PRACTICAL TAKE—GRANT SYSTEMS:

DO THEY EXIST?

A Thesis

Submitted to the Faculty

of

Purdue University

by

Matt Bishop

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 1984

VITA

m

ACKNOWLEDGEMENTS

This thesis could not have been written without the supporl and advice of
Dorothy Denning and lLawrence Snyder. larry first interested me in the
Take—Grant Model, and Dorothy suggested studying the problem which led to
this thesis. She also encouraged me when my spirits flagged. Both have had a
very ma jor influence on my graduate studies, and both were very cooperative in

dealing with my tighl time schedules.

I also owe thanks Lo the other member of my comumittee, Peter Denning, for

his time and effort, again under rather tight deadlines.

Several people at Purdue contributed to the writing of my thesis. Kevin
Smallwood, Larry Petersen, and Dan Reed helped me find the macros written by
Jefl Brumfield to aid formalting this thesis. Subhash Agrawal encouraged my
writing several utilities which made the mechanics of keeping numberings con-
sistent very easy. The systems programmers on the stafl of the Purdue Univer-
sity Computer Cenler (in particular, Jefl Schwab), the Physics Department (in
particular, Mike DeMoney and Charles LaBrec), and the Department of Com-
puter Sciences (in particular, Steve Stone and Kevin Smallwood), were quite
tolerant of my (open) atternpts to break system security, and discussed many

security problems with me.

Many friends have made my life al Purdue enjoyable. Special thanks go to
Subbhash Agrawal, Sean Arthur, André Bondi, Bob Brown, Ken and Ellen Dickey,

Rich Hyde, and Paul McNabb.

1 completed this thesis in absentia from Purdue, and would like Lo thank
everyone al Megalest Corporation for all their help. They were very under-
standing in letting me use Mcgatest's computer facilities lo type and printl this
thesis.] would especially like Lo Lhank Dawn Maneval, Larry Mongin, and Karen

Van Dusen for helping me tame the laser printer.

Research leading Lo lbhis thesis was made possible by supporl from the

National Science Foundation.

because it has been explored and many useful properties about it are known.

One comment about the mmodel and the extensions used bere: The graph
revwriting rules we use are merely one possible set. Other rules are possible;
angd in a later chaptcr, we shall change the rewriting rules in order to examine

the security of the UNiX operating system

The conditions for a computer system to be secure can be stated without
tying the statement to any particular set of graph rewriting rules. The intro-
duction of new rules requires that we determine conditions under which infor-
mation and authorities can be transferred. To abstract these from the rules,
we define predicates the truth or falsity of which are the basis for defining a
securc systemn. The formal definitions and necessary and suffcient conditions
for the predicates to hold do depend on the set of rewriting rules chosen, but

the conditions for security can be stated simply in terms of the predicates.

The thesis is organized into several topics. The remainder of this chapter
is spent reviewing the Take—Grant Protection Model as it now exists. From that
point on, new results are presented. In Chapter Il we explore the concept of
hierarchies and how they may be modelled in the Teke—Grant Protection Model.
Chaptler Ill gives a new proof for a theorem about information flow, and then
examines the idea of theft of information. Chapter IV extends the model even
farther: in that chapter, we add the concept of groups or classes to the modgel.
Chapter V gives some examples of the practical application of these extensions;
we examine reference monitors and several security loopholes in an existing
system, demonstrating that the extensions can be used in practise. Finally,
Chapter V] summarizes what has been done, and suggests areas for future

research.

1.2. The Take—Grant Model

Now that we have stated the proklem, let us describe the tool we shall use.
It is called the Teke—-Grant Profection Model and was first presented as a
theoretical model in [JONE?B]. This section will describe what the model is, and
cite several important results. The reader interested in the proofs of these can

consult the referenced papers.

Let a finite, directed graph called a protection graph represent a system Lo
be modelled. A protection graph has two distinct kinds of vertices, called sub-
jects and objects. Subjects are the active vertices, and {for example) can
represent users; they can pass information and authority by invoking groph
rewriling rules Objects, on the other hand, are completely passive; they can

(for example) represent files, and do nothing.

