-initially

spans to p;

c. ifq is a subject, there is a vertex q' such that q' c;tq, there is no

edge labelled r from q' to q in Go, and q' rw-terminally spans to

q;and

d. can-know(p', q', Go) is true.

INFORMAL ARGUMENT: If can-snoop is true, and can-steal false, we have to show

all parts of condition C3.10 are true. Condition C3.10a follows from the

definition. By part C3.Bb of the definition, can-know(p, q, Go) is true, from

which condition C3.10b springs. Also, by theorem 3.3, condition C3.6b, we have

q '. Combiningthis with the definition, it becomes clear that although q' rw-

terminally spans to q, q' c;tq. and there is no edge labelled r from q' to q in Go.

The proof that can-know(p, q, Go) is true involves proving that the first rule to

add a read edge with target q is a take rule. and working backwards.

46

r---. Going from the conditions to can. snoop is trivial.

PROOF: (:;,) Let can-snoop(p, q. Go) be true. If can-steal(r, p, q, Go) holds, we

are done, since part C3.7 of the definition is condition C3.9 of the theorem. So,

assume can.steal(r, p, q, Go) is false.

Part C3.Ba of the definition gives condition C3.10a of the theorem.

By part C3.Bb of the definition, there is an implicit read edge from p to q in

Gn, whence by definition can.know(p, q, Go) is true; so, condition C3.10b of this

theorem results from condition C3.6a of theorem 3.3.

By condition C3.6b of theorem 3.3, there is a subject q 0 such that q 0 :tf q or

q 0rw-terminally spans to q. If q is an object, we can take q' to be the q 0in con-

dition C3.1Dc of this theorem. If q is a subject, by part C3.Bc of definition D3.1,

it is not used in the sequence of rule applications witnessing can.snoop.

,.. Hence, in this case, q0 :tf q; choose q' in condition C3.10c of the theorem to be

this q o. Thus, in either case, the q 0 in condition C3.1 Dc of this theorem is the

same as the q' as in condition C3.6b of theorem 3.3.

Assume q' and q are directly connected by an edge labelled r in Go. Either

can.share(t, po, q', Go) is true [which means can.steal(r, p, q, Go) is true, con-

tradiction] or q I must actively participate in a grant, pass, or spy rule applica-

tion [contradicting part C3.Bc of the definition of can.steaL] In either case,

there cannot be an edge labelled r from q , to q in Go.

It remains to be shown that can.know(p', q', Go) is true. Let

GOr-PI . . . r-PnGn be a minimum length derivation sequence, and let i be the least

index such that Gi~l r-PiGi. there is no explicit or implicit read edge from x to q

in Gi-t. and there is an explicit or implicit read edge from x to q in Gi-t. where

x is any vertex in Gi-l. That is, Gi is the first graph in which an edge labelled r

~ with target q is added. Consider the rule Pi which caused this edge to be added.

47

Pi cannot be a grant rule since, by part C3.Bc of definition D3.1, the owner of T

rights to q will not will not grant them to anyone else. Pi cannot be a pass, spy,

or find rule, since by part C3.Bc of definition D3.1, the owner of T rights to q will

not pass information from q to anyone else. Pi cannot be a post rule since by

part C3.Bc of definition D3.1, q will not pass information from itself to anyone

else. As neither the create nor the remove rules add edges to existing vertices,

Pi cannot be either. Hence, Pi must be a take rule.

We therefore have:

Pi: .
x

t~ T ~
q

I- ~
x q

Recalling that canaknow(p, q, Go) is true, by theorem 3.3 we see that

can aknow(p', q, Go) is true. Apply theorem 3.3 again. By this theorem, there is

a subject q' such that q' ~ q or q' Tw-terminally spans to q. Noting that there is
~

no direct edge labelled T from q' to q inGo, we take q' =x in theorem 3.3 and in

this theorem, whence canaknow(p', q', Go) immediately follows.

(~) If condition C3.9 holds. by part C3.7 of definition D3.1, canasnoop(p. q, Go)

is true.

So, assume condition C3.1D holds. Part C3.Ba of definition D3.1 is the same

as condition C3.1 Daof the theorem. By theorem 3.3, conditions C3.1 Db, C3.1 Dc,

and C3.1Dd of theorem 3.4 establish part C3.Bb of definition D3.1.. And as

q' ~ q when q is a subject, part C3.Bc of definition D3.1 is also true.

This completes the proof of theorem 3.4 .

r--

48

Chapter IV

Some Extensions to the Take-Grant Model

IV.1. Introduction

In its original form, the Take Grant model is a powerful theoretical tool;

unfortunately, there is one major drawback in applying it to non-theoretical

situations. The model deals with authorities between individual vertices, and in

practise, this is rarely done. Most computer systems have the concept of a

"protection group" designed into them, so that many users can share access to

a set of files. To apply the Take Grant model to this situation would require

that the graph rewriting rules be changed so that various combinations of

takes and grants were always performed in a given sequence.

In this chapter, we will look at three ways in which the rules may be rewrit-

ten, and how doing so affects the theorems and proofs. The rules we shall intro-

duce involve acting on classes or sets of vertices as well as individual vertices;

in the next chapter, we shall apply many of our results to an operating system

to show how, in practise, one would go about using the theory developed in this

chapter.

DEFINITION D4.l: A class is a collection of vertices.

In what follows, all vertices belong to at least one class. More than one

vertex may belong to the same class; similarly, one vertex may belong to many

classes. Should there be a one to one correspondence between classes and

- - ----

49

r- vertices, that is, if each vertex belongs to exactly one class and no class has

more than one vertex, the situation reduces to that of the original model.

A word on notation is necessary. We shall examine three possible exten-

sions: when one vertex acts on a class, when a class of vertices acts on one ver-

tex, and when a class of vertices acts on another class. For brevity, we shall

refer to these situations as the "one-many", the "many-one", and the "many-

many" extensions to the Take Grant model, respectively. (For consistency, the

model discussed in the preceding chapters ought to be called the "one-one"

version, but because this term has not been used before, we will refer to that

model as the "original" model.) The same predicate names as for the unex-

tended model will be used, but we will indicate which graph rewriting rules are

involved by placing one of the subscripts om, mo, or mm after the predicate to

indicate that the rules used are those of the one-many, many-one, or many-

many extension to the Take Grant model.

One point about the rules ought to be emphasized. We will change the

graph rewriting rules (the de jure rules) only. The de facto rules do not add

explicit edges, and so are not, strictly speaking, graph rewriting rules. More

importantly, they are rules which an individual, rather than a class, can apply;

information flows from one vertex to another, and not from one class of ver-

tices to another. Hence, throughout this chapter, the de facto rules used are

those used in the original model.

One word of warning is appropriate here. It will be very tempting to

assume that of the three extensions presented here, it is only necessary to

analyze one or two in depth, and then the others will "obviously" follow from it

(or them.) There is a reason why this approach was not used in this thesis.

Such a belief is not correct; while many of the lemmas, theorems, and

50

definitions resemble each other, they are by no means identical; and in cases

where proofs are necessary, the proofs of two very similar claims will be quite

different. (As an example, look at lemmas 4.2, 4.16, and 4.31, proving the for-

mal definition of "terminal span" meets the intuitive requirements.) This is a

result of the different graph rewriting rules used by each extension.

IV.2. The One-Many Extension

In this extension, we change the graph rewriting rules so that one vertex

acts upon a class of vertices. The new rules are:

RULE R4.1: takeom

Let x, y, and z be vertices belonging to classes X, y, and Z, respectively, and let

x be a subject. Suppose x has takeom rights over y and y has a rights over z.

Then x obtains a rights over all vertices in Z. In pictures,

a

XE:X8 t ~E:Z I- XE: E:Z

X 'E:X~ @l'E:Z X'E:~ 'E:Z

RULE R4.2: grantom

Let x, y, and z be vertices belonging to classes X, y, and Z, respectively, and let

y be a subject. Suppose y has grantom rights over x and y has a rights over z.

Then x obtains a rights over all vertices in Z. In pictures,

--- -----

a

XE:X< 9 YiY a :;».@lE:ZI- XEZ

X'E:X @l'E:Z x'EJ!0 " 'EZ

51

,...... RULE R4.3: createom

Let x belong to a set of classes S and let x be a subject. Then X createom a new

(subject or object) vertex y belonging to classes in a set S' I: S, with X having a

rights over all vertices belonging to classes in S'. In pictures,

XE:P.Q,R8 f- a

XE:p,Q,XQ
P~P qE:Q r~

18!
pE:P

@
qE:Q r~

RULE R4.4: removeom.

Let X and y be vertices belonging to classes X and Y. respectively, and let X be a

subject. Suppose X has a rights over yand let fJ I: a. Then X removesom fJ rights

over all vertices in Y. In pictures,

/' XE:~E:Y

X1E:~'E:Y

f- a-fJXE:X8 ~ @yE:Y

X'E:~'E:Y

In what follows, as in the original model, we will not use the removeom rule

except where necessary. since it was included mainly for completeness; its

presence rarely changes anything, because we (tacitly) assume that when an

edge or right is added to the protection graph, it remains there.

Before we begin defining terms, there is one effect of these rules that will

be seen over and over; basically. it says that if a subject has rights over one

member of a class, it can obtain these rights over all members of that class.

This is so useful that we state and prove it as a lemma:

LEMMA 4.1: Let s be a subject vertex, and let q and q' be vertices in the same

class in a protection graph Go. If s has a rights over q. then s can acquire a

,r--- rights over q'.

52

PROOF: The following construction demonstrates the claim:

s8 a ;.@q f- ~q
s~ @q'

screatesom (tg to new) s1

@q'

f- l7q

S~ql

s grantsom (a to q ,) to S 1

f-
1<7q

S~pl
s grantsom (a to q ,) to S 1

This completes the proof. .
This lemma will have many consequences. The most interesting one is the

effect on the transfer of rights from one vertex to another; it is sufficient for a

vertex to obtain a right over any member of a class in order to gain that right

over all members of that class. To take a more concrete example, think of files

as objects, processes as subjects, and protection groups as classes. If a process

can access a file, it can access all files in that protection group. Basically, that

is all the lemma says.

Our immediate goal is to determine necessary and sufficient conditions for

the transfer of authority in this model. Let us now look at the analogue to ini-

tial and terminal spans and bridges.

Recall that a terminal span is a path along which rights can be obtained.

That is, if x terminally spans to y, x can obtain any right y has. Under the four

rules R4.1 - R4.4, it is clear that the terminal span need not go from x to y

directly, but may go from x to any vertex in the same class as y; for, if the ter-

minal span is of length 1, an appropriate application of the createom rule will

53

'""""

do this, whereas for longer bridges, repeated applications of the takeom and

grantom rules will be needed.

More formally,

DEFINITION D4.2: A subject vertex p terminallYom spans to another (subject or

object) vertex q if there exists a sequence of vertices Xo Xn, n > 0, such

that p =Xc. q = Xn, and there are vertices Yl Yn for which there is an

edge labelled t from Xi to Yi+lt and Yi+l is in the same class as Xi+l' Pictori-

ally.

XIE:X1

p=x~
Y 1E:X1

Xn-lE:Xn-l

... ~="'EX'
YnE:Xn

To see that this formal definition meets the intuitive one, we show:

LEMMA4.2: Let p, s, and q be vertices in a protection graph, let s have a. rights

over q. and let p terminally om span to s. Then p can obtain a. rights over q.

PROOF: To prove this lemma, we induct on the length n of the terminalom span.

BASIS: n =1. In this case, the following sequence of rule applications proves

the lemma.

s =x 1 a.

"o=p~ ~
Yl

~ t s =x 1 a.

"o=p~ ~~
Yl

Lemma 4.1

,--.

r-

54

~S~Xl a
xo=p q

t

Yl

P takesom (a to q) from S

n =1,..., k.

INDUCTION HYPOTHESIS: The claim is true for a terminalom span of length n,

INDUCTION STEP: Let n =k + 1. Then,

xo=p~ ~
Yl Y2

t Xl X2

r- xo=p~ 0

~t~Yl Y2

L t Xl X2
rxo=p

~ t t
t

Yl Y2

S=Xn a ...@q0

0
Yn

S=Xn a "'@q0

Lemma 4.1

0
Yn

S=Xn a ~@q0

0
Yn

p takesom (tom to Y2) from Xl

Now, the terminal span is of length k, so the claim follows from the induction

hypothesis. Hence. p can obtain a rights to q. .
We can make this lemma more general:

COROLLARY 4.3: Let q and q I be vertices (not necessarily distinct) in the

same class in a protection graph. Let the following two conditions hold:

55

C4.1. There is a vertex s with an a ed ge to q '.

C4.2. There is a subject vertex s' such that s' =s or s' terminallYom spans

to s.

Then s' can acquire a rights to q.

PROOF: If s' =s. then by lerruna 4.1 we are done. If q' =q. the corollary is trivi-

ally true. Finally. by lerruna 4.2. s' can acquire a rights over q '; then by lerruna

4.1. s' can acquire a rights over q. .
Going back to definitions. recall that an initial span is a path along which

rights may be bestowed; that is. if p initially spans to q. p may pass any right it

has to q. More formally.

DEFINITION D4.3: A subject vertex p initiallYom spans to a (subject or object)

vertex q if there exists a sequence of vertices Xo Xn. n > 0, such that

p =Xc. q = Xn. and there are vertices Yl... ., Yn. n > 0, such that Yi. and Xi.

are in the same class. there is an edge labelled 9 from Xn-l to Yn. and for all

i '#-n. there is an edge labelled t from Xi.-l to Yi..

As with terminalom spans. let us show that this definition meets the intui-

tive requirements.

LEMIIA4.4: Let the following condition hold:

C4.3. There is a subject vertex p' such that p' =p or p' initiallYom spans

to p.

Then p' may pass to p any right it has.

PROOF: If p' =p. we are done. So. assume p' '#-p; by corollary 4.2. taking

s'=p',q =p.q'=Yn.s =xn.anda=g.theresultfollows. .
Finally. we define the analogue of a bridge; recall that a bridge is a path

along which rights may be transferred from one subject to another.

56

~ DEFINITION D4.4: Two subject vertices p and q are joined by a bridgeom if one of

the following conditions holds:

C4.4. Either of the two subjects terminally om spans to the other;

C4.5. Either of the two subjects initiallYom spans to the other;

C4.6. There is an object vertex s such that one of the subjects initiallYom

spans to s, and the other terminally om spans to s.

Again, we show this formal definition meets the intuitive requirements,

LEIIIIA 4.5: Let p and q be subjects with a bridge between them. Then p can

obtain any right q has.

PROOF: If case C4.4 applies, either p terminallYom spans to q or vice versa; in

either case, by definition D1.5 or by lemma 4.2, the claim is proven. If case C4.5

applies, either p initiallYom spans to q or vice versa; in either case, by definition

r' D1.4 or by lemma 4.4, the claim is proven. If case C4.6 applies with p

terminally om spanning to s, and q initiallYom spanning to s, by lemma 4.4 q can

pass any right to s.which p can then acquire by lemma 4.2; if P initiallYom spans

to s, and q terminallYom spans to s, by the construction used to prove case 2 of

lemma 3.1, we are done. .
Note that, by lemma 4.1, if there is a bridge from a vertex in one class to a

vertex in another class, either vertex can acquire rights over any member in

the other class; therefore, we will often speak of a vertex and a class being

linkedom' All this means is that there is a bridge from the vertex to a vertex in

the class. The vertex linked om to the class, incidentally, will often be called a

linkom vertex,

.r--

57

We can now consider several classes with vertices linked by bridges.

LEIIIIA 4.6: Let the following condition be true:

C4.7. There exists a sequence of classes C 1 Cm such that subjects p'

E:C I, S' E:C m, and in each C i there is a subject vertex Ci linkedom to

Ci+l' for 1 ~i ~m.

Then p' can acquire any right s' has.

PROOF: We induct on the number m of classes.