In protection graphs, the subjecis are represented by @ and objects by O
Vertices which may be either subjects or objects are represented by ® Pictures
are very often used to show the effects of applying a graph rewriting rule on the
graph; the symbol |~ is used to mean that the graph f{ollowing it is produced by
the action of the graph rewriting rule on the graph preceding it. The rewriting
rule itself is often written after the derived graph. The symbol P represents
several rule applications. The term witness means a sequence of graph rewrit-
ing rules which produce the predicate or condition being witnessed, and 2 wit-
ness is often demonstrated by listing the graph rewriting rules that make up

the witness (usvally with pictures.)

The edges of a protection graph are labelled with subsets of a finite set R
of rights. Suppose that |r,aw.t,g} ¢ R, where r, w, 1, and g represent read, write,
take, and grant rights, respectively. When written as labels on a graph, the set

braces are normally omitted.

The Take—Grant Model permits users with certain rights to transfer rights
fromn one vertex to another. The rules governing the transfer of rights are

called de jure rules [BISE7Y] and are as follows [JONE76]:
RULE R1.1: take

Let x, y. and z be three distinct vertices in a protection graph &g, and let x be a
subject. Let there be an edge fromx to ylabelled ¥ with{ € 7, an edge fromy to
z labelled 8, and acCf. Then the teke rule defines a new graph &, by adding an

edge to the protection graph from x to z labetled a. Graphically,

o
— .o f.g - m

X v z X y z

The rule is writlen: x takes {a Lo 2) from y.
RULER1.2: grant

Let %, y, and z be three distinct vertices in a protection graph G, and let x
be a subject. Lel there be an edge from x to y labelled ¥ with ¢ € 7, an edge
from x to z labelied §, and oo £ 8. Then the granf rule defines a new graph &, by

adding an edge to the protection graph from y to z labelled a. Grapbically,

.492 “@ - Q?Q

X v Z X

u

The rule is written: x grants {a to z) Lo y.
RULE R1.3: create

Let x be any subject in a protection graph Gpand let a be a subset of R Crente
defines a new graph &, by adding a new vertex y to the graph and an edge from

X to y labelled ¢. Graphically,

o F —> -3

o—7 ° a_ 2 - .:.
X y z X y
PROOF: See [JONE76]. B

As a result, when considering the transfer of authority belween subjects,
neilher direction nor label of the edge is importanl, so long as the label is in
the set {t,g3.

Ip order to state the main theorem concerning the transfer of authority

between subjects, we need some preliminary definitions ([JONE78], [LIPT77]):

DEFINITION D1.1: A tg—path is a nonempty sequence vg, ...V, of distinct ver-
tices such thal for all 1, 0<€i<k, v, is connected to w,+; by an edge (in either

direction) with a label containing? or g.
DEFINITION D1.2: Vertices are fg—connecied if there is a Lg~path between them.
DEFINITION D1.3: An island is 2 maximal Lg—connected subject—only subgraph.

Any right that one vertex in ap island has can be obtained by any other
vertex in that island. In other words, an island is a maximal set of subject—only

vertices which possess common rights.

With each tg—path, associate one or more words over the alphabet
{f,f.4,§ }ip the obvious way. If the path has length 0, then the associated

word is the null word v.

DEFINITION D1.4: A vertex v tnifially spans to vg if vgis a subject and there is

a tg—path between vg and vy with associated word in { £, § } U {vi.

DEFINITION D1.5: A vertex wg ferminally spans to v, if vy is a sub-

ject and there is a tg—path between v¢ and v, with associated word in | £ 3.

DEFINITION D1.8: A bridge is a tp—path with vo and v, both subjects and the
path's associated word in§ £, L, f gl £ 467" |

An initial span is a tg—path along which the first vertex in the path can
trapsmit authority; a terminal span is & tg—path along which the first vertex in
the path can acquire authority. As a note, a bridge is said to be directed cway

from vp. The following diagram illustrates these terms:

g g
o9 e f ot
u v w X y
islands: L=fp.ulle=iwl/s={y s’}
bridges: u.v.w and w x .y
initial span: p with associated word: v

terminal span: s'.,s with associated word: f

The following predicale formally defines the nofion of transferring author-
ity
DEFINITION D1.7: The predicate can=share{a, x, y. Go} is true for a right a and
Lwo vertices ¥ and y if and only if there exist protection graphs G, ..., &n such
that Gpr* Gn using only de jure rules, and in G, there is an edge from x to ¥

labelled a.