BASIS: When m = 1, if p' = s', we are done. If not,

P'. . s' r- p'~ 9
s'. 9 ~s"

and now s' can grant any right to p ,.

INDUCTION HYPOTHESIS:For m =1 , k, the claim holds for m classes.

INDUCTION STEP: Let m =k + 1, and consider C2. By the induction hypothesis,

C2 can obtain any right s' has. By assumption, C 1 is a subject; hence, by lemma

4.1, Clean obtain any right C2 has, so it can obtain any right s' has. And by

using the createom rule as in the basis, clean grant to p' any right it has.

Hence, p' can acquire any right s' has. .
Given lemmas 4.2, 4.4, and 4.6, we can characterize sharing completely. If

conditions C4.1, C4.2, C4.3, and C4.7 hold, by lemma 4.2, s' can get a rights to q;

by lemma 4.6, p' can get a rights to q from s '; and by lemma 4.4, p can be given

a rights to q by P '. Hence, we define the predicate

DEFINITION »4.5: The predicate can8shareom(a, p, q, Go) is true if and only if

there is a finite sequence of the four om graph rewriting rules which, when

applied to the protection graph Go, result in an edge labelled a going from p to

q.

- - - - - - - - ~ - -- -

58

The necessary and sufficient conditions for this predicate to be true are:

THEOREII 4.7: The predicate can8share(a, p, q, Go) is true if and only if condi-

tions C4.1, C4.2, C4.3, and C4.7 hold simultaneously.

PROOF: (~) Consider what happens if anyone of the conditions fails. If C4.1

fails, no vertex can obtain a rights to q, since none of the graph rewriting rules

add new incoming rights to a vertex; if C4.2 fails, no vertex in any class em can

obtain exrights to q; if C4.3 fails, no vertex can grantom p a rights to q; and if

C4.7 fails, no vertex which can grantom p rights will be able to obtain a rights to

q. Hence, all four conditions must hold simultaneously for can8shareom(a, p, q,

Go) to be true.

(~) Immediate from lemmas 4.2, 4.4, and 4.6. .
Now that we have characterized sharing, let us think about stealing rights.

Informally, we want the predicate can8stealom(ex, p, q, Go) to be true whenever p

can obtain a rights to q without the owner of that right granting it. However,

suppose an owner grants to p the right to exa vertex q" in the same class as q.

It is reasonable to bar this from taking place in a theft, because a vertex grant-

ing rights grants rights to a class, not to a vertex. So, if such a grant takes

place, we shall not consider the action a theft.

More formally, we define the predicate

DEFINITION D4.6: Let p be a vertex and let q be a vertex in class Q. The predi-

cate can8stealom(a, p, q, Go) is true if and only if all the following hold:

C4.8. there is no edge labelled a from p to q in Go;

C4.9. there is a sequence GI,..., Gn of protection graphs and

PI , Pn of rule applications such that

59

/" a. GO~Pl""'~PnGn.

b. there is an edge labelled exfrom p to q in Gn. and

c. if s has exrights over any q I E:Q in Go. no p; has the form

s grantsom (exto q') to x;

for any x; E:Gt-lo 1 ~ i.j ~ n.

Clearly. part C4.9c of the definition is the key part. We can modify the con-

ditions necessary and sufficient for can8shareom to be true to give conditions

both necessary and sufficient for can8stealom to be true:

THEOREII 4.8: Let p and q be vertices in a protection graph Go. Then

can8stealom(ex. p. q. Go) is true if and only if the following conditions all hold:

C4.10. there is no edge labelled exfrom p to q in Go.

C4.11. there is a vertex s with an exedge to a vertex q I in the same class as

q.

C4.12. there is a subject vertex p' for which p' =p or p' initiallYom spans

to p. and

C4.13. can8shareom(t. p'. s. Go) is true.

INFORMAL ARGUMENT: To show the "only if" part. note C4.10 comes from the

definition; as being true means can 8shareom is true. conditions C4.11 and C4.12

both hold. We can deduce C4.13 by showing the first rule to add an exedge to q I

in Q must be a takeom rule. Proving the "if" part merely requires that we show

part C4.9c of the definition is met. which involves checking several cases.

PROOF: (~) Assume can8stealom(a. p. q. Go) is true. By part C4.9c

of definition D4.B, condition C4.10 holds. By part C4.9b of the definition.

can8shareom(a, p. q. Go) is true. so condition C4.3 of theorem 4.7

gives condition C4.12 of this theorem. and condition C4.1 of theorem 4.7 gives

60

condition C4.11 of this theorem.

To prove condition. C4.13 holds, consider the minimal length derivation

sequence Go r-Pl r-Pn Gn witnessing can8shareom(ex, p. q, Go). Let i be the

index for which Gi. is the first graph in the derivation sequence where an edge

labelled ex to q' is added; that is, i is the first index for which Gi.-l r-~ Gi., there

is an edge labelled ex from some vertex X to q I in Gi., but there is no edge

labelled ex from X to q' in Gi.-l. Clearly, Pi. is neither a createom nor a removeom

rule. By part C4.9c of the definition, it cannot be a grantom rule, since by our

choice of i, all vertices with ex rights to q I in Gi.-l are also in Go. Hence, Pi. must

be a takeom rule of the form

X takesom (ex to q ,) from s.

By C4.2, there is a subject vertex s' such that s I =S or s' terminallYom

spans to s. By C4.7, there are classes C1 Cm such that p' E Cl and

S'ECm.

Suppose s is an object. If s' is not in the same class as X, then our deriva-

tion sequence would not be minimal because there would be a shorter sequence

not involving s '; hence, s' is in the same class as X, and terminally om spans to X;

thus, take s' =x. In this case, can8shareom(t, p', s, Go) holds.

Now suppose s is a subject; that is, s I =s. The vertex X is in some inter-

mediate class Ct, l~l ~m. If X EGo, all of C4.1, C4.2, C4.3, and C4.7 are

satisfied, and we are done. So, let X rj. Go. As s E Go and new labels on incoming

edges cannot be added to extant classes, there must be a subject y in one class

for which can8shareom(t. y, s, Go) is true. Note that any rule of the form

s grantsom (exto z) to Y

(where z is an arbitrary vertex) can be replaced by

61

~ x takesom (0: to z) from s

x takesom (g to y) from s

x grantsom (0: to z) to s

whenever X ~ y, and

X takesom (0: to z) from s

whenever X =y. Thus, since s need never grantom 0: to do the sharing,

canashareom(t, y, s. Go) is true. This satisfies C4.13 of this theorem.

(~) Let the four conditions in the theorem hold. If p is a subject, it can takeom

(0: to q ,) from s since it gets the takeom right to s, and hence get an 0: right to q.

So, suppose p is an object. Then by condition C4.3, there must be a subject

r
p' that initially om spans to p, and by condition C4.7, canashareom(t, p', s, Go). If

in Go p' does not have an 0: edge to q', then p' can takeom (0: to q ,) from sand

grantom it to p. If p' does have an 0: edge to q' in Go, note simply that by condi-

tions C4.3 and C4.7 there is a G;. such that p' has a takeom edge to s and a

grantom edge to p, the following sequence enables p' to pass the right (0: to q)

to P without ever grantingom it:

p' createsom (g to new subject) z

p' grantsom (t to s) to z

p' grantsom (g to p) to z

z takesom (0: to q) from s

z grantsom (0: to q) to P

r-- This is a witness for canastealom{O:, p, q, Go), thus proving the theorem.

62

Thus far, we have dealt with the transfer of rights in a protection graph.

Let us now consider the transfer of information. As in the original model. we

shall define predicates analogous to can -know and can -snoop to test for infor-

mation flow.

First, let us define conditions under which a vertex can grantom' or takeom'

read and write rights. Recall that an rw-initial path is a path along which

information can be transmitted. We define an rw-initialom path to be the same

under the om rules:

DEFINITION D4.7: A vertex p rw-initiallYom spans to q if there is a vertex s with

a write edge to another vertex q" in the same class as q, and p terminally om

spans to s. or p =s.

To see this meets the intuitive requirements, we now show:

--- LEIIIIA 4.9: Let the following condition be true:

C4.14. there is a subject p I which rw-initiallYom spans to p, or p' =p.

Then p I can acquire w rights to p.

PROOF: If p' ~ S, as p I terminallYom spans to s, p I can acquire w rights to q" by

lemma 4.2. If p' =s, it already has those rights. As q" and q are in the same

class, and p I is a subject, by lemma 4.1, p' can acquire w rights over q. .
Also, recall that an rw-terminal span is a path along which information

can be obtained. Again, we define an rw-terminalom span to be the same under

the om rules:

DEFINITION D4.B: A vertex p rw-terminallYom spans to q if there is a vertex s

with a read edge to another vertex q" in the same class as q, and p terminally om

spans to s. or p = s.

63

Once again, we must prove this definition meets the intuitive requirement:

LEMIIA4.10: Let the following condition hold:

C4.15. there is a subject q' which rw-terminallYom spans to q, or q' =q.

Then q' can acquire read rights over q.

PROOF: If q' 'jl s. as q' terminallYom spans to s. q' can acquire read rights to a

vertex q" in the same class as q, by lemma 4.2. If q' =s. it has such rights to

q". As q" and q are in the same class, and q' is a subject, by lemma 4.1, q' .can

acquire read rights to q. .
With these two definitions. we can develop an analogue to "connection"

using the om rules. Informally. a joinom is a path along which information. but

not rights, may flow. More formally.

DEFINITION »4.9: Let p and q be subject vertices. If p rw-initiallYom spans to q.

or q rw-terminallYom spans to p. or p rw-initiallYom spans to a vertex to which q

rw-terminallYom spans. then q is said to be joined om to p.and the path between

them is called a joinom'

As usual. we check that this meets the intuitive requirements:

LEMMA4.11: If q is joinedom to p. then one of the following cases holds:

C4.16. P can obtain an explicit write edge to q;

C4.17. q can obtain an explicit read edge to p; or,

C4.1B. q can obtain an implicit read edge to p.

PROOF: If P rw-initiallYom spans to q. by lemma 4.9. case C4.16 holds; if q rw-

terminallYom spans to p. by lemma 4.10. case C4.17 holds. So. suppose p rw-

initiallYom spans to a vertex x. and q rw-terminallYom spans to x. By lemma 4.4.

p can acquire write rights over x.and by lemma 4.2 q can acquire read rights

over x; then case C4.1B holds with an application of the post rule.

64

r As a result, we may prove a stronger lemma, namely:

LEMMA4.12: Let the following condition hold:

C4.19. There is a sequence of classes D 1 , Dm such that there are

sub jects p'E D 10 q' E D m, and there is a sub ject diE D i, i ~ m,

such that either di is linkedom to Di+lo or di is joinedom to a sub-

ject vertex di+l E Di+1'

Then one of three cases holds:

C4.20. q' can obtain an explicit write edge to p';

C4.21. p' can obtain an explicit read edge to q ';

C4.22. p' can obtain an implicit read edge to q ';

PROOF: The proof is by induction on the number m of classes.

BASIS:m =1. Thenp'andq'areinthesame classD1; so,
/-

P'. .q' ~ p, \: r q'

p' createsom (r to new) p "ED 1

p"

and case C4.21 holds.

]NDUCTION HYPOTHESIS: The claim holds for m =1 k.

]NDUCTION STEP: Let m =k + 1. 1f dk is linkedom to Dk+lo let dk+l be the link

vertex. The following sequence of rule applications produces a witness to the

claim:

65

d . 1ink d/i..+l
Ie - - ..PIP.... 8q'

r- d . 1inkoft

\
1 r ,

Ie --"'. q

dle+l createsom (r to new) d 'k+lE:Dk+1

d 'k+l

r- d ~
inkoft +1 r ,

Ie --~ q

r Lemma 3.5

d'k+l

and by the induction hypothesis, we are done. If die is joinedom to die +10then

from the first step of the above construction, it is clear that die +1 can acquire

read rights over q'. By lemma 4.11 and the appropriate de facto rule (either

the spy rule, if cases C4.17 or C4.1B of lemma 4.11 hold, or the pass rule, if case

C4.16 of lemma 4.11 holds), die can obtain an explicit or implicit read edge to

q'. Apply the induction hypothesis to get the required result. .
Notice that cases C4.20 and C4.21 will be possible only when all of the

classes D 1 , . . . , Drn are connected by linksom since across joinsom only infor-

mation and not rights can be transferred. Only implicit edges can occur among

classes which are joinedom.

With these terms we can now define the sharing of information:

DEFINITION D4.10: The predicate canaknowom(p, q. Go) is true if and only if

there is a finite sequence of om de jure and de facto rule applications resulting

in an explicit write edge from q to p, or an (explicit or implicit) read edge from

P to q.

66

r In other words. if p can obtain information fromq, can.knowom(p. q, Go) is

true. We can also state necessar y and sufficient conditions for can .know toom

hold:

THEOREM 4.13: Let p and q be vertices in a protection graph Go. Then

can.knowom(p. q. Go) is true if and only if at least one of the following holds:

C4.23. can.shareom(w, q. p. Go) is true; or.

C4.24. can.shareom(r, p. q, Go) is true; or,

C4.25. all of C4.14, C4.15. and C4.19 hold simultaneously.

INFORMAL ARGUMENT: Assume exactly one of the three conditions holds. By

definition, if either conditions C4.23 or C4.24 hold. can.knowom(p, q, Go) is

true. So, assume only condition C4.25 holds. By lemmas 4.9, 4.10. and 4.12, p

can obtain information from q. Going the other way, again if condition C4.23 or

r-- C4.24 is true, the result is immediate; if only condition C4.25 holds, we will show

that if one of C4.14, C4.15, and C4.19 is false, can.knowom is also false.

PROOF: (~) If condition C4.23 or condition C4.24 holds, can.knowom(p, q, Go) is

true by definition. So, assume both are false and condition C4.25 is true. By

lemma 4.9, it suffices to have p'E D 1 acquire information from q; by lemma

4.10, it suffices to have q 'E: Dm transmit information to p'; and by lemma 4.12,

this can be done. Hence. can.knowom(p, q, Go) is true.

«:=) Assume can.knowom(p, q. Go) is true. Then, if there is an explicit read edge

from p to q, condition C4.24 holds; if there is an explicit write edge from q to p,

condition C4.23 holds; so, assume there is an implicit read edge from p to q. If

C4.14 fails, the implicit edge cannot originate at p; if C4.15 fails, the implicit

edge cannot terminate at q; if C4.19 fails. no such implicit edge can exist. In

any case, we have a contradiction, so all three conditions C4.14, C4.15, and

,r--- C4.19 must hold simultaneously.

67

Now that we have established conditions for the sharing of information, let

us consider the theft of information. To do this, we define a predicate analo-

gous to can.snoop, namely

DEFINITION D4.11: Let p and q be vertices in a protection graph Go. Then

can.snooPom(P' q, Go) is true if, and only if,

C4.26. can.stealom(r, P, q, Go) is true; or,

C4.27. there exists a sequence of protection graphs and rule applications

Go ~Pl ~Pn Gn for which all of the following hold:

a. there is no edge from p to q labelled r in Go;

b. there is an edge from p to q labelled r in Gn; and

c. neither q nor any vertex directly connected to q II in the same

class as q is an actor in a grantom rule or a de facto rule resulting

in an (explicit or implicit) edge labelled r going to q, or an expli-

cit read edge going to q ".

Just as we derived necessary and sufficient conditions f~r can.stealom' we

can do so for can.snooPom:

THEOREII 4.14: For distinct vertices p and q in a protection graph Go,

can.snooPom(p, q, Go) is true if and only if one of the following is true:

C4.2B. can.stealom(r, p, q, Go) is true, or

C4.29. all of the following hold:

a. there is no edge fromp to q labelled r in Go;

b. there is a subject vertex p' such that p =p' or p' rw-initiallYom

spans to p;

68

..-- c. there is a vertex q' such that q' jI! q, q' is not directly connected

to q, and if q is a subject, q' rw-terminallYom spans to q; and

d. can8knowom(P', q', Go) is true.