In short, if x can acquire a rights to y, then cansshare(a, x, y, G¢) is true.
The theorem which establishes necessary and suffcient conditions for this

predicate to hold is:

THROREK 1.3: The predicale cansshare(a, x, y. Gg) is true if and only if Lhere is

an edge from x to y in &g labelled a, or if the following hold simultaneously:

Cl.1. thereisa vertex g € &g with an s-to-y edge labelled q;

C1.2. there exist subject verlices p‘and s' such that
a. p'initially spans to x, and
b. s terminally spans to s;

C1.3. there exist islends /y, I, such that p'is in /y, 8" is in },, and

there is a bridge from/j Lo/, {1=5<v).
PROOF: See [LIPT77]. -

The de jure rules contro! the transfer of authority only; they say nothing
about the transfer of informzstion. The two are clearly different; for example, if
a user is shown a document contalning information which he does not have
authority to read. the information has been transfered to the user. The de sure
rules do not model cases like this. Instead, we use a different set of rules,

called de farcta rules, to derive paths along which information may fiow.

In order to describe transfers of informalion, we cannot use explicit edges,
because no change in authority occurs. Still, some indication of the paths
along which informalion can be passed is necessary. Hence, we use a dashed
line, labelled by 7, to represent the path of a potential de facto transfer. Such
an edge is called an “mplici! edge. Notice that implicit edges cannot be mani-
pulated by the de fure rules, since the de fure rules can affect only authorities
recorded in the protection system, and implicit edges do not represenl such

authority.

A protection graph records all authorities as explicit edges, so when a de
sure rule is used to add a new edge, an actual transfer of authority has taken
place. But when a de facto rule is used, 2 path along which information can be
transferred is exhibited; the actual transfer may, or may not, have occurred. It
is impossible to tell this from the graph, because the graph records authorities

and nof information. For the purposes of this model, however, we shall assume

that if it is possible for information to be transferred from one vertex to

another, such a transfer has in fact occurred.

One set of proposed de farto rules was introduced in {BISH79] to model the
transfer of information. Although these are not the only rules possible, their

effects have been explored, and so we shall use them.
RULE R1.5: post

Let x, y, and z be three distinct vertices in a protection graph Go and let x and 2
be subjecls. Let there be an edge from x to y labelled a, where » € o, and an
edge from z to y labelled 8, where w € 8. Then the post rule defines a new graph

G, with an imnplicit edge from x to z labelled {r{. Graphically,

RULE R1.8: pass

Let x, y, and 2 be three distinct vertices in a protection graph Gg, and let y be a
subject. Let there be an edge from y to x labelled a, where w € a, and an edge
from y to z labelled 8, where r € 8. Then the pass rule defincs a new graph G,

with an implicit edge from x to z labelled {r}. Graphically,

X \XW Az X TA%
I...
y

RULE R1.7: spy

Let x, y, and z be three distinct vertices in a protection graph Gy, and let x and
y be subjects. Let there be an edge from x to y labelled a, where r € a, and an
edge from y to z labelled 8, where » € 8. Then the spy rule defines a new graph

G, with an implicit edge from x to z labelled {#}. Graphically,

10

RULE R1.8: ind

Let x, y, and z be three distinct vertices in 2 protection graph Gy, and let y and
z be subjects. Lel there be an edge from y to x labelled a, where w € @, and an
edge from z to ylabelled 8, where w € 8. Then the find rulec defines a new graph

G, with an implicit edge from x to z labelled {r}. Grapbically,

Note that these rules add implicit and not explicit edges. Further, as these
rules model! information flow, they can be used when either (or both) of the

edges between x and y, or yand z, are implicit.

Now, consider the conditions necessary for a potential de focto transfer to

exist in a grapb.

DEFRINITION D1.8: The predicate cansknow-=-f(X.y. Go) is true if and only if there
exists a sequence of graphs G,. ..., Gn (0=n), such that GiP* Gis) (0=i<n) by
one of the de focto rules and in G, either a x-to-y edge labelled r exists or a y-

to-x edge labelled w exists and if the edge is explicit, its source is a subject.

Intuitively, cansknow«f(x, y. Gg) is true if and only if x has the authority to
read y, y has the authority to write to x, or an implicit edge from x to y can be
added by means of the de facto rules. Note the duality of read and write. If x
can wrile to y, then y effectively can read x. All X has to do is write to y any
information that y wants to see. This duality will play an important role in

later results.

11

DEFINITION D1.9: An rw—path is a nonempty sequence vg, . . ., vy of distinct ver-
tices such that for all 1, O=i<k, v; is connected to v;4+, by an edge {in either

direction) with a label containing an r or a .

With each rw—peth, associate one or more words over the alphabet

V7. F, 4, 2 {in the obvious way; for instance, the protection graph

® N2 o o

has assorviated #10F and T+ . If the path has length 0, then the associated

word is the null word v.

DEFINITION D1.10: An rw—path vy, .. ., v, k21, is an edmissible rw—path if and
only if:
Ci.4. it has an associated word ae,as:- o In the regular language

{(Fuw)’; and
C1.5. if ay=7 then v;_; is a subject and if e,=1 then v, is 2 subject.
Note that there cannol be bwo consecutive objects on an re—admissible path.

THREORFM 1.4: lLel x and y be vertices in a protection greph &o. Then
cans=knowsf(x, y. Go) is true if and only if there is an admissible rw—path

between xand y.
PROOF: See [BISH73]. n
This can be extended to include both de jure and de facto rules.

DEFINITION D1.11: cansknow{(x, y, Go) is true if and only if there is a sequence
of protection graphs G,G, such thal Ggf* G, and in G, either a x-to-y
edge labelled 7 exists, or a y-to-x edge labelled w exists and, if the edge is

explicit, its source is a subjectl.

12

This js merely cansknowsf(x, y, Go) witbout the restriction on the types of

rules used,

DEFINITION D1.12: An rwig—path is a nonempty sequence vg, vy of distinct
vertices such that for all i1, D<i<k, v; is connected to v,4+, by an edge (in either

direction) with a label containinga £, g, 7, or a w.

With each rwtg—path, associate one or more words over the alphabet

{f,1,.§5.7.Ff, 1,1 |in the obvious way.

DEFINITION D1.13: The vertex vy rw—inifially spans to vy if vo is a subject and

there is an rwtg—path between vgand v, with associated word in { {°1 J.

DEFINITION D1.14: A vertex vgq rw—~terminally spans Lo v, if vg is a subject and

there is an rwtg—path between vy and v, with associated word in § £°7 |.

DERINITION D1.15: A bridge is an rwtg—~path with associated word in the regular

language

B={ vl vul-gl-uvi-giy
(Note that this is the same as the definition given earlier in this section.) A con-

nection is an rwtg—path with associated word in the regular language

c={f'7uvwl vi 7wl
The next result characterizes the set of graphs for which cansknow is true:

THEOREM 1.5: cansknow(x, y, Go) is truc if and only if there exists a sequence of

subjects g, .. ., u, in Gg {(1<n) such that the following conditions hold:
C1.8 x=u, oru, rw—initially spans to x,

C1.7 y=un or u, rw—lerminally spans to y,

13

C1.8 for all 2, 1<i<n, there is an rwtg—path between u, and u;+ with an

associated word in BuC .
PRroOF: See [BISH79]. -

Now that we have seen the basic model, let us consider the two questions which

this thesis will attempt to answer.

1.3. Introduction to Hierarchies

A hierarchy is "a graded or ranked series” (WEBS73]. When used in the
context of security, it means that there are gradations of access to certain
information. The most famous example of this is the classification system used
by the federal government today, where documents are labelled UNCLASSIFIED
(the least secret level), CONFIDENTIAL, SECRET, or TOP SECRE?T (the most secret level),
depending on their content. Each person who may need access to these docu-
ments is given a securify clenrance indicating the meost secret level of docu-
ments which he may see; for example, a person with SECRET clearance may read
documents labelled UNCLASSIF'ED, CONFIDENTIAL, or SECRET, but not documents

labelled TOP STCRET.