INFORMAL ARGUMENT: If can8snooPom(p, g, Go) is true, and can8stealom(r, p, g,

Go) is false, we have to show the parts of condition C4.29 are true. Condition

C4.29a follows from the definition; by part C4.27b of the definition,

can8knowom(P' q, Go) is true, from which condition C4.29b springs. Also, by

theorem 4.13, condition C4.15, we have q '. Combining this with the definition, it

becomes clear that although q' rw-terminallYom spans to q, q' jI!q and there is

no edge labelled r fromq' to q in Go. The proof that can8knowom(P', q', Go) is

true involves proving that the first rule to add a read edge with target g is a

take rule.

Going from the conditions to can8snooPom is straightforward.

PROOF: (~) Let can8snooPom(P' q, Go) be true. If can8stealom(r, p, q, Go) holds.

we are done, since part C4.27a of the definition is part C4.28 of this theorem.

So, assume can8stealom(r. p. q. Go) is false.

Part C4.27d of definition D4.11 gives condition C4.29a of this theorem.

By condition C4.15 of theorem 4.13, there is a subject q' such that q' =q,

or g' rw-terminallYom spans to q.

If g is an object, take q' =q in condition C4.29c of this theorem.

If q is a subject. by part C4.9c of the definition of can8snooPom' it is not

used in the sequence of rule applications witnessing can8snooPom' In this case.

q' jI!q; choose q' in condition C4.29c to be this q'. Now, assume q' is directly

connected to a vertex q" in the same class as q with an edge labelled r. Either

can8shareom(t. p', q °, Go) is true [in which case can8stealom(t, p. q. Go) is true.

69

contradicting assumption] or q' must actively participate in a grantom spy, or

pass rule application [which contradicts part C4.27c of the definition of

can-snooPom' contradicting assumption again]. In either case, there is no edge

labelled T from q to q" in Go.

It remains to be shown that can-knowom{p', q', Go) is true.

Go f-Pl ' . . . , f-Pl Gn be a minimum length derivation sequence, and let i be the

Let

first index such that the first (explicit or implicit) read edge with target vertex

in q's class is added in Gi' That is, i is the least index such that Gi-l f-Pi Gi.

there is no (explicit or implicit) read edge from any vertex x to q" in the same

class as q in Gi-lo and there is an (explicit or implicit) read edge from x to q" in

Gi' Consider what rule Pi was used to add this edge. It cannot be a grantom

rule because that would violate part C4.9c of definition D4.11. Nor can it be a

spy. pass, or find rule, or a post rule. for this would violate the saine part of the
r-

definition. As the createom and removeom rules do not add edges to existing

classes, Pi cannot be either of these. Hence. Pi must be a takeom rule.

We therefore have:

Pi: .x t~ T ~,
q

@
q

f-
T

~~
T

Recalling that can-knowom(P' q . Go) is true, by theorem 4.13 we see

can-knowom(p', q, Go) is true. Apply theorem 4.13 again; by this theorem. there

is a subject vertex q' such that q' =q or q' Tw-terminallYom spans to q. Noting

that there is no edge from q' to q labelled T in Go. we take q' =x in theorem

4.13. whence can-knowom(P', q'. Go) immediately follows.

70

('*=) If condition C4.2B of the theorem holds. by part C4.27a of the definition,

can 8snooPom(p, q, Go) is true.

So, assume condition C4.29 holds. Part C4.9a of the definition is the same

as condition C4.29a of the theorem. By theorem 4.13. conditions C4.29b.

C4.29c, and C4.29d establish part C4.9b of the definition. And as q' ~ q when q

is a subject, part C4.9c of the definition also holds.

This completes the proof. .

IV.3. The Many-One Extension

In this extension. we change the graph rewriting rules so that a class of

vertices act upon one vertex. The new rules are:

RULE R4.5: takemo

Let I, y, and z be vertices belonging to classes X, y, and Z, respectively, and let

I be a subject. Suppose I has takemo rights over y and y has exrights over z.

Then all vertices in X obtain exrights over z. In pictures,

t ~E:Z t-

ex

IE:X8 IE: E:Z

I 'E:X@ @X'E:X @Z'E:Z

RULE R4.6: grantmo

Let I, y, and z be vertices belonging to classes X, y, and Z, respectively, and let

y be a subject. Suppose y has grantmo rights over I and y has exrights over z.

Then all vertices in X obtain exrights over z. In pictures,

71

~

XEX~ E: g yEY 0.. :;a@ZEZ ~

0:

XEX~EZ

X'E/ @/:'EZX'EX~ @Z 'EZ

RULE R4.7: createmo

Let x belong to a set of classes S and let x be a subject. Then x createsmo a new

(subject or object) vertex y belonging to classes in a set S' C S, with all vertices

in class Shaving 0. rights over y. In pictures,

xEP,Q,R8 ~ 0:
XEP'Q'

~
Q

0. 0. 0.

pEP q EQ rE
. ~ppE

~
qEQ r~

RULE R4.8: removemo

/"' Let x and y be vertices belonging to classes X and Y, respectively, and let x be a

subject. Suppose x has 0: rights over y and let {3C 0.. Then all vertices in X

removeSmo {3rights over y. In pictures,

XE~EY

X'EL,E:Y

~ 0.-{3
xEX8 :00@YEY

x'E~'EY

The removemo rule is present mainly for completeness; since we assume

that, once given, a right has been exercised, and hence should remain exhibited

in the corresponding protection graph as something to be considered when

testing predicates, this rule is rarely used.

Before we begin defining terms, there is one effect of these rules that will

be seen over and over; basically, it says that if a subject has rights over another

vertex, all vertices in the subject's class can obtain these rights over that

~

72

---- vertex. This is so useful that we state and prove it as a lemma:

LEMMA4.15: Let s be a subject vertex, let s' be a vertex in the same class as s,

and let q be a vertex in a protection graph Go. If s has exrights over q, then s I

can acquire exrights over q.

PROOF:

This completes the proof. .
Among the many interesting consequences of this lemma is its effect on the

transfer of rights from one vertex to another; it is sufficient for one subject ver-

tex in a class to obtain a right over a vertex, in order that all vertices in the

subject's class get that right. To take a more concrete example, think of iiles

as objects, and processes as subjects; each process is a member of several

classes, each class corresponding to a group of which the process is a member,

as well as the class of processes with the same owner. If a process can access a

file, all processes owned by the same user can access that file. Basically, that is

all the lemma says.

Our immediate goal is to determine necessary and sufficient conditions for

the transfer of authority in this model. Let us now look at the analogue to ini-

tial and terminal spans and bridges.

~

s8
ex

:;o@q :s:
s createsmo (Ymo to new) s"

s'@ s' Y s"

q

s' Y ex SOl

s grantsmo (exto q) to s"

73

Recall that a terminal span is a path along which rights can be obtained.

That is, if X terminally spans to y, x can obtain any right y has. Under the four

rules R4.1 - R4.4, it is clear that the terminal span need not go from X to y

directly, but may go from any vertex in the same class as x to y.

More formally,

DEFINITION »4.12: A subject vertex p terminallymo spans to another (subject or

object) vertex q if there is a vertex r in the same class as p that terminally

spans to q.

Here, r spans to q with a terminal span, in the sense of the original model.

Pictorially,

t t

PEP. t~ ... ~

r EP/

To see that this formal definition meets the intuitive one, we show:

LEIIIIA 4.16: Let p, r, and s be vertices in a protection graph, let p and r be in

the same class. and let r terminallYmo span to s. If s has exrights over q. then p

can obtain exrights over q.

PROOF: We induct on the length m of the terminalmo span from r to s.

BASIS: m =1. We have the following:

ex

/q
~ ~

ex
p q

t
ex

r

r takesmo (exto q) from s

74

,..---
INDUCTION HYPOTHESIS: The claim is true for a terminalmo span of length m,

m =1,..., k.

INDUCTION STEP: Let m = k + 1. Let the object vertices on the terminalmo path

from r to s be Xl , . . . , Xm-l. It suffices to show that r can acquire take rights,

at which point we can apply the induction hypothesis. But, since

ex.

.r t~
Xl

t ~ ...
X2

I- ~...
r X I X2

r takesmo (t to X2) fromx I

we are done. .
We can make this lemma more general:

COROLLARY 4.17: Let q be a vertex in a protection graph. Let the following two

conditions hold:

C4.30. There is a vertex s with an ex.edge to q;

C4.31. There is a subject vertex s' such that s' =s or s' terminallYmo

spans to s.

Then s' can acquire ex.rights to q.

PROOF: If s' =s, we are done. Suppose s' ~ s. By definition D4.12 and lemma

4.16, the corollary is immediate. .
Going back to definitions, recall that an initial span is a path along which

rights may be bestowed; that is, if p initially spans to q. p may pass any right it

has to q. More formally,

DEFINITION D4.13: A subject vertex p initiaUymo spans to a (subject or object)

vertex q if there is a subject r in the same class as p and r initially spans to q.

75

Again, r spans to q in the sense of an initial span in the original model.

Again, let us show that this definition meets the intuitive requirements.

LEMMA4.18: Let the following condition hold:

C4.32. There is a subject vertex p I such that p' =p or p' initiallYmo spans

to p.

Then p I may pass to p any right it has.

PROOF: Let s be a vertex in the same class as p', and let s initiallymo span to p.

We induct on the length m. of this initial span.

BASIS: m. = 1. We have

PYP

~

P7P Lemma 4.15

/'-

JNDUCTION HYPOTHESIS: The claim holds when s initially spans to p with a path

of length m., for m. =1 , . . . , k.

JNDUCTION STEP: Let m. =k + 1. Let the object vertices on the initial path be

Xl, Xm-1' Jt suffices to show that s can acquire x l'S rights over X2; then we

merely apply the induction hypothesis. But, for a E:~t, g L

a

p/ a
stakes (a to X2) from x 1mo

we are done. .
Finally, we come to characterizing a bridge; recall that a bridge is a path

along which rights may be transferred from subject to subject.

r-'-

r ,

\

76

DEFINITION D4.14: Two subject vertices p and q are joined by a bridgemo if one

of the following conditions holds:

C4.33. Either of the two subjects terminallYmo spans to the other;

C4.34. Either of the two subjects initiallYmo spans to the other;

C4.35. There is an object vertex s such that one of the subjects initiallymo

spans to s, and the other terminallymo spans to s.

Again, we show this formal definition meets the intuitive requirements.

LEMMA4.19: Let p and q be subjects with a bridge between them. Then p can

obtain any right q has.

PROOF: If case C4.33 applies, either p terminallymo spans to q or vice versa; in

either case, by definition D1.5 or by lemma 4.16. the claim is proven. If case

C4.34 appli"es, either p initiallYmo spans to q or vice versa; in either case, by

definition D1.4 or by lemma 4.18, the claim is proven. If case C4.35 applies with

p terminallymo spanning to s, and q initiallymo spanning to s, by lemma 4.18 q

can pass any right to s, which p can then acquire by lemma 4.16; if p initiallymo

spans to s. and q terminallymo spans to s, by the construction used to prove

case 2 of lemma 3.1, we are done. .
Note that, by lemma 4.15, if there is a bridge from a subject vertex in one

class to a subject in another class, any vertex in either class can acquire rights

over any vertex in the other class; therefore, we will often speak of a class and

a vertex being linkedmo' All this means is that there is a bridge from a vertex in

the class to the vertex. The vertex linkedmo to the class, incidentally, will often

be called a linkmo vertex.

77

One more lemma will be useful in our next proof:

LEIIIIA 4.20: Let the class X be linked to a vertex c, and let C have exri ghtsmo

over another vertex q distinct from c and the linkmo vertex x E:X. Then any

vertex x I E:X can acquire exrights to q.

PROOF: Consider how x would obtain these rights. Either c would grantmo then

to x, or x would takemo them (using the bridgemo from x to c.) When either of

these is done, all vertices in X would acquire exactly the same rights as x, that

is, exrights to q. Hence, x' can acquire exrights to q. .
We can now consider several classes with vertices linked by bridges.

LEIIIIA 4.21: Let the following condition be true:

C4.7. There exists a sequence of classes C I Cm such that subjects p'

E: CI, s' E: Cm, and in each Ci there is a subject vertex Ci to which

Ci-l is linkedmo' for 1 ~ i ~ m, and Cm = s'.

Then p I can acquire any right s' has.

PROOF: We induct on the number m of classes.

BASIS: When m =I, p' and s' are in the same class. If p' =s', we are done. If

not, as s' is a subject, we need only apply lemma 4.15.

INDUCTION HYPOTHESIS: For m =1 , k, the claim holds for m classes.

INDUCTION STEP: Let m =k + 1. As s' E:Ck+l, by assumption there is a subject

vertex Co\:E:Co\:with a bridgemo to s'. By lemma 4.20, Co\:can acquire any rights

s' has. At this point, we may apply the induction hypothesis to show that p I can

acquire any right Co\:has, whence p' can acquire any right s' has. .
Given lemmas 4.16, 4.18, and 4.21, we can characterize sharing completely.

If conditions C4.30, C4.31, C4.32, and C4.36 hold, by lemma 4.16, s' can get ex

rights to q; by lemma 4.21, p I can get exrights to q from s '; and by lemma 4.18, P

78

can be given exrights to q by P '. Hence, we define the predicate:

DEFINITION D4.15: The predicate can8sharemo(ex, p, q, Go) is true if and only if

there is a finite sequence of the four mo graph rewriting rules which, when

applied to the protection graph Go, result in an edge labelled exgoing from p to

q.

The necessary and sufficient conditions for this predicate to be true are:

THEOREM 4.22: The predicate can8sharemo(ex, p, q, Go) is true if and only if con-

ditions C4.30, C4.31, C4.32, and C4.36 hold simultaneously.

PROOF: (~) Consider what happens if anyone of the conditions fails. If C4.30

fails, no vertex can obtain exrights to q, since none of the graph rewriting rules

add new incoming rights to a vertex; if C4.31 fails, no vertex in any class em

can obtain ex rights to q; if C4.32 fails, no vertex can grantmo p exrights to q;

and if C4.36 fails, no vertex which can grantmo p rights will be able to obtain ex

rights to q. Hence, all four conditions must hold simultaneously for

can8sharemo(ex, p, q, Go) to be true.

(~) Immediate from lemmas 4.16, 4.1B, and 4.21. .
Now that we have characterized sharing, let us think about stealing rights.

Informally, we want the predicate can8stealmo{ex, p, q, Go) to be true whenever p

can obtain ex rights to q without the owner of that right granting it. However,

suppose an owner grants to a vertex in the same class as p the right to exq. It is

reasonable to bar this from taking place in a theft, because a vertex granting

rights grants a class, and not a vertex, rights to a vertex, So, if such a grant

takes place, we shall not consider the action a theft.

,.---

79

,..- More formally, we define the predicate

DEFINITION D4.16: Let p be a vertex in class P and let q be a vertex. The predi-

cate can 8 stealmo(ex. , p, q, Go) is true if and only if all the following hold:

C4.37. there is no edge labelled ex.fromp to q in Go;

C4.3B. there is a sequence GI Gn of protection graphs and

PI Pn of rule applications such that

a. Go f-Pl'f-Pn Gn.

b. there is an edge labelled ex.from p to q in Gn, and

c. if s has ex.rights over q in Go, no Pj has the form

s grantsmo (ex.to q ,) to x j

for any x j E:P in Gi-lo 1 ~ i ,j ~ n.

r- Clearly, part C4.3Bc of the definition is the key part. We can modify the

conditions necessary and sufficient for can8sharemo to be true to give condi-

tions both necessary and sufficient for can 8 stealmo to be true:

THEOREM 4.23: Let p and q be vertices in a protection graph Go. Then

can8stealmo(ex., p, q, Go) is true if and only if the following conditions all hold:

C4.39 there is no edge labelled ex.from p to q in Go,

C4.40 there is a vertex s with an ex.edge to q in Go,

C4.41 there is a subject vertex p' for which p' =p or p' initiallYmo spans

to p, and

C4.42 can8sharemo(t. p', s, Go) is true.

INFORMAL ARGUMENT: To show the "only if" part, note C4.39 comes from the

definition; as can 8stealmo being true means can 8sharemo is true, conditions

C4.40 and C4.41 both hold. To show that C4.42 holds, we show that the first

BO

rule to add an exedge to q must be a takemo rule, and then we show the condi-

tion cannot fail to hold. Proving the "if" part merely requires that we show

part C4.3Bc of the definition is met, which we do by looking at various cases.

PROOF: (~) Suppose can8stealmo(ex. p, q. Go) is true. By part C4.37 of definition

D4.16, condition C4.39 holds. By part C4.3Bb of the definition. can8sharemo(ex.

p. q. Go) is true. which by conditions C4.32 and C4.30 of theorem 4.22 give con-

ditions C4.41 and C4.40 of this theorem. All that is left is to show

can8sharemo(t. p'. s. Go) is true.

To prove this, we first require (without loss of generality) that the deriva-

tion sequence Go ~PI ' ~Pn Gn witnessing can8sharemo(ex. p. q. Go) be of

minimal length. Let i be the index for which Gi is the first graph in the deriva-

tion sequence where an edge labelled 0: to q' is added; that is. i is the first

index for which Gi-l ~Pi Gi. there is an edge labelled 0: from some vertex x in

class X to q' in Gi. but there is no edge labelled 0: from x to q' in Gi-l. What rule

Pi added this edge? The rule is neither a createmonor a removemo rule. neither

of which add incoming edges to existing vertices. By part C4.3Bc of the

definition. it cannot be a grantmo rule. since by our choice of i. all vertices with

0: rights to q in Gi-l are also in Go. Hence. Pi must be a takemo rule of the form

x takesmo (0: to q) from s.

In pictures.

Pi: .
x

t~
s o:~

q
~ ~

x s q

By C4.32. there is a subject vertex s' such that s' =s or s' terminallYmo

spans to s. By C4.7. there are classes C1 Cm such that

p'ECl and S'ECm, and there are vertices Ci E Ci such that Ci-l

-'~

81

~
is joinedmo to C i, 1 ~ i ~ m, with s' =em.

Suppose s is an object. Then s ~ sand s' is not in the same class as x, then

our derivation sequence would not be minimal because we could eliminate the

class containing s' from the sequence C I , . . . , C m; hence, if s is an object, take

s' =x, as s' and x are in the same class and both terminallymo span to x. Hence,

if s is an object, can8sharemo(t, p', s, Go) holds.

Suppose, therefore, s is a subject; that is, s' =s. The vertex x is in Cm or

Cm-I; hence, if x E:Go, all of C4.30, C4.31, C4.32, and C4.36 are satisfied, and we

are done. If not, since s E:Go and new labels on incoming edges cannot be

added to existing vertices, there must be soine subject y in some class such

that can8sharemo(t, y, s, Go) holds. Note thats need never grantmo a to accom-

plish the sharing, as

x takesmo (a to q) from s
~

if x = Y, and

s grantsmo (a to q) to Y

can be replaced by

x takesmo (a to q) from s

x takesmo (g to y) from s

x grantsmo (a to q) to Y

if x ~ y. Thus, since s need never grantmo a to do the sharing, can8sharemo(t, y,

s, Go) is true. This satisfies C4.42 of this theorem.

(=:» Let the four conditions in the theorem hold. If P is a subject, it can takemo

(a to q ,) from s since it gets the takemo right to s, and hence get an a right to q.

,-

-" -"-

82

So, suppose p is an object. Then by condition C4.32. there must be a sub-

ject p' that initiallYmo spans to p. By condition C4.36, can-sharemo(t. p', s. Go).

Ifin Go p Idoes not have an a edge to q. then p I can takemo (a to q) from sand

grantmo it to p. If P I does have an a edge to q in Go. note simply that by condi-

tions C4.32 and C4.36 there is a Gi such that p I has a takemo edge to s and a

grantmo edge to p; hence. the following sequence enables p I to pass the right (a

to q) toP without ever grantingmo it:

p' createsmo (9 to new subject) z

p' grantsmo (t to s) to z

p' grantsmo (9 to p) to z

z takesmo (a to q) from s

r
z grantsmo (a to q) to P

This is a witness for can-stealmo(a. p. q. Go). thus proving the theorem. .

Thus far.we have dealt with the transfer of rights in a protection graph.

Letus now consider the transfer of information. As in the original model. we

shall define predicates analogous to can-know and can-snoop to test for infor-

mation flow.

First. let us define conditions under which a vertex can grantmo' or takemo'

read and write rights. Recall that an rw-initial path is a path along which

information can be transmitted. We define an rw-initialmo path to be the same

under the mo rules:

83

,,--
DEFINITION D4.17: A vertex p rw-initiallymo spans to q if there is a vertex s in

the same class as p which rw-initially spans to q.

To see this meets the intuitive requirements, we now show:

LEMMA4.24: Let the following condition be true:

C4.43. there is a subject p' which rw-initiallYmo spans to p, or p' =p.

Then p' can acquire w rights to p.

PROOF: If P =s, by definition of rw-initial span, we are done.]f p' ~ s, then one

of two cases arise: if the rw-initial span from s to p is of length 1, by lemma

4.15 the claim holds; if not, when s applies the takemo rule to acquire write

rights over p, p' will also acquire write rights over p. .
Also, recall that an rw-terminal span is a path along which information

can be obtained. Again, we define an rw-terminalmo span to be the same under

the mo rules:

DEFINITION D4.1B: A subject vertex p rw-terminallymo spans to q if there is a

vertex s such that p is in the same class as sand srw-terminally spans to q.

Once again, we must prove this definition meets the intuitive requirement:

LEMMA4.25: Let the following condition hold:

C4.44. there is a subject q' which rw-terminallYmo spans to q, or q' =q.

Then q' can acquire read rights over q.

PROOF: If q' =s, by the definition of rw-terminal span, we are done. So, sup-

pose q' ~ s. As in the proof of the previous lemma, two cases arise: if the rw-

terminal span from s to q is of length 1, by lemma 4.15, the claim holds; if not,

when s applies the takemo rule to acquire read rights over q, q' will also acquire

read rights over q. .

- -- -- -~--

84

r
With these two definitions. we can develop an analogue to "connection"

using the mo rules. Informally. a joinmo is a path along which information. but

not rights. may flow. More formally,

DEFINITION D4.19: Let p and q be subject vertices. If p rw-initiallYmo spans to q.

or q rw-terminallYmo spans to p, or p rw-initiallymo spans to a vertex to which q

rw-terminallymo spans, then q is said to be joinedmv to p. and the path between

them is called a joinmv'

As usual, we check that this meets the intuitive requirements:

LEIIIIA 4.26: If q is joinedmo to p. then one of the following cases holds:

C4.45. P can obtain an explicit write edge to q;

C4.46. q can obtain an explicit read edge to p; or,

C4.47. q can obtain an implicit read edge to p.

r-'

PROOF: If P rw-initiallymo spans to q, by lemma 4.24. case C4.45 holds; if q rw-

terminallymo spans to p, by lemma 4.25. case C4.46 holds. So, suppose p rw-

initiallymo spans to a vertex x, and q rw-terminallymo spans to x. By lemma

4.18. P can acquire write rights over x. and by lemma 4.16 q can acquire read

rights over x; then case C4.4 7 holds with an application of the post rule. .
As a result. we may prove a stronger lemma, namely:

LEIIIIA 4.27: Let the following condition hold:

C4.48. There is a sequence of classes D 1Dm such that there are

subjects p'ED!> q'EDm. and there is a subject di EDi. i:5;m,

such that either Di-l is linkedmo to di. or di-l E Di-l is joinedmo to

di.andq' =dm.

/'

85

Then one of three cases holds:

C4.49. q I can obtain an explicit write edge to p';

C4.50. p' can obtain an explicit read edge to q ';

C4.51. P I can obtain an implicit read edge to q ';

PROOF: The proof is by induction on the number m of classes.

BASIS: m =1. Then p' and q' are in the same class Dl; so,

'8' \' r- 'W ry'
V p' createsmo (rw to new) xEDl

X

r-

I

,~ _r- ~~
-V- po,t rule

X
r--

and case C4.51 holds.

INDUCTION HYPOTHESIS: The claim holds for m =1 k.

INDUCTION STEP: Let m =k + 1. If Dot is linkedmo to q' =dk+l. let d' be the

linkmo vertex. We must exhibit a witness to prove the claim. The following

sequence of rule applications suffices:

~

86

r-
d ,.1..TI:kJ%!9-ed HI r- d ,

~
l1nkmo --A d k+1

W

dk8 d 'k+l

dk+l createsmo (TW to new) d 'k+l

dk8

r- d

'~

d
--:v---"" k+l

d
TW

d '
k k+l

Lenuna 4.19

r- d ,--l~~rq:~d k +1

T/~ post rule
/TW

dk8' d 'k+1

and by the induction hypothesis, we are done. If dk is joinedmo to dk+1, then

from lenuna 4.26, one of the three cases in that lenuna apply. So apply the

induction hypothesis to get the required result. .
r Notice that case C4.49 or C4.46 will be possible only when ~here are 2

classes and they are joinedmo with either an Tw-initialmo or rw-terminalmo

span; otherwise, the read edge from p' to q' will always be implicit.

With these terms we can now define the sharing of information:

DEFINITION D4.20: The predicate can.knowmo(P' q, Go) is true if and only if

there is a finite sequence of mo de jure and de facto rule applications resulting

in an explicit write edge from q to p, or an (explicit or implicit) read edge from

P to q.

In other words, if p can obtain information from q, can.knowmo(P' q, Go) is

true. We can also state necessary and sufficient conditions for can .know tomo

hold:

THEOREII 4.28: Let p and q be vertices in a protection graph Go. Then

/' can.knowmo(P' q, Go) is true if and only if at least one of the following holds:

B7

C4.52. can-sharemo(w,q, p, Go) is true; or,

C4.53. can-sharemo(r, p, q, Go) is true; or,

C4.54. all of C4.43, C4.44, and C4.4B hold simultaneously.

INFORMAL ARGUMENT: Assume exactly one of the three conditions holds. By

definition, if either condition C4.52 or C4.53 holds, can-knowmo(p, q, Go) is

true. So, assume only condition C4.54 holds. By lemmas 4.24, 4.25, and 4.27, p

can obtain information from q. Going the other way, again if condition C4.52 or

C4.53 is true, the result is obvious; if only condition C4.54 holds, we will show

that if any of C4.43, C4.44, and C4.4B is false, can-knowmo is also false.

PROOF: (~) If condition C4.52 or condition C4.53 holds, can-knowmo(P' q, Go) is

true by definition. So, assume both are false and condition C4.54 is true. By

lemma 4.24, it suffices to have p'E: D 1 acquire information from q; by lemma

4.25, it suffices to have q' acquire information fromq; and by lemma 4.27, this

can be done. Hence, can -knowmo(P' q, Go) is true.

(~) Assume can-knowmo(P' q, Go) is true. Then, if there is an explicit read edge

from p to q, condition C4.53 holds; if there is an explicit write edge from q to p,

condition C4.52 holds; so, assume there is an implicit read edge from p to q. If

C4.43 fails, the implicit edge cannot originate at p; if C4.44 fails, the implicit

edge cannot terminate at q; if C4.4B fails, no such implicit edge can exist. In

any case, we have a contradiction, so all three conditions C4.43, C4.44, and

C4.4B must hold simultaneously. .
Now that we have established conditions for the sharing of information, let

us consider the theft of information. To do this, we define a predicate analo-

gous to can -snoop, namely

BB

DEFINITION D4.21: Let p and q be vertices in a protection graph Go. Then

can8snoOPmo{P' q. Go) is true if, and only if.

C4.55. can8stealmo{r. p. q, Go) is true; or,

C4.56. there exists a sequence of protection graphs and rule applications

Go f-PI ' . . . , f-Pn Gn for which all of the following hold:

a. there is no edge from p to q labelled r in Go;

b. there is an edge from p to q labelled r in Gn; and

c. neither q nor any vertex directly connected to q is an actor in a

grantmo rule or a de facto rule resulting in an (explicit or impli-

cit) edge labelled r with q as its target.

Just as we derived necessary and sufficient conditions for can-stealmo' we

can do so for can8snoOPmo:

THEOREM 4.29: For distinct vertices p and q in a protection graph Go,

can8snoOPmo{P' q, Go) is true if and only if one of the following is true:

C4.57. can8stealmo{r, p, q, Go) is true, or

C4.5B. all of the following hold:

a. there is no edge from p to q labelled r in Go;

b. there is a subject vertex p' such that p =p' or p' rw-initiallYmo

spans to p;

c. if q is a subject, there is a vertex q' such that q' ~ q. there is no

read edge from q' to q in Go. and q' rw-terminallymo spans to q;

and

d. can8knowmo{P', q', Go) is true.

B9

r-
INFORMAL ARGUMENT: If can8snoOPmo(P' q. Go) is true, and can8stealmo(r, p. q.

Go) is false, we have to show the parts of condition C4.5B are true. Condition

C4.5Ba follows from the definition; by part C4.56b of the definition,

can8knowmo(P' q, Go) is true, from which condition C4.5Bb springs. Also. by

theorem 4.2B, condition C4.5Bb, we have q'. Combining this with the definition,

it becomes clear that although q I rw-terminallYmo spans to q, q' ~ q and there

is no edge labelled r from q' to q in Go. The proof that can8knowmo(p', q', Go) is

true involves proving that the first rule to add a read edge with target q is a

take rule.

Going from the conditions to can 8snoOPmo is straightforward.

PROOF: (~) Let can8snoOPmo(P' q, Go) be true. If can8stealmo(r, p, q, Go) holds,

we are done, since part C4.26 of the definition is part C4.57 of this theorem. So,

assume can8stealmo(r, p, q, Go) is false.
.---

Part C4.56a of definition D4.21 gives condition C4.5Ba of this theorem.

By part C4.56b of the definition, there is an implicit read edge from p to q

in Gn, whence by definition can8snoOPmo(P' q, Go) is true; so condition C4.5Bb of

this theorem comes from condition C4.43 of theorem 4.2B.

By condition C4.44, there is a subject q' such that q I =q or q I rw-

terminallymo spans to q.

If q is an object, take q' to be the q' in condition C4.5Bc of this theorem.

If q is a subject, py part C4.56c of the definition of can8snoOPmo' it is not

used in the sequence of rule applications witnessing can8snoOPmo' In this case,

q' ~ q; choose q' in condition C4.5Bc to be this q '. Now, assume q' and q are

directly connected with an edge labelled r in Go. Either can8sharemo(t, p', q',

Go) is true [in which case can8stealmo(t, P, q, Go) is true, contradicting assump-

tion] or q' must actively participate in a grantmo or de facto rule application

r--
[which contradicts part C4.56c of the definition of can 8snoOPmo' contradicting

assumption again]. In either case, there is no edge labelled r from q" to q in

Go.

no remains to De snown tnat can8knoWmo~P', q', Go) is true. Let

Go r-PI' . . . , r-PI Gn be a minimum length derivation sequence, and let i be the

first index such that the first (explicit or implicit) read edge .with target vertex

in q's class is added in Gi. That is, i is the least index such that Gi-l r-Pi Gi,

there is no (explicit or implicit) read edge from any vertex X to q in Gi-lo and

there is an (explicit or implicit) read edge from x to q in Gi' Consider what rule

Pi was used to add this edge. It cannot be a grantmo rule because that would

violate part C4.56c of definition D4.21. Nor can it be a de facto rule, for this

would violate the same part of the definition. As the createmo and removemo

rules do not add edges to existing classes, Pi cannot be either of these. Hence,
/'""

Pi must be a takemo rule.