Such systems, rather obwviously, are meant to protect information, and for
this reason, people are not to reveal information to those with a lower security
clearance. How can this be done, assuming that no-one in the hierarchy can be
trusted? The problem was first approached mathematically in [BELL74] in the
context of operating systems. Often, computer systems are designed
with several levels of security; two examples of this are the THE operating
system [DIJK68] and PSOS. The first application of the Take—Grant
Protection Model [WUBO] was to hierarchical systems in general, not

just operating systems, and we shall extend those results as well as explore

14

some other means of ensuring a secure hierarchy.

The remainder of this thesis will explore the vse of the Take—Grant model

in a practical setting.

1.4. Take—Grant Modelling of Systems

It has long been believed that the Take—Grant Protection model has little
if any practical use; indeed, one criticism of it is that one could nol represent
hierarchies using that model. Considering the model was introduced to explore

theoretical matters, this belief is not surprising.

This reguires some explanation. The terms security and safety are often
used interchangeably; in fact, they are not synonyms. The term "'safe'’ applies
to an abstract model; its initial state is called ‘‘safe” if it is nol possible to
reach a new state in which a right can be transferred. The term ''secure"
applies to a nonabstract system; it requires not only that the abstract mode! of
the systermn be safe, but also that the nonabstract system correctly implement
the abstract model. Harrison, Ruzzo, and Ullman showed that in general, it

cannot be determined whether or not a system is safe:

THEOREM 1.6: IL is undecidable whether a given state of a protection system is

safe for 2 given generic right.
PROOP: See [HARR78]. n

The Take—Grant model describes a simpler type of systermn, called a
mono—operational system (because each command performs a single primitive

operation. For such systems,

THEOREM 1.7: there is an algorithm that decides whether a given

mono-operational system and initial state is safe for a generic right

15

PROOF: See [HARR76]. R

In fact, safety in the Take—Crant system is nol only decidable even if the
number of objects which can be created is unbounded, but it is decidable in

time linear in Lhe size of the graph.

The first atlempt Lo use the Take—Grant Protection System to model a
computer system was presented in [JONE78), where it was used to model 2 secu-
rity flaw in Multics. Unfortunately, the modelling was done ad hoc; rather than
present a definition of security and then test the flaw against it, the flaw was

simply modelled. This thesis takes a slightly different approach.

In general, it is hard to use the Take—Grant Protection Systemn to mode! a
computer system because il has no concept of groups in it. With most com-
puter systems, one process or one user will perform actions that aflect many
files and processes, rather than just one. The Take—Grant rules, however,
require that one aclor operale on one target at a time. Jt is this point which
Lhis thesis considers. First, we extend the model to include the concept of theft
of information; then we introduce graph rewriting rules which allow actors to
act upon more than one target, and which allow one actor to affect many other
objects. Finally, we define securify in terms of the theorelical results and show

how these results can be applied to a computing system.

ideally, one tests models of abstract systems. fixing the theoretical flaws
which appear, until the model is safe; Lthen, and only then, is the model imple-
mented. In this thesis, however, we are trying to test existing systems for secu-
rity flaws; hence, we shall go from an existing systermn to the abstract mode).
Hence, the term secure will mean not just the safety of the abstract model, but
also that the abstraction captures the essential details of the system we are

examining for flaws.

16

Chapter I

Hierarchical Take—Grant

Protection Systems

0.1. Introduction

The problem of secure hierarchies was discussed briefly in seclion 1.3. In
previous works using the Take-Grant Prolection Model Lo model hierarchies,
there has always been an underlying assumption that at leasl some of Lhe ver-
tices were honest. For example, [WUBO] presenls a model of hierarchical pro-
tection systems invelving only take and granl rules; bul if two directly-
connected subjects conspire to breach Lhe security of the system, they can

easily do so by using the two lemmmas 1.1 and 1.2. For example, this situation
Lj
Ly

Ly

can be breached by applying the lake rule and then lemma 1.1:
Ly
Lz

L

17

Previous models have also discussed at great length the transfer of rights:
under whal circumstances can)t occur assuming the subjects are honest, what
rights can a subject steal from a higher-level one, and the like. But little has

beer said about the transfer of \nformation.