We therefore have:

Pi: .
x

t~ r~
q

r- ~
x q

Recalling that can8knowmo(P' q. Go) is true, by theorem 4.28 we see

can8knowmo(p', q, Go) is true. Apply theorem 4.28 again; by this theorem, there

is a subject vertex q' such that q' =q or q' rw-terminallYmo spans to q. Noting

that there is no edge from q' to q labelled r in Go, we take q' =x in theorem

4.28, whence can8knowmo(P', q', Go) immediately follows.

,..--

- - --- -~ - -- ---

91

---- (~) If condition C4.57 of the theorem holds. by part C4.55 of the definition,

can-snooPmo(P' q. Go) is true.

So. assume condition C4.5B holds. Part C4.56a of the definition is the same

as condition C4.5Ba of the theorem. By theorem 4.2B, conditions C4.5Bb,

C4.5Bc, and C4.5Bd establish part C4.56b of the definition. And as q' ~ q when

q is a subject, part C4.56c of the definition is also true.

This completes the proof. .

IV.4.The Many-Many Extension

In this extension, we change the graph rewriting rules so that one class of

vertices acts upon another class of vertices. The new rules are:

RULE R4.9: takemm

r--
Let x, y. and z be vertices belonging to classes X, Y, and Z, respectively, and let

x be a subject. Suppose x has takemm rights over y and y has a. rights over z.

Then all vertices in X obtain a. rights over all vertices in Z. In pictures,

t ~E:Z ~

a.

XE:Xe XE: E:Z

x 'E:XI8I I8IX'E:X 'E:Z

RULE R4.10: grantmm

Let x, y. and z be vertices belonging to classes X, y, and Z, respectively, and let

y be a subject. Suppose y has grantmm rights over x and y has a. rights over z.

Then all vertices in x obtain a. rights over all vertices in Z. In pictures,

~

92

r-

XE:Xi8IE: g yE:Y 0:8 :;0. @LE:Z f-
0:

XE:X~YE:Y 0:
0: 0: E:Z

X 'E:X 0: 'E:Zx 'E:Xi8I @L'E:Z

RULE R4.11: createmm

Let x belongoto a set of classes S and let x be a subject. Then x createsmm a new

(subject or object) vertex y belonging to classes in a set S' r.::S, with all vertices

in the same classes as x having 0: rights over all vertices in classes to which y

belongs. In pictures.

XE:P.Q,Re f- XE:P,Q.

p~P
i8I

qE:Q r~

RULE R4.12: removemm

Let x and y be vertices belonging to classes X and Y. respectively, and let x be a

subject. Suppose x has 0: rights over y and let f3 r.:: 0:. Then all vertices in X

removeSmm f3 rights over all vertices in Y. In pictures.

XE:

:Z
O: E:Y

"'EX: !yon

f- 0:-f3
XE:X8 :;o.!8IyE:Y

x 'E:Xi8I i81y'E:Y

As in the original model and the previous two extensions, we will rarely use

the remove rule, because once added. it is very difficult do guarantee that=
deleting a right undoes all effects of its having existed. Thus, it is better to

assume that once an edge is added to the protection graph. it remains there.

Using these rules. we can easily show that if a subject vertex in one class

has the right to 0: a vertex in another class, then any member of the first class
----..

may obtain 0: rights to any member of the second class:

93

r- LEMMA 4.30: Let s be a subject vertex in class S, and let s' be a vertex distinct

from sin S. Let q and q I be vertices in class Q in a protection graph Go. If s has

exrights over q. then s' can acquire exrights over q'.

~
s ex q

s"

9 ~q'
s' .

s createsmm (gmm to new) s"

f- ~
s ex q

s" ex ex

9 ex I
s' q

s grantsmm (ex to q) to s"

This completes the proof. .
This lemma will have many consequences. The most interesting one is the

effect on the transfer of rights from one vertex to another; it is sufficient for a

member of one class to obtain a right over any member of a class in order that

all members of the first class gain that right over all members of that class.

Our inunediate goal is to determine necessary and sufficient conditions for

the transfer of authority in this model. Let us now look at the analogue to ini-

tial and terminal spans and bridges.

Recall that a terminal span is a path along which rights can be obtained.

That is, if x terminally spans to y, x can obtain any right y has. Using the four

rules R4.9 - R4.12, we can define:

DEFINITION D4.22: A subject vertex p terminallYmm spans to another (subject

or object) vertex q if there exists a sequence of vertices Xo , Xn, n > 0,

with Xo a subject, such that p is in the same class as xc, q = Xn, and there are

vertices Yl I . . . , Yn for which there is an edge labelled t from Xi to Yi+1' and

PROOF:

s8
ex

:;rq

f-
s' q'

94

Yi+l is in the same class as Xi+I. Pictorially,

XOEP~ X '6'"

pE:P. ~
Y 1E:X1

Xn-IE:Xn-l

... ~=XnEXn
YnE:Xn

Now we show this definition agrees with ,our intuition:

LEIIIIA 4.31: Let p, s, and q be vertices in a protection graph, let s have ex rights

over q. and let p terminallYmm span to s. Then p can obtain ex rights over q.

PROOF: We induct on the length m of the terminalmm span.

BASIS: m =1. We have the following:

p.
Lemma 4.30

Xc.

ex

~q
f-p S=Xl

Xc.
t
--:;.QYl

p takesmm (exto q) from S

INDU CTION BYPOTH ESIS: The claim is true for a terminalmm span of length m,

m =1"". k.

INDUCTION STEP: Let m =k + 1. Then apply the following sequence of rule

applications, which witnesses a reduction of the length of the path involved:

r--

ex
p.

t
:;00

ex
>@q0 :;o@q

S=Xl S=Xl
f-

t
xc.

t
:;;..QY 1 :;oOYl

95

,~
S =Xn 0: ::>o@q0

0
Yn

S =Xn 0:
0 >@q

Lenuna 4.30

0
Yn

S =Xn 0: ;o.@q0

0
Yn

p takesom (t to Y2) from X I

Now, the terminal span is of length k, so the claim follows from the induction

r--- hypothesis. Hence, p can obtain 0: rights to q. .
We can make this lenuna more general:

COROLLARY4.32: Let q and q' be vertices (not necessarily distinct) in the same

class in a protection graph. Let the following two conditions hold:

C4.59. There is a vertex s with an 0: edge to q' in the same class as q;

C4.60. There is a subject vertex s' such that s' =s or s' terminallYmm

spans to a vertex s" in the same class as s.

Then s I can acquire 0: rights to q.

PROOF: If s' =s, then by lenuna 4.30 we are done. If s" =s, we use lenuna 4.31.

If neither of these is true, we can still use lenuna 4.31, taking s =s" in that

lenuna and noting that by the takemm rule, the claim holds. .

~

Xl X2
P8

.xo8
t

YI Y2

f-

x,8 '.0 'YI Y2

f- t tt
t

Xo
YI Y2

96

r-
We also do this for initial spans. recall that an initial span is a path along

which rights may be bestowed; that is, if p initially spans to q, p may pass any

right it has to q. More formally,

DEFINITION D4.23: A subject vertex p iniliallYmm spans to a (subject or object)

vertex q if there exists a sequence of vertices Xo , xn, n > 0, with Xo a sub-

ject, such that p and Xo are in the same class, q = Xn, and there are vertices

Yl Yn, n > 0, such that Yi. and Xi. are in the same class, there is an edge

labelled g from Xn-l to Yn, and for all i ~ n, there is an edge labelled t from

Xi.-l to Yi..

As with terminalmm spans, let us show that this definition meets the intui-

tive requirements.

LEMMA4.33: Let the following condition hold:

C4.61. There is a subject vertex p' such that p' =p or p' initiallYmm spans

to a vertex p" in the same class as p.

Then p' may pass to p any right it has.

PROOF: If p' =p, we are done. So, assume p' ~ p; by corollary 4.31, taking

q' =p, S = Xn, S'= p', s" = p ", and IX= g, the result follows. .
Finally, we define the analogue of a bridge, called a linkmm' as:

DEFINITION D4.24: Let C and X be distinct classes, and let c and x be subject

vertices in C and X, respectively. If there is a bridge from c to x, then class X is

said to be linkedmm to class C, and x and c are called linkedmm vertices.

Recall that a bridge is a path along which rights may be transferred from

subject to subject; specifically, in the above definition. x can acquire rights

from c. Given rules R4.9 - R4.12, we have:

r-

97

PROPOSITION 4.34: Let X and C be linkedrrun classes, with C E:C, and let c have ex

rights over a vertex q distinct from the link vertex x E: X and c. Then x can

acquire ex rights over q.

PROOF: Choose c I to be the linkmm vertex in C associated with the bridge from x

to c. Then

linkmm .. I .HIlkmmzc . t "

x... - -- - c f-~ - --=- t c
ex ex

c~ :;;r~q q

c" createsrrun (t to new) c Ite:C

Then, by definition of bridge, x can obtain takemm rights to c It and due to the

graph rewriting rules, also to c; at which point, x takesrrun (ex to q) from c. .

One comment about this proof - it is very tempting to createmm the edge

from c I to c" as being labelled t, g, and simply have c grant ex rights to q to c ",

whence x can obtain the right directly. The only problem is that this sequence

requires c to be a subject, something not assumed in proposition 4.34.

Bearing in mind .that when x either takesmm or is grantedrrun a right, all

vertices in the class X (to which x belongs) obtain the same right, we have as a

corollary:

COROLLARY 4.35: Let X be linkedmm to C, and let c E:C have ex rights over a ver-

tex q distinct from any vertex x E:X and c. Then x can acquire exrights over q.

PROOF: Follows from the linkmm vertex takin~ ex rights to q. .
The main reason this corollary is mentioned is that the proposition 4.34

requires x to be an endpoint of a bridge, and hence a subject. The corollary

shows that the result in the proposition is true whether or not x is a subject, so

long as all other conditions are met.

,,-

98

r Recall that rights can be transmitted in either direction along a bridge.

That is, if one endpoint has ex rights to a vertex, the other endpoint can also

obtain that right. This leads to

LEMMA4.36: The relation linkedmm is symmetric.

PROOF: Let X be linkedmm to C, and let x and c be their respective linkmm ver-

tices. Recall that a bridge is a tg-path with associated word in

!t., t., t. gt., t. gt.~. Clearly, if there is a bridge from x to c, there is also a

bridge from c to x. Thus, C is also linked to X.mm .

To reflect this symmetry, we will speak of classes as being linkedmm unless

we wish to emphasize a particular direction of the linkmm' As a result,

COROLLARY4.37: Let D and C be linkedmm classes with at least one subject each.

Then any vertex in either class may acquire any rights that another vertex in

r- either class has.

PROOF: If both vertices are in the same class, then by corollary 4.34 a vertex in

the other class may acquire the right, whereupon the vertex seeking to acquire

the right may use that corollary to get it. If the vertices are in different

classes, this corollary may be applied directly. .
Also true is:

COROLLARY4.38: Let A and B be linked, and Band C be linked. Then an ymm mm

vertex in A may acquire any rights a vertex in C has.

PROOF: Apply corollary 4.37 twice. .
Oneword of warning- corollary 4.38 does not mean that the relation

linkedmm is transitive. In fact, linkedmm is not transitive; here is a counterex-

ample:

~

99

bridge m8-: - - - - - _tI!!- -"'b 1 E:B
aE:A

bridge!2Lm- - ...
b2E:~ CE:C

where A, B, and C are the three relevant classes. Obviously, A and Bare

linkedmm'. and Band Care linkedmm' but A and C are not linkedmm.

Given corollary 4.38, an imm.ediate question is whether or not one vertex

in the same class as a second can obtain any right the second has. In general,

the answer is no; the class may be an object-only class. But if the class has one

subject, the result is different:

LEMMA4.39: Let C be a class, and let x, y, and Z E:C with ya subject. Then x can

obtain any right z has.

PROOF: Let z have 0: rights over q. Then

,---

f- ~
tY."

t t

0:

X Z q

Y createsmm (t to new) Y'E:C

.
@
x

@
z

o:~
q

f-

~'q0:
Y takesmm (0: to q) from z

This completes the proof. .
Again, note x need not be the subject.

Combining all these lemmas, propositions, and corollaries, we can state

and prove the following lemma, which provides a basis for the sharing of rights

100

~ by vertices in different, but linked, classes.

LEMMA4.40: Let the following condition be true:

C4.62. There exists a sequence of classes C 1C m such that subjects

p' EO:Cl, S' EO:Cm, and each Ci is linkedmm to CHI for 1 ~i ~ m.

Then p' can acquire any right s' has.

PROOF: Let s' have exrights over q. We induct on the number m of classes.

BASIS: When m =1, p' and s' are in Cl and, as both are subjects, lemma 4.30

applies to demonstrate the claim.

INDU CTION HYPOTHESIS: For m =1 , k, the claim holds for m classes.

INDUCTION STEP: Let m =k + 1, and consider c"'" the linkmm vertex in Ck with

respect to Ck+l' Both Ck and Ck+l contain subjects (namely, the link vertices).

Hence, by corollary 4.35, Ck can acquire exrights over q. Applying the induction

r
hypothesis gives us the desired result. .

Given lemmas 4.31. 4.33, and 4.40, we can characterize sharing completely.

If conditions C4.59, C4.60. C4.61, and C4.62 hold, by lemma 4.31, Vs' can get ex

rights to q; by lemma 4.40. p' can get exrights to q from s '; and by lemma 4.33, p

can be given exrights to q by P '. Hence, we define the predicate

DEFINITION D4.25: The predicate can8sharemm(ex, p, q, Go) is true if and only if

there is a finite sequence of the four mm graph rewriting rules which, when

applied to the protection graph Go, result in an edge labelled exgoing from p to

q.

The necessary and sufficient conditions for this predicate to be true are:

THEOREM 4.41: The predicate can 8 sharemm (ex, p, q, Go) is true if

and only if all four conditions C4.59, C4.60, C4.61, and C4.62 hold simultane-

~ ously.

101

r- PROOF: (:;:.) Consider what happens if anyone of the conditions fails. If C4.59

fails. no vertex can obtain exrights to q.since none of the graph rewriting rules

add new incoming rights to a vertex; if C4.60 fails. no vertex in any class em

can obtain exrights to q; if C4.61 fails. no vertex can grantrmn P exrights to q;

and if C4.62 fails. no vertex which can grantrmn P rights will be able to obtain ex

rights to q. Hence. all four conditions must hold simultaneously for

can8sharermn(ex. p, q, Go) to be true.

(~) Immediate from lemmas 4.31, 4.33, and 4.40. .
Now that we have characterized sharing. let us think about stealing rights.

Informally, we want the predicate can8stealrmn(ex, p, q. Go) to be true whenever

p can obtain exrights to q without the owner of that right granting it. However.

suppose an owner grants to a vertex p the right to exa vertex q" in the same

class as q. It is reasonable to bar this from taking place in a theft. because a

vertex granting rights grants rights to a class, not to a vertex. So. if such a

grant takes place, we shall not consider the action a theft.

More formally, we define the predicate

DEFINITION D4.26: Let p be a vertex and let q be a vertex in class Q. The predi-

cate can8stealrmn(ex, p. q. Go) is true if and only if all the following hold:

C4.63. there is no edge labelled exfrom p to q in Go;

C4.64. there is a sequence GI Gn of protection graphs and

PI Pn of rule applications such that

a. Go f-Plf-Pn Gn.

b. there is an edge labelled exfrom p to q in Gn. and

c. if s has a rights over any q 'E Q in Go. no P; has the form

s grantsrmn (a to q ,) to x;

102

/'
for any vertex Xj E: Gi-l, 1 ~ i,j ~ n.

Clearly, part C4.64.c of the definition is the key part. We can modify the

conditions necessary and sufficient for can8sharemm to be true to give condi-

tions both necessary and sufficient for can 8stealmm to be true:

THEOREM. 4.42: Let p and q be vertices in a protection graph Go. Then

can 8stealmm(ex, p, q, Go) is true if and only if the following conditions all hold:

C4.65. there is no edge labelled exfrom p to q in Go,

C4.66. there is a vertex s with an exedge to a vertex q I in the same class as

q,

C4.67. there is a subject vertex p I for which p' = p or p' initiallYmm spans

to a vertex in the same class as p, and

C4.68. can8sharemm(t, p', s, Go) is true.