Briefly, in the model of hierarchical prolection systems developed here, we
are coricerned with preventing transiers of information to subjects with 2 Jower
security level than the information has, as well as preventing the lower-level
subject from obtaining authority to read tbe information. Because of the dual-
ity of reading and writing, subjects must also be prevented from writing to
lower-level ones (otherwise, a dishonest high-level subject could just read
high-level information and then write it to a lower-level subject, thereby
breaching security). This raises some interesting queslions.)s is possible to
prevent. information from being transfered vsing the graph rewriting rules for
transferring authority and information without modification? If so, would res-
tricting these rules provide any addilional benefits? Whal kinds of restrictions

shovld be considered? We shall try Lo anawer these questions, among others.

The strength of proposed restrictions will be considered as well. Let T be s
set of graphs with seme (arbitrary) property. and let R be a sel of graph rewrit-
ing rules. Then R will be called sound { applying any finite sequence of those
rewriting rules Lo a graph { € 7 will prodvuce a graph {'€T. Let s,(€7 be any
two graphs such that s} { using the rules in R; Then, if s}* ¢ using only ele-
ments of a subsel £'CFR, the subset £’is sajd to be complete. (Note that subset
includes restricted rewriting rules as well.) A grapb is said to be secure if there
is no finite sequence of rewriting rules that will enable a subject to obtain
information at a higher security level than the subject. The soundness and
compleleness of restrictions with respect to the property secure will be dis-

cugsed.

19

In all cases, an 1mplicit read edge from x to y. and one from y Lo x, can be

obtained. E

1.2. A De Facto Hierarchical Protection System

DEFINITION D2.1: An ruw—level is a sel of vertices in a protection graph &g such

thal for every pair of vertices x and y in the sel, can-knowf(x, y, G) 15 Lrue.

Intuilively, vertices ¥ and y are on the same rw—level if they have de foclo

access Lo exactly the same informalion, and can communicale wilth each other.

PROPOSITION 2.2: Let Gy be a protection graph, and lel x and ¥ be any two ver-
tices in Gp. Then x and y are in the same rw—level if and only if there is an

rw—adrmnissible path between them.
PROOF: Immediate by theorem 1.4 E

DEFINITION D2.2: Two subject verlices x and y are said Lo be rw—joined if

cansknowsf{x.y, Go) s true and can<know«f{y, %, Gp) is false.

Intuitively, this definition says thal if a vertex x can oblain any informa-

tion that another vertex y can, bul not conversely, then x and y are re—joined.

Those two ideas can be combined into one relation. ln a protection graph
(7o, 52y that a vertex x is higher than a second vertex y if, for any path from x
to y, there exist vertices a and b such that cansknow«f{x, a, Go) and
capsknow-f(b, y. Go) are true, and a is rw—joined to b. In this case, yis said to
be lower than x. {We write this as x >y.) Two vertices x and y are zaid to be af
the same height {(or level) if x and y are al the same rw—level. Analogously, one
rw—level L, is said to be higher than anolher rw—level /. if for every verlex 12
in Lz and for every vertex 1y in L, l2>1,. Again, in this case L, is said to be

lower Lhan Lp.

20

Informally, an rw—level is a sccurity classification; and the higher an

rw—level iz, the more highly classified ihe security level is.

In whal fellows, ungualified statemenls about the relation higher apply to
both the relation belween vertices and the relation between rw—levels. When
the distinction between the two relations is important, it will be explicitly

stated, or be obvious from Lhe conlexL.

LEMMA 2.3: Let L, and Lz be two dificrent rw—levels in a prolection graph &g
such that [z is higher than [,. Let 1, be a vertex in L, and 12 be a verlex in L.

Then cansknowsf{lz, 1, G¢)is tTue and cansknowsf(l,,1a, G¢)is false.

PROOF: As [is higher than [, there exist vertices x in Ly and y in L, such that
x is higher than y. By definition, can«know«f(l ;. x, o) and cansknowsi(y, 1,,
Go) are both true. By the definition of higher. cansknow«f{x, y, Gg} is true, so
two applications of the spy rule show that cansknow«f{ls, 1,, Go) is Lrue. Now,
lel ¥ be any vertex in L, and let y be any vertex in L, such thal ¥ and y are
rw—connected. As Lg is higher than L,, the path from y to x is nol an
rw—admissible path; hence, cansknow«i{y, X, G¢) is false. Asany path from1, to
1z must pass through an edge from L, to Lz, by propesition 2.2, no such edge is
rw—admissible, so there is no rw—admissible path from 1, to lz. Hence, by

theorem 1.4, can=know=f{l,, 13, Gp)is false. m

Lemma 2.3 says thatl if one rw—level is higher than another, vertices in the
higher level can obtain information from vertices in the lower level. However,
no vertex 1n the lower leve) can access information which is available only Lo
vertices in the higher level only. In effect, this is a hierarchical classification
systemn of two Jevels. Generalizing this result to an arbitrary number of levels

gives

ee

However, the structure provided can be used to model more complicated
hierarchical systems such as those the levels of which are nof lincar. Recall
that a parfigl erdering is an ordering which is transitive and irreflexive

[ENDE77].
PROPOSITION 2.5: The relation higher i1s 2 partial ordering.

PROOF: First, consider the relation with respect to vertices. For transitivity,
merely apply the spy rule; for irreflexivity, merely note that rw—joined vertices
are on different rw—levels. The proof for the relation with respect to rw—levels

follows immediately by definition. [

This theorern has two immediate consegquences. The first is obvious; if
Li<f;=<[l;. then [;=L; This emphasizes the hierarchical nature of the structure
described in theorem 2.4. Secondly, alt rmost one of the relations [, </;, l.=1,,
and Li >L, is true. Note that none need be true, which mezns that there can be

Tw—levels which are incomparable. Thus, while Lhere is at least one minimal

23

and one maximal level (with respecl Lo the highes! relalion) in any such struc-

ture, there need not be a lowesl or 2 highest level.

This enables a classification system which uses a partizl, rather Lhan a
linear, ordering to be modelled One such classificalion system is the Mililary

Classification System (eg., see [DENN76, DEXNB2]):

CATEGORY AUTHORITY
A B C LEVE]L
(A.8) (B.3) (C,3) Lop secret (3)

(B.2) (C,2) secrel (2)

(A, 1) (R, 1) (C.1) confidential (1)

N7

(B. 0) unclassified (0)

Such a configuration is easily translated into this model:

24

each security level /; represenling an aulhority level and a category.) In partic-
ular, nole Lhat while two subjects may have the same securily classification, the
model makes no assumptions about their being able to communicate with each

other.

This represcntation of hierarchical classification systems has an extrermely
imporlant effect. Recall Lthat the de facto rules spy, post, and find require the
cooperalion of fwe subjects. Thus, in many cases, if two subjects conspired to
breach the security of a hierarchical system, they could do so. Specifically,
suppose a subject were willing to viclate security. Under other proposed
representations, this would mean that all inferior subjects would be suspect,
because the superior could conspire with them to breach security. Bul by
theorem 2.4, in this represeniation such a conspiracy is impossible. Preventing
any breaches in securily, rather than trusting any subject to be honest, makes

this model so useful.

Thus far we have only been concerned about subjects. It is reasonable Lo
assume that 1f people {subjects) have a certain securilty classification, some
information also has that classification. As documents are inactive, they are to
be represented by object vertices; it is therefore necessary to define what the
security level of an object vertex is, and show that under such a definition

information cannot flow frem a higher level Lo a lower.

DEFINITION D2.3: An object verlex vis szid to belong to the lowest rw—level in

which a subjecl vertex has either read or write access to il.

Intuitively, this says that a2 documenl has the same security level as the
lowest level of uzers with access to it. The central resull of this section can

now be proven:

25

THEQOREW 2.6: Lel G be a proteclion graph, and lel L, . I be rw—levels such
that fori=2, ..., n, [h>L;—;. Let); bean object vertex in L,. Then for any sub-

ject vertex 1, in [;,1<j, can=know«f(l;,];, Gg)is false.

PROOF: In order that can<knowsf(l,. 1;. Ga) be true, there must be an
rw—admissible path from 1; te 1; by theorem 1.4. Bul as 1, is in a higher
rw—level than 1,, there is no such path (as there is no rw—admissible path from

X to any vertex in Ly, where £ <i). Hence can-knowsf(l;,1,, Gg) is false, N

This theorem states thal unless a user has a security level equal to or greater
than that of a certain document, he cannot obtain access te it regardless of

how many (possibly corrupt) people de have zccess to it.