~

INFORMAL ARGUMENT: Going from the conditions to the predicate involves

finding a witness that satisfies part C4.64.c of the definition. Going the other

way involves applying the definition to obtain the first three conditions, and

proving the fourth by checking various cases.

PROOF: (:;:.) Assume can8stealmm(ex, p, q, Go) is true. By part C4.63 of definition

D4.26, condition C4.65 holds. By part C4.64.b of the definition, can8sharemm(ex,

p, q, Go) is true, so condition C4.61 of theorem 4.41 gives condition C4.67 of this

theorem, and condition C4.59 of theorem 4.41 gives condition C4.66 of this

theorem.

To prove condition C4.68 holds, consider the minimal length derivation

sequence Go ~Pl ' . . . , ~Pn Gn witnessing can8sharemm(ex, p, q, Go). Let i be the

index for which Gi is the first graph in the derivation sequence where an edge

~ labelled exto q I is added; that is, i is the first index for which Gi-l ~Pi Gi, there

103

f is an edge labelled 0: from some vertex x, in a different class than s, to q' in Gi.

but there is no edge labelled 0: from x to q' in Gi-I' Clearly, Pi is not a

removemm rule. and since x and s are in different classes, Pi is not a createmm

rule. By part C4.64.c of the definition, it cannot be a grantmm rule, since by our

choice of i, all vertices with 0: rights to q' in Gi-l are also in Go. Hence, Pi must

be a takemm rule of the form

x takesmm (0: to q ') from s.

Pictorially, this rule looks like:

Pi: .
x

t;..@
s

o:~
q

~ ~
x s q

By C4.60, there is a subject vertex s' such that s' = sP or s' terminallYmm

spans to s" in the same class as s. By C4.61, there are classes C I , C m such

tha t p' E: C I and S' E: C m .

Suppose s is an object. As s' and x are in different classes, then our deriva-

tion sequence would not be minimal because Pi could be omitted entirely;

hence, s' is in the same class as x, and terminallYmm spans to x; thus, take

s' =x. In this case, can8sharemm(t, p', s, Go) holds.

Now suppose s is a subject; then s" =s' =s. The vertex x is in Cn-I> for if

not, Pi could be omitted, whence the derivation was not of minimal length.) If x

E:Go, all of C4.59, C4.60, C4.61, and C4.62 are satisfied, and we are done. So, let

x rj. Go. As s E:Go and new labels on incoming edges cannot be added to extant

classes, there must be a subject y in Cn-l for which can8sharemm(t, y, s', Go) is

true, where s' E:Go is in the same class as s. But then take x =y and s. =s;

this again establishes the conditions for can8knowmm(t. p', s, Go), so we are

done.
r--

104

(~) Let the four conditions in the theorem hold. By condition C4.65, part C4.63

of definition D4.26 holds. Let Go ~Pl ' ~Pnl Gnl be a witness to

can -sharemm(t, p', s, Go); by C4.6B, such a witness exists. Let Pn;,+l be the rule

application

p' takesmm (ex to q ,) from s

and let Gnl+1 ~PnIH ' . . . , ~Pn Gn be a witness to can-sharemm(t, p, q, Go); such

. a rule may be used by conditions C4.66 and C4.6B, and by condition C4.67 the

witness exists. Then Go ~Pl ' . . . , ~Pn Gn is a witness satisfying part C4.64.c of

the definition. Thus. can -stealmm(ex, p, q, Go), and the theorem is proven. .
Thus far, we have dealt with the transfer of rights in a protection graph.

Let us now consider the transfer of information. As in the original model, we

shall define predicates analogous to can -know and can -snoop to test for infor-

mation flow.

First, let us define conditions under which a vertex can grantmm' or

takemm' read and write rights. Recall that an rw-initial path is a path along

which information can be transmitted. We define an rw-initialmm path to be the

same under the mID rules:

DEFINITION D4.27: A vertex p rw-initiallYmm spans to q if there is a vertex s

with a write edge to another vertex q' in the same class as q, and p

terminally mm spans to s, or p = s.

~-~ ~-

105

t~ To see that this definition is what we want, we now show:

LEMMA4.4-3: Let the following condition be true:

C4.69. there is a subject p I which rw-initiallYmm spans to p, or p' =p.

Then p' can acquire w rights to p.

PROOF: If P I ~ S, as p' terminallYmm spans to s, p.' can acquire w rights to q" by

lemma 4.31. If p' =s, it already has those rights. As q I and p are in the same

class, and p' is a subject, by lemma 4.30, p I can acquire w rights over p. .

Also, recall that an rw-terminal span is a path along which information

can be obtained. Again, we define an rw-terminal span to be the same under. mm

the mm rules:

DEFINITION D4-.2B: A vertex p rw-terminallYmm spans to q if there is a vertex s

with a read edge to another vertex q' in the same class as q, and p terminallYmm

r spans to s, or p =s.

Once again, we must prove this definition meets the intuitive requirement:

LEMMA4-.4-4-:Let the following condition hold:

C4.70. there is a subject q I which rw-terminallYmm spans to q, or q '= q.

Then q I can acquire read rights over q.

PROOF: If q' ~ s, as q' terminallYmm spans to s, q' can acquire read rights to a

vertex q" in the same class as q, by lemma 4.31. If q' =s, it has such rights to

q". As q" and q are in the same class, and q' is a subject, by lemma 4.30, q I can

acquire read rights to q. .
With these two definitions, we can develop an analogue to "connection"

using the mm rules. Informally, a joinmm is a path along which information, but

not rights, may flow. More formally,

~

106

.r--
DEFINITION D4.29: Let p and q be subject vertices. If p rw-initiallYmm spans to

q, or q rw-terminallYmm spans to p, or p rw-initiallYmm spans to a vertex to

which q rw-terminallYmm spans, then q is said to be joinedmm to p, and the path

between them is called a joinmm'

As usual, we check that this meets the intuitive requirements:

LEMMA4.45: If q is joinedmm to p. then one of the following cases holds:

C4.71. P can obtain an explicit write edge to q;

C4.72. q can obtain an explicit read edge to p; or,

C4.73. q can obtain an implicit read edge to p.

PROOF: If p rw-initiallYmm spans to q, by lemma 4.43, case C4.71 holds; if q rw-

terminallYmm spans to p, by lemma 4.44, case C4.72 holds. So. suppose p rw-

initiallYmm spans to a vertex x. and q spans to x. By lemma 4.33, p can acquire
r-

write rights over x, and by lemma 4.31 q can acquire read rights over x; then

case C4.73 holds with an application of the post rule. .
As a result, we may prove a stronger lemma, namely:

LEMMA4.46: Let the following condition hold:

C4.74. There is a sequence of classes D 1 , . , . . Dm such that there are

subjects p' E:D 1. q' E:Dm, and either Di is linkedmm to Di+l' or

there are vertices di E:Di' di+l E: Di+lt which are joinedmm' for

l~i<m.

Then one of three cases holds:

C4.75. q' can obtain an explicit write edge to p ';

C4.76. p' can obtain an explicit read edge to q ';

107

~
C4.77. p' can obtain an implicit read edge to q';

PROOF: The proof is by induction on the number m of classes.

BASIS: m =1. Then p' and q' are in the same class D1; so,

p'. .q' f-

P'yq,
p"

p' createsmm (r to new) p"

and case C4.76 holds.

INDUCTION HYPOTHESIS: The claim holds for m =1 , k.

INDUCTION STEP: Let m =k + 1. If dk and dk+1 are joinedmm' then we have by

lemma 4.45 that one of the three cases holds for dk and dk+1' Noting that dk+l

is a subject, we have

qt.

dk+l I7rW x

f- rw w

q'

dk+l.

and hence one of the three cases applies to d k and q '. By the induction

hypothesis, one of the three cases also applies to dk and p I, so using the

appropriate de factorule

Now, if Dk and Dk+l are linkedmm' consider the linkmm vertices d 'k and

d 'k+l. By the construction above, d 'k+l can acquire read rights over q " whence

by corollary 4.35, d 'k can also obtain those rights. By hypothesis, one of the

three cases applies between d 'k and p I, so by applying either the spy or pass de

facto rule, the claim follows. .
As with the om rules, notice that case C4.75 or C4.76 will be possible only

when all of the classes D 1 , Dm are connected by linksmm' as joinsmm only

----- - -" - ~-

lOB

---- transfer information, not rights, only implicit read edges can occur among

classes which are joinedmm'

With these terms we can now define the sharing of information:

DEFINITION D4.30: The predicate can-knowmm(P' q, Go) is true if and only if

there is a finite sequence of mm de jure and de facto rule applications resulting

in an explicit write edge from q to p, or an (explicit or implicit) read edge from

P to q.

In other words, if p can obtain information fromq, can-knowmm(P' q, Go) is

true. We can also state necessary and sufficient conditions for can-know tomm

hold:

THEOREII 4.47: Let p and q be vertices in a protection graph Go. Then

can-knowmm(P' q, Go) is true if and only if at least one of the following holds:

C4.7B. can-sharemm(w, q, p, Go) is true; or,

C4.79. can-sharemm(r, p, q, Go) is true; or,

C4.BO. all of C4.69, C4.70, and C4.74 hold simultaneously.

INFORMAL ARGUMENT: Assume exactly one of the three conditions holds. By

definition, if either condition C4.7B or C4.79 holds, can-knowmm(P' q, Go) is

true. So, assume only condition C4.BO holds. By lemmas 4.43, 4.44, and 4.46, p

can obtain information from q. Going the other way, again if condition C4.7B or

C4.79 is true, the result is immediate; if only condition C4.BO holds, we will show

that if one of C4.69, C4.70, and C4.74 is false, can-knowmm is also false.

PROOF: (~) If condition C4.7B or condition C4.79 holds, can-knowmm(P' q, Go)

is true by definition. So, assume both are false and condition C4.BO is true. By

lemma 4.43, it suffices to have p'E: D 1 acquire information from q; by lemma

4.44, it suffices to have q 'E: Dm transmit information to p '; and by lemma 4.46,

109

this can be done. Hence, can -knownun(p, q, Go) is true.

(~) Assume can-knownun(p, q, Go) is true. Then. if there is an explicit read

edge from p to q. condition C4.79 holds; if there is an explicit write edge from q

to p. condition C4.78 holds; so. assume there is an implicit read edge from p to

q. If C4.69 fails. the implicit edge cannot originate at p; if C4.70 fails, the impli-

cit edge cannot terminate at q; if C4.74 fails, no such implicit edge can exist. In

any case, we have a contradiction. so all three conditions C4.69. C4.70. and

C4.74 must hold simultaneously. .
Now that we have established conditions for the sharing of information. let

us consider the theft of information. To do this, we define a predicate analo-

gous to can-snoop, namely

DEFINITION D4.31: Let p and q be vertices in a protection graph Go. Then

" can-snoopnun(p. q, Go) is true if, and only if,

C4.B1. can-stealnun(r. p, q. Go) is true; or.

C4.82. there exists a sequence of protection graphs and rule applications

Go ~Pl ~Pn Gn for which all of the following hold:

a. there is no edge from p to q labelled r in Go;

b. there is an edge from p to q labelled r in Gn; and

c. neither q, any vertex directly connected to q. or any vertex in the

same class as q is an actor in a grantnun or createnun rule or a de

facto rule application resulting in an (explicit or implicit) edge

labelled r going to q.

--~--

110

~ Just as we derived necessary and sufficient conditions for can 8steal , wernm

can do so for can8snooPrnm:

THEOREM 4.48: For distinct vertices p and q in a protection graph Go,

can8snooPrnm{p. q. Go) is true if and only if one of the following is true:

C4.B3. can8stealrnm{r, p, q, Go) is true. or

C4.B4. all of the following hold:

a. there is no edge from p to q labelled r in Go;

b.
there is a subject vertex p' such that p =p' or p' rw-initiallYrnm

spans to p;

c. there is a vertex q' not in the same class as q or that of any ver-

tex directly connected to q such that q' rw-terminallYrnm spans

to q; and

/" d. can8knowrnm{p '.q '. Go) is true.

PROOF: (:;.) Let can8snoOPrnm{P' q, Go) be true. If can8stealrnm{r. p, q. Go)

holds. we are done, since part C4.B1 of the definition.is part C4.B3 of this

theorem. So. assume can8stealrnm{r, p, q. Go) is false.

Part C4.B2a of definition D4.31 gives condition C4.B4a of this theorem.

By part C4.B2b of the definition, there is an implicit read edge from p to q

in Gn, whence by definition can8snooPrnm{p, q, Go) is true; so, condition C4.B4a

of this theorem results from condition C4.69 of theorem 4.4 7.

By condition C4.70 of theorem 4.47, there is a subject q' such that q' =q

or q' rw-terminally spans to q. If q is an object. take q' to be the q' in condition

C4.B4c of this theorem.

,r-

111

If q is a subject, by part C4.B2c of the definition of can8snooPmm' it is not

used in the sequence of rule applications witnessing can8snooPmm' In this case,

choose q' in condition C4.B4c to be this q '. If q' and q are directly connected

(or any vertex in q Its class is directly connected to any vertex in q's class, for

that matter) by a read edge in Go, then either can8sharemm(t, p', q', Go) is true

[in which case can8stealmm(t, p, q, Go) is true, contradicting assumption] or q'

must actively participate in a grantmm' createmm' or a de facto rule application

[which contradicts part C4.B2c of the definition of can 8snooPmm' contradicting

assumption again]. In either case, there is no edge labelled T from any vertex in

q's class to a vertex in q Its class in Go.

It remains to be shown that can8knowmm(p', q', Go) is true. Let

Go ~Pl ~Pl Gn be a minimum length derivation sequence, and let i be the

first index such that the first (explicit or implicit) read edge with target vertex

in q's class is added in Gi.. That is, i is the least index such that Gi.-l ~P(Gi.,

there is no (explicit or implicit) read edge from any vertex x to q" in the same

class as q in Gi.-l, and there is an (explicit or implicit) read edge from x to q" in

Gi.' Consider what rule Pi. was used to add this edge. It cannot be a grantmm or

a createmm rule because that would violate part C4.B2c of definition D4.31. Nor

can it be a spy, pass, or find rule, or a post rule, for this would violate the same

part of the definition. As a removemm rule application deletes rights to existing

classes, Pi. could not be that, either. Hence, Pi. must be a takemm rule.

We therefore have:

Pi.: .
x

t~ T ~
q

~ ~
x q

112

Recalling that can8knowmm(p, q, Go) is true, by theorem 4.47 we see

can8knowmm(P', q, Go) is true. Apply theorem 4.47 again; by this theorem,

there is a subject vertex q' such that q' =q or q' rw-terminallYmm spans to q.

Noting that there is no edge from q' to q labelled r in Go, we take q' =x in

theorem 4.47, whence can8knowmm(p', q', Go) immediately follows.

«:=) If condition C4.B3 of the theorem holds, by part C4.B1 of the definition.

can8snoOPmm(P' q, Go) is true.

So, assume condition C4.B4 holds. Part C4.B2a of the definition is the same

as condition C4.B4a of the theorem. By theorem 4.47, conditions C4.B4b,

C4.B4c, and C4.B4d establish part C4.B2b of the definition. And conditions

C4.B4c and C4.B4d of this theorem lead immediately to part C4.B2c of the

definition.

This completes the proof. .

IV.5. Discussion

At this point, let us take stock of what we have done. We have proposed

three extensions, each of which incorporates a notion of "class", to the

Take-Grant Protection Model. Although all three of these extensions are simi-

lar. there are enough differences to make the derivations for each extension

interesting.

The technique used emphasized the similarities among the three exten-

sions; in fact, the theorems proving what conditions are necessary and

sufficient for can8knowom' can8knowmo' and can8knowmm to be true are virtu-

ally identical. Of course, since the terms in the statement of the theorem

change meaning from extension to extension, one cannot say that the proof for

all is therefore obvious. An alternate development (considered but rejected as

113

/
too confusing) would have been to derive the three extensions simultaneously.

And not all the predicates have the same necessary and sufficient conditions -

the theorems for the various can-snoop predicates do vary substantially.

Having derived these three extensions, let us now proceed to consider

their practical applications.

,r-

~

114

Cha pter V

Applications of the Model

and its Extensions

V.l. Introduction

In this chapter. we shall examine practical aspects of computer security

using the theory developed in the preceding chapter. We shall first define a

reference monitor in terms of our predicates. and then we shall describe in-
depth some security flaws in the UNIXoperating system (including one class of'-

problems, as well as a few specific ones) which involve violations of protection.

In order to do these things. however, we must define a security breach in terms

of the extensions previously described, and determine which extension or

extensions are to be used. Next, we shall abstract the relevant features of UNIX

into a suitable representation. and from this exhibit the security breaches, as

well as suitable remedies.

As the Take Grant model deals only with authority and information

transfer in a protection graph. many known security holes cannot be found

using the form of the model being discussed here; an example is the holes

resulting from the failure of a command interpreter to check its input properly.

It is not the purpose of this chapter to demonstrate how this extension to the

Take Grant model may be used to cover all such situations; the goal of this

115

~ section is simply to show that a Take Grant model can be constructed to model

an existing system and locate problems in the protection schema which allow

breaches of security involving illicit transfers of authority or flows of informa-

tion.

As the above paragraph implies, modelling is not done at the program

statement level; for exery statement executed, a new protection graph is not

created. Rather, a new protection graph is created whenever the authorities

recorded in the protection controls of the system change. This way, instruc-

tions not affecting the protection schema are not dealt with.

V.2. What is a "Security Breach"?

Before we discuss security breaches, we must describe security in terms of

the Take Grant model and its extensions. All four versions discussed in this

paper use the same basic definitions, so one definition for all four versions is

possible. Of course, the definition is written in terms of predicates; the specific

requirements are then derived from the appropriate theorems. We will use the

notation "pred..." to mean the appropriate predicate; for example,

"can-know..." may mean any of "can-know", "can-know om", "can-knowmo", or

"can-knowmm", depending on which extension is being used to model the situa-

tion under consideration.

The first aspect of breaches of security is the illicit transfer of authority.

Initially, the protection graph has a specific state. Sharing of rights should be

permitted whenever authorized by the initial state; however, theft of rights

should be barred. This way, if a process does not want to share its rights with

another, the second cannot take those rights. In other words, a right may only

r---- be obtained with its owner's consent. This leads to the condition:

116

~

~can8steal.(ex,x,y,Go) V exC,R, x,yEV,x~y (C5.1)

Dealing with information flow is a bit more complex, as a result of the de

facto rules we use. These rules require the active cooperation of all subjects

involved, and with one exception (the post rule) each requires two subjects at

least one of which has access to the information being transferred.

In this case, the question of what constitutes a "breach of security"

depends on the intent of the subject with the rights to the information. To take

an example, suppose it is possible for one process to read another process'

memory. There are two processes, A and B. B has access to a file to which A has

no rights. If B reads the confidential file, and A reads the memory of B at the

same time (thereby seeing the contents of the confidential file), has there been

a breach of security?

r- If B's intent in reading the file was to make it available to A, then there has

been no breach of security. All B has done is (indirectly) copied the

confidential file into another file and changed the protections so A could read it

- certainly allowed as B can read the confidential file. But if B's intent in read-

ing the file was simply to see what it contained without passing any of its con-

tents on to A, a breach of security has certainly occurred, since A has read a

file which it had no authority to read. But note that A has not violated any res-

trictions imposed upon it by the system!

It is reasonable to hold either opinion. Due to the personal preference of

the author. we shall use the latter, because we are not examining the adequacy

of the protection system, but just looking at ways to evade it. Hence, we use

the restriction

can8know.(x, y. Go):;' can8share.(r, x, y, Go) Vx,yEV, x~y (C5.2)
,r-

117

(If we had decided that no breach of security were involved, this condition

would have become:

- can-snoop. (x, y, Go) X ,yE:V, x-:;ty

rather than involving can-snoop.)

To surnrnarize, we shall determine that something is a security hole by see-

ing if it violates the above security principle, namely:

-can-steal.(a, x, y, Go) V (XC.R, x,yE:V, x-:;ty (C5.1)

and

can-know.(x,y,Go) ~ can-share.(r,x,y, Go) Vx,yE:V,x-:;ty (C5.2)

V.3. Reference Monitors

The concept of a reference monitor was first described in [ANDE72] as a

subject or process meeting three requirements:

C5.3. the process must be isolated (that is, tamper-proof);

C5.4. the process must be complete (that is, always invoked when the

resource it controls is accessed);

C5.5. the process must be verifiable (that is, small enough to be subject

to analyses and tests the completeness of which can be ensured).

In this section, we shall examine reference monitors from the point of view of

the Take-Grant model and its extensions, in order to demonstrate that the

theory done in the preceding two chapters may be applied to very general prac-

tical aspects of computer security.

r---

118

f Restating conditions C5.3 - C5.5 in terms of our model is quite straightfor-

ward. Let the reference monitor be called m and let the resource it protects be

called r. The issue of isolation simply means that no-one can write over the

monitor; this may be stated as -can-share.. (!w j. x, ID, Go) for all xcV. The

issue of completeness may be restated as requiring that m always be invoked to

give a subject some rights exover r, which becomes the requirement that for all

vertices x EV , only m have an edge labelled exto r, and for all vertices x EV such

that x;;t;m, ~can-steal..(ex,x,r,Go). The issue of verifiability is a bit more

tricky, since it consists of two parts. The first, an implementation-level task of

verifying that the monitor is indeed implemented correctly, is beyond the scope

of this thesis, as stated in section V.1; however, the second, which is a

verification that no information will leak when the monitor is implemented

correctly, is simply the security property (that is, conditions C5.1 and C5.2.)

(

V.4. Modelling UNIX

UNIXis a very popular operating system, one which grew from a research

system; for this reason, security has not been an important consideration dur-

ing its development. Nothing that follows should be taken as a denigration of

UNIX's merits as an operating system, or the beauty of its philosophy or design;

it is the best system the author has ever used. It was designed and developed in

a friendly environment, where security is not a major consideration; hence, the

security holes which we will discuss should be seen as completely accidental

by-products of the design.

We shall look at a specific hole, and at a class of programs which are

intended to evade the protection mechanisms. It is important to emphasize

that the security holes discussed here are widely known, and on all systems
('

119

where penetration is a threat have been (or should have been) dealt with. No

dangerous methods of violating system security will be described, and fixes to

the methods touched upon here will be presented.

Before modelling those parts of UNIXwe need to, we must decide how to

abstract the protection scheme of UNIXinto the model. First, which extension

or extensions do we use?

A few words about the protection schema used by UNIXare in order. UNIX

controls access to a file by nine bits, the first three representing owner rights,

the next three group rights, and the last three the world rights (that is, the

rights of everyone else.) In each set of three bits, the first one controls read

access, the second write access (which includes appending to the file, too), and

the third execute access for files or search access for directories. When a pro-

cess starts, it has associated with it a unique identifier called the PlD, a user
r-

identification code called a UlD, and a set of group identification codes called

GlDs; as indicated above, associated with each file is a unique identifier called

an inode, an owner and a group. The algorithm for determining in what manner

a process can access a file is:

('"
'" returns TRUE if process P has exrights
'" over file F, FALSEotherwise
"')

function cando(ex : set of rights; F : tile; P : process) : boolean;

begin
if (F . owner =P . uid.) then

cando:= ((exn F. owner_rights) =ex)
else if (F . group in P . gid.) then

cando := ((exn F . group_rights) = ex)
else

cando := ((exn F . world_rights) =ex);
end ('" cando "');

This is the part of UNIXwe shall be modelling.

,r---

120

,.----.. The above algorithm shows something very important; whenever a process

is created, it gains access to all fileswith the owner corresponding to the pro-

cess' DID as indicated by the owner part of each file'sprotection mask, access to

all fileswith the group corresponding to the process' GID as indicated by the

group part of each file'sprotection mask, and access to all other filesas indi-

cated by the world part of each tile'sprotection mask. If a process spawns a

new process, the new one has the same DID and GID as its parent, so it will have

the same accesses as the parent process. Thus, the one-many version of the

model is the proper one to use for interactions involving processes and files.

The relevant classes will be classes corresponding to the possible DIDs and GIDs

of processes. These classes will be distinguished from each other to avoid con-

fusion.

Explicitly, we represent processes as a triple

,.----..

(PID , ! DID~ , ! GIDl , ... , GIDn ~)

and a file as a sextuple

(inode , ! owner ~ , ! group ~ , owner _rights, group_rights, world_rights)

The algorithm for determining ifan explicit edge goes from a process P to

a tile F is:

(II<

II< return the rights in the bit mask M asa setofrights
11<)

function labels(M : bitmask) : set of rights;

begin
labels := r/;;
if (M bitand 0100) then labels := labels + [T];
if (M bitand 0010) then labels := labels + [w];
if (M bitand 0001) then labels := labels + [x];

end (II<labels 11<);

~

121

,r---..
(II<

II< determinethe labels of the explicit edge from a process P
II< to a file F; rpmeans no such edge is present
11<)

function explicit(P : process; F : tile) : set of rights;

begin
if (F . owner =P . uid) then

explicit := labels (F . owner _rights)
else if (F . group in P . gid) then

explicit := labels (F . group_rights)
else

explicit := labels (F . world_rights);
end (II<explicit 11<);

If explicit returns the null set, no explicit edge exists; otherwise, the expli-

cit edge exists and has the named labels.

Jt will also be necessary to allow edges labelled rand w to go from file to

file to indicate how information can flow from one file to another. This does not

mean that a file is an actor with these rights; as mentioned before, a file is an

r----- inert object and so has no rights which it can exercise. Such flow is allowed if

the two files have the same DID or the same GID. Note the use of the verb

"allowed"; the flow may never take place if processes do not move the informa-

tion. These edges merely indicate information may move from one file to

another. The algorithm for determining if there is an edge labelled rw from one

file F to another file Gis:

(II<

II< determine the labels of the explicit edge from a file F
II< to a file G; rpmeans no such edge is present
11<)

function fexplicit(F, G : tile) : set of rights;

begin
if (F . owner n G . owner ~ rp) then

explicit := [r, w]
else if (F . group n G . owner ~ rp) then

explicit := [r, w]
else

explicit := rp;
end (II<fexplicit 11<);

(

122

~ Note that fexplicil is symmetrical.

The term protection state refers to the explicit edges present and the

tuples representing processes and files. If any of these change, or new ones

added or deleted, the protection state of the system being modelled has

changed.

As for the graph rewriting rules: both the de jure and de facto rules are the

same. there is one new right, that of execute. Strictly speaking, this right

encompasses two rules, one for directories and one for files; but, in the discus-

sion of security holes below, we will not be dealing with searching directories,

so we will just treat "execute" as the right to load and run an executable file.

We still have to define the rule, however.

In UNIX,a parent process can communicate with its child via pipes (in which

case the communication is usually in both directions) or via signals (in which

case, while the child communicating with the parent is still possible, it is con-

siderably more complicated.) To capture this, we define a rule for execute as

follows:

RULE R5.1: execute

Let P p be a process and let f be a file. Suppose p p has execute rights over f.

Then p p creates a second process Pc with p p having read and write rights over

pc. In pictures,

PP' ax ~f

ax

Pp~f
pc

~

No doubt the astute reader will have noticed that this is not really a new rule,

but giving a new name to the createmo rule. This is quite true, but the execute

r- rule explicitly specifies that the newly created child process p p is an executing

123

r---- image of the contents of the file f. So, it is really a constrained version of the

createom rule; in face, so far as processes are concerned, it is the only create

rule.

This last observation brings up a key point in the application of the model.

lt may be necessary to mix the different extensions of the theoretical model to

capture certain aspects of the system. ln UNIX,for example, changes in the pro-

tection state (caused by, for example, adding a new process, as in the execute

rule) affect all processes in that class. For example, in the situation discussed

for the execute rule above, all processes with the same UIDas p p have read and

write rights over pc (albeit crudely; one would need to use signals rather than

pipes for all communication except between p p and Pc.) Hence UNIXinterac-

tions between processes should be modelled by the many-one extension to the

Take Grant model (which should not be a surprise, considering how close the

r-
execute and createmo rules are.)

ln short, when modelling UNIX, we use the many-one extension to model

process-process interactions, and the one-many extension to model

process-file interactions. Obviously, which of these extensions modelling any

given computer system will require (if, indeed, any of them apply) will depend

entirely on the nature of the system. One must choose the extension or version

of the model that best captures the real situation. ln this there is some sci-

ence, but far more art.

V.5. Files Writeable by Anybody

This is a security hole which, most of the time, poses no threat to the sys-

tem; on those rare occasions when it does, however, the effects can be devastat-

(
ing. The loophole here is simply to allow anyone to write on a file, whether or

124

not that person is the owner, or in the group corresponding to the file's GID. If

the file involved is a directory, such as "jtmp", there will most likely be no

danger (although one could easily dream up ways in which it would be

dangerous); but if the file contains a system program, the likelihood is just the

opposite.

The security hole, in this model, may be described as follows. Let a process

u have DID Ul and the set of GIDs G =(g 1.. . . .gn j. Let there be two files, the first

s, with s .owner ~ Ul. s.group ~ G, and u having w rights over s; the second f,

with u having r rights over f, and s .owner ~ f .owner and s .group ~ f .group.

Pictorially, we have this situation:

rw . rwx
1'0<: >0U S

Note here that the DIDof process u is not the same as the DIDof file s, and s's GID

is not in the set of GIDs of u. Hence, there is no read edge from f to s. However,

by use of the post rule, information can flow from f to s. This clearly violates

condition C5.2 of the security principle.

In graphic terms, there are three ways to fix this hole. Deleting the read

edge to f is not practicable, because u can always create a file over which it has

read rights. Deleting the write edge to s is certainly practicable, and is an ade-

quate solution; thus, no process should be able to write to a file unless its DID

corresponds to the file's owner, or the group of the file is in the set of the GIDs of

the process. A third, less obvious, fix is to change the owner of the file to that

of the process writing to the file. This would result in can8shareom(r, f, s, Go)

being true, and hence condition C5.2 being satisfied. This also, from the graphi-

cal standpoint, is perfectly acceptable.

125

r" In practical terms, either the second or the third solution is adequate.

Actually, owing to the existance of setUID programs (see section V.7 for a

description of these programs), the second is probably overly restrictive; how-

ever, this is something which must be decided on a system by system basis.

V.6. Processes andMemory

This is an example of a security hole which, most of the time, is not

dangerous; but it could be disastrous if it occurred when confidential data was

being accessed. It also provides a good example of the use of the security prin-

ciple discussed earlier.

In UNIX,memory is considered a file (called "/dev/kmem"). Often this file is

/"
not protected from nonprivileged processes reading it. Herein lies one security

hole. Let process p have the right to read a confidential file f; let process q not

have that right. As /dev/kmem is unprotected, q has the right to read it, and

hence the memory of p. When p reads f. we have in Take Grant terms the follow-

ing protection state:

q, ~fTV
p

Now, when q exercises its right to read /dev/kmem and hence p, by the spy

rule, we have:

r

q~
p

,,---...

126

Consider the security principle. Since no transfers of authority were

made, condition C5.1 still holds. How about information flow? First,

can -knowom(q, f, Go) is true by theorem 4.13 (taking p' = q. q' = p, and m = 1

in that theorem.) But by 4.7, can-shareom(r, q, I,Go) is false since p and q are in

classes not connected by a bridgeom' Hence the security principle is violated

and we have a security hole.

To fix this hole on the protection graph, we need to make can-knowom

false. There are two ways to do this: delete the read edge from p to I (which

would prevent both p and q from reading I) or delete the read edge between p

and q. These would make can-knowom(q, I,Go) false, satisfying condition C5.2 of

the security principle.

Now, how does this translate into UNIX terms? The first proposal, deleting

the r edge from p to q, would require that p be barred from reading I. This is

not tenable, because it contradicts the assumption that p has the right to read

I. The second, deleting the r edge from q to p, would require that q be barred

from reading the memory in which p is located. This is very reasonable, and

would require only that UNIX memory be read-protected. The best solution,

therefore, is to read-protect UNIXmemory.

V.7. SetUID Processes

A typical problem in systems programming [BISHB3] is often posed as a

scorekeeping problem [ALEP71]. Suppose someone has a game program and

wants to keep a record of the highest scores. This file, which will be called the

high score file, must be writable by the game program (so it can be kept up to

date), but not by anyone else (so that the entries in it are accurate.) UNIXsolves

this problem by providing two sets of identifications for processes. The first

127

/'"' set, called the real user identification and group identification (or UIDand GID,

respectively) indicate the real user of the process. The second set, called the

effective UID and GID, indicates what rights the process has, which may be, and

often are, different from the real UIDand GID. The protection mask contains a

bit which is called the setUlD bit. (There is another such bit for the effective

GID.) If this bit is not set, the effective UIDwill be that of the person executing

the file; but if this bit is set (so that the program runs in setUlD mode), the

effective UIDwill be that of the file and not of the person (process) executing the

file. In either case, the real UID and GIDare those of the person (process) exe-

cuting the file. So, if only the owner of the high score file (who is the user with

the same UIDas the file) can write on it, the setUID bit of the file containing the

game program is turned on, and the UIDs of this file and the high score file are

the same, then when someone runs the game program, that process can write

r-- into the high score file.

A setUID process, then, gives a user privileges to access information and

access files which he would not otherwise have. This clearly violates condition

C5.2 of the security principle; information may flow along a non-existent path.

As setUID are provided specifically for evading the protection controls, this

result is not surprising.

However, this is very unsatisfying. SetUID programs are among the most

dangerous programs on UNIX,and it is very reasonable to attempt to provide for

them in our model. Unfortunately, this introduces a new factor - time - in the

model; since the increased access such programs allow exists for a limited time

only, we cannot use any of our earlier rules without modification.

When a setUID process begins, the new rights it provides are added to the

protection graph abstracted from the system, and when the setUID process~

128

r' exits, they are removed. This results in a different protection state of the sys-

tem while the setUID process is executing, a state in which all the authorities

allowed by the setuID process are exhibited.

Given that a setUID process is executing, and that the protection graph

exhibits those authorities added by the setuID process, let us take another look

at the security question. SetuID programs fell outside the protection scheme

with the model discussed in the previous sections because information could

flow along a path with no corresponding right, or without the owner of the

information making it available. But now, the information flows from its source

to the setUID process, and thence to the process invoking the setUID program;

this flow is authorized on the new protection graph because the setUID program

has authority over the information. When it exits, the authority disappears,

and the invoking process can no longer access the information. Hence, we add

r-
a new condition to the security principle, one which is used only when setUID

processes are involved:

C5.6. No setuID process makes any changes in the protection state of the

system except for adding temporary rights which cease to

exist when the setUID process exits and that information is

allowed to pass through the setuID process as indicated by

either added or previously existing rights.

Hence, this manner of treating setUID programs allows us to treat them as

ordinary processes once the temporary rights have been added to the protec-

tion graph. We must also remember to delete these rights once the process has

exited. To distinguish these temporary rights from those rights not associated

with a setuID process, we shall label them with a superscripted t, as in "rt".

r-

129

It is time for an example! The example here is that of a setUID process with

escapes. Such escapes allow one to execute an arbitrary command from within

the setUID program. Let the setUID program be s, the corresponding process p,

the process invoking the setUID program u, and the confidential file to be read

from the setUID program y. Note that in what follows, we are using the many-one

extension to model process-process interaction and the one-many extension to

model process-file interaction. The sequence of steps is: initially,

~
y

Then the setUID process begins:

~
~

y

And, by applying the post rule (and deleting irrelevant edges):

rwx

~" :twtxt
r t-, ,

Y

Now, u can read y as though it were the owner of s.

In this case, note that both C5.1 and C5.2 are satisfied; the failure of secu-

rity is due to the failure of condition C5.6, because the edge from u to the

confidential file does not pass through the setUID program. The solution is to

reset the UID and GIDs of u before the process p is started. This way, a setUID

process is not involved in the viewing of the confidential file.

130

r'

Chapter VI

Conclusion

VI.l.ftierarc~es

In our discussion of hierarchies, we established conditions under which a

hierarchical protection system is secure regardless of how many of its subjects

are corrupt. We also found restrictions on de jure rules that ensure security

without restricting the transfer of rights other than reading or writing.

/' It is somewhat surprising that the de facto rules need not be restricted to

ensure security. But de facto rules merely indicate graphically how information

flows through the graph, whereas the de jure rules control the paths along

which information can flow. So restricting the de jure rules is logical.

Would it be possible to restrict the de facto rules to acheive the same

results? No, for two reasons. The first is that there are graphs in which one can

breach security by using de jure rules only, such as

,r--.

131

r- The second is more subtle, and hinges on the distinction between an implicit

and an explicit edge.

The de jure restriction is not a modification of the de jure rules, but only

of the instance of application. Unfortunately, such a restriction is meaningless

with respect to the de facto rules, because the information can still flow; the

only restriction is on acknowledging that flow. Implicit edges, added by de

facto rules, merely indicate the paths along which information can flow, and do

not create new paths (or delete old ones). On the other hand, explicit edges,

added by de jure rules, do create (or remove) paths along which information

can flow; hence restrcting them does restrict the flow of information.

In the model described in chapter II, the security classification of informa-

tion cannot be changed without compromising security. No classification can

be raised, because anyone with access to the information could have made a
r-

private copy; then, after the classification level is raised, he still has access to

the information which is now at a higher level. Lowering a classification of

some information can also lead to a violation, because a high-level person

could declassify confidential information so that someone at a lower level could

obtain it. Under the definition of secure used here, this is a security violation.

Permitting declassification would raise a host of problems. Suppose a file

were declassified. Unless the protection system were to ensure that no user at

a level higher than the new level of the file were to have write rights on the file,

the system is no longer secure; all one of those users would have to do is to

write classified information into that file. Such a protocol would involve assum-

ing a user or classification manager could be trusted - and this would violate

an underlying assumption.

132

This model was developed under the assumption that no user should be

able to break security, an assumption not present in earlier Take-Grant

models of hierarchical protection systems. The results give constraints on the

system which prevent any user, regardless of classification, from passing infor-

mation to another user with a lower classification. Were it not for this assump-

tion, the protocol for declassification would be obvious; whether or not this

assumption is valid, and in what ways it must be weakened to permit

declassifications, is still an open question.

Note that when these results are applied to the Take-Grant model of a

document system, the total view of security given in [BELL74] is obtained. As

the wrile authority in the Take-Grant model is not a viewing right, the wrile

authority of the Take-Grant model is the same as the append authority of Bell

and LaPadula. Then, restriction R2.4a is equivalent to the refined simple secu-

r--
rity property, and restriction R2.4b is the no write down property. These res-

trictions apply to any system that can be modelled as a hierarchy in the

Take-Grant model.

The basic difference between this model of hierarchical protection systems

and earlier Take-Grant models (cL, [WUBO]), is that de facto as well as de jure

rules are used. The representation of security levels makes sharing among ver-

tices in a security level simple. Also, rights from a lower to a higher security

level are permitted (subject, of course, to R2.4); this was not the case in earlier

models. Both these features make the model very straightforward; even if

modified to permit reclassification, this model is far simpler than earlier ones

which only used de jure rules.

This model is an example of the application of the de facto rules developed

in [BISH79]. These rules are merely one possible set of de facto rules. We do
,-

133

~ not claim that these rules are the best ones to use, or model the real world

most closely; as their effects have been explored previously, they were most

convenient for our purposes. Under different de facto rules, the development

would be similar; and due to the considerations outlined above, the restrictions

obtained would have to act on the de jure rules, or the application of the de

jure rules, rather than the de facto rules.

VI.2. Computer Systems

In the rest of this thesis, we extended the Take-Grant Protection Model in

such a way that it could be applied to a computer system; we then defined what

a secure system was in terms of predicates, and using the theory derived using

the relevant rewriting rules, we applied the definition to an existing computer

system. A few points must be made about this work..r-
First, the application here involved examining the protection state rather

than analyzing programs line-by-line. While the latter is certainly possible, it is

not necessary unless the way in which the programs interact with the operating

system is not known. Even in this case, only those parts of programs which

affect the protection state would affect the protection graph representing the

system, and hence would need to be considered.

The analysis of the computer system in chapter V was by no means com-

plete, nor was it intended to be. Rather, that chapter was meant to demon-

strate that the model could be used in practise to model security flaws, and

that - as a side benefit - from the modelling at least one method of fixing the

flaws becomes apparent. In this, we succeeded.

~

~ -

134

There are several areas where further work would be profitable.

8 The similarity in both theorems and proofs between the three extensions

to the Take-Grant Protection Model suggests that it may be possible to

prove meta theorems giving necessary and sufficient yonditions for the

predicates can8share*, can8steal*, can8know*, and can8snoop* to be true

for classes of graph rewriting rules; this would make proving security (or

lack of it) much easier, since it would no longer be necessary to rederive

the results whenever one changed the graph rewriting rules.

8 The complexity of any rigorous checking will be quite large, certainly too

much so for a human to cope with. There are two possible approaches to

this problem; the first is to subdivide the task among many people, the

second to have a computer do the checking. The former will require that

very careful checking be done at the places where the subdivisions overlap;

the latter requires a rather sophisticated program. Similar programs

already exist, such as the theorem prover used to verify the security of

PSOS [FEIE79]; would the complexity of suc~ a program for the

Take-Grant Protection System be prohibitive?

8 This thesis talked about applying the model to existing operating systems.

But, very little was said about using the model to prove security of an

abstract design for a system. How could such a use be integrated with ver-

ifying the correctness of the implementation of the system?

8 Finally, and now most importantly, how can we abstract an existing system

to a protection graph? This is quite crucial, because without

a proper abstraction, all the theory in the universe will not locate

security holes in the existing system. With the operating system used

here, the abstraction was very simple; methods to handle much

~-- -~- ~-

135

,-...
more complex protection schemes would be interesting to learn.

To sum this up - the Take-Grant Protection Model. without extensions, is

primarily a theoretical tool. But, when proper extensions are made, it can be a

very powerful practical tool as well.

,,--

r--

-- - ~--

/"

BIBIJOGRAPHY

~

-~ - --

136

r---

BIBLIOGRAPHY

ALEP71. Aleph-Null, "Computer Recreations," Software - Practise and
Experience 1(2) pp. 201-204 (April-June 1971).

ANDE72. Anderson, J. P., "Computer Security Technology Planning Study,"
Technical Report ESD-TR-73-51 , Vols. I and II, USAF Electronic Sys-
tems Division, Bedford, MS (October, 1972).

BELL74. Bell, D. and LaPadula, L., "Secure Computer Systems: Mathematical
Foundations and Model," Technical Report M74-244, The Mitre Cor-
poration, Bedford, MS (October 1974).

,..-. BERS79. Berson, T. A. and Barksdale, G. L., "KSOS - Development Methodology
for a Secure Operating System," pp. 365-371 in Proceedings of the
National Computer Conference, AFIPS Press, Montvale, NJ (1979).

BISH79. Bishop, M. and Snyder, L., "The Transfer of Information and Authority
in a Protection System," Proceedings of the Seventh Symposium on
Operating Systems Principles, pp.45-54 (December 1979).

BISHBl. Bishop, M., "Hierarchical Take-Grant Protection Systems," Proceed-
ings of the Eighth Symposium on Operating Systems Principles, pp.
109-122 (December 19B1).

BISHB3. Bishop, M., "Security Problems with the UNIX Operating System,"
(unpublished), Purdue University, West Lafayette, IN (January,
19B3).

BROA76. Broadbridge, R. and Mekota, J., "Secure Communications Processor
Specification," Technical Report ESD-TR-76-351, AD-A055164,
Honeywell Information Systems, McLean, VA (June 1976).

137

f' DENN76. Denning, D., "A Lattice Model of Secure Information Flow," CACM
19(5) pp. 236-243 (May 1976).

DENNB2. Denning, D., Cryptography and Data Security, Addison-Wesley Pub-
lishing Company, Reading, MS (19B2).

DlJK6B. Dijkstra, E. W., "The Structure of the 'THE'-Multiprogramming Sys-
tem," CACM 11(5) pp. 341-346 (May 196B).

ENDE77. Enderton, H., Elements of Set Theory, Academic Press, New York, NY
(1977).

FEIE79. Feiertag, R. J. and Neumann, P. G., "The Foundations of a Provably
Secure Operating System (PSOS)," pp. 329-334 in Proceedings of the
National Computer Conference, AFIPS Press, Montvale, NJ (1979).

HARR76. Harrison, M. A., Ruzzo, W. L., and Ullman, J. D., "Protection in Operat-
ing Systems," CACM 19(B) pp. 461-471 (August 1976).

~
JONE76. Jones, A., Lipton, R., and Snyder, L., "A Linear Time Algorithm for

Deciding Security," Proceedings of the Seventeenth Annual Sympo-
sium on the Foundations of Computer Science, (1976).

JONE7B. Jones, A., "Protection Mechanism Models: Their Usefulness," pp. 237-
252 in Foundations of Secure Computing, ed. Richard
Lipton,Academic Press, New York, NY (197B).

LIND75. Linde, R. R., "Operating System Penetration," pp. 361-36B in Proceed-
ings of the National Computer Conference, AFIPS Press, Montvale, NJ
(1975).

LIPT77. Lipton, R. and Snyder, L., "A Linear Time Algorithm for Deciding Sub-
ject Security," JACM 24(3) pp. 455-464 (July 1977).

MILL76. Millen, J. K., "Security Kernel Validation in Practise," CACM 19(5) pp.
243-250 (May 1976).

POPE79. Popek, G. J., Kampe, M., Kline, C. S., Stoughton, A., Urban, M., and Wal-
ton, E., "UCLA Secure Unix," pp. 355-364 in Proceedings of the
National Computer Conference, AFIPS Press, Montvale, NJ (1979).

r--

13B

SCHl75. Schiller, W. L., "The Design and Specification of a Security Kernel for
the PDP-11/45," Technical Report ESD-TR-75-69, The Mitre Corpora-
tion,- Bedford, MS (March 1975).

SNYD77. Snyder, L., "On the Synthesis and Analysis of Protection Systems,"
Proceedings of the Sixth Symposium on Operating Systems Princi-
ples, pp. 141-150 (November 1977).

SNYDB1. Snyder, L., "Formal Models of Capability-Based Protection Systems,"
IEEE Transactions on Computers C-30(3) pp. 172-1B1 (March 19B1).

WEBS73. Webster's New Collegiate Dictionary, G.&C. Merriam Co., Springfield,
MS (1973).

WUBO. Wu, M., "Hierarchical Protection Systems," Ph.D. Thesis, University of
Iowa, Iowa City, IA (December, 19BO).

139

I~

VITA

Matt Bishop was born in New York City on September 29, 1956. He gra-

dilated from 3R Schools in San Rafael. He accepted a Regents' Scholarship

from the University of California at Berkeley, and went there to study Astron-

omy and Applied Mathematics, graduating with an A. B. with High Honors in

Applied Mathematics and Distinction in General Scholarship in 1976. He

remained at Berkeley to do graduate work in Mathematics, emerging with an

M.A. in 1978. Then, he went to Yale University, where he studied computer sci-

ence; after one year there, he transferred to Purdue University to continue his

/~ studies. At Purdue, he was supported as a teaching assistant, a research assis-

tant, and a student assistant on the computer staff of the Department of Com-

puter Sciences. He recieved an M.S. in computer science in 1981.

~

---'

,.......

f'

/'"