We have seen how Lo model hierarchical sturctures where security is concerned
only with the passing of information. Now, let us consider this in cenjuenction

with the passing of authority,

.3. Cornbining De Facto and De Jure Rules

In order to include de 7ure rules in the model of a hierarchical protection

graph, some of the definitions of tha last section must be generalized.

DEFINITION D2.4: An rwig—level is a set of subjects in a protection graph Gg
such that for every pair of verlices x and vy in the set, cansknow{x, y, G4} and

canaknow(y, x, Gg) are true.

The nolion of higher discussed in the previous section can also be
extended in Lhe obvious way to include rwtg—levels and vertices in those levels.
In particular, the relation is still a partial order. A protection graph &g is
secure if for all vertices x and y such that x is lower than y, can«know(x, y, Go)

is false.

29

The above argument can be made more rigorous, and shows:

LEBUA 2 B: Restrictions of direclion are sound but not complete.

Restrictions of Application

Restrictions of application are these restrictions which prevent the take
or grant edgr from rnanipulating cerlain rights. For example, if Lthe take rule
could only be applied to read rights, that restriction would be a restriction of

epplication.

Restriclions of application, like restrictions of directions, are sound but
but not complete. Te show soundness, merely note that there are no bridges or
connections in the original protection graph between rwig—levels one aof which
is higher than the olher. Thus, by theorem 1.5, it is impossible to pass rights of
any kind between the two levels, and so limiting the kinds of rights which can
be passed has ne effect. Thus, as the original graph is secure, spo will any other
graph derived by these rules. However, the rules restricted in this way are not
complete. For example, if the take rule 1s restricted so that it cannot act on
read rights, this will prevent a higher—level vertex from taking read rights to a

lower—level vertex.
The ebove argument can be made more rigorous, and shows:

LEMMA 2.8: Restrictions of applicalion are sound butl not complete.

Restrictions of Direction and Application

Hoth restrictions of application and resirietions of direction have one
scvere shortecoming: under them, the de fure rules are nol complete. Hence,

congider a combkination of the first two restrictions. The object is te moedify Lthe

30

take and grant rules so that no explicil or implicit read edges go from a higher
to a Jower rwtg—level after a finite number of de yure and de facio rule applica-
tions. We propose the following restriction, in which a directed path beginsal a

spurce vertex and ends al a targel vertex:

R2.4. No de jure rule may be applied if, as a result, either of the following

connecclions would be completed:
a. 7 with the source vertex lower than the terminal vertex, or

b. 10 with the source vertex higher than the terminal vertex.

In more forma) language, let R be a de jure rule, and let GzG'. Thisis an
invalid step in a derivation if there exist vertices x, y € & such that x>y, no
edge from x Lo y has associated word 24 and no edge fromy to x has associated

word 7.

There is an intuitive basis for these restrictions. First, notice that the rea-
sop bridges are included in theorem 2.13 is that rights are transmitted over
bridges, and so in the sequence of rule applications to move the right along the
bridge, one of the three (forbidden) connections must occur. (A read edge from
one vertex to a higher one violates restriction R2.4a, and a write edge from one
vertex to a lower one violates restriction R2.4b. For the third possible connec-
tion, the object which is the target of the write edge belongs to the lower level,
so it reduces to restriction R2.4a.) Thus, not the construction of bridges, bul

only the transmission of read or write rights along them, need be restricted.

In addition, there is no restriction on any rights other than read angd write.
In particular, other rights can be freely passed from one level to another. This

is an advantage of these restrictions, and enables us to show the main result:

33

COROLLARY 2.11: Testing a graph for violation of the restriction may be done in

time linear in the number of edges of the graph.
ProOOP: Immediate from Lheorem 2.10. K

COROLLARY 2.12: Determining whelher or not an application of a de yure rule

violates the reslriction may be done in constant Lime.

PROOF: Immediale from theorem 2.10. [}

34

Chapter IIT

More New Results and Proofs

in the Original Model

10.1. Introduction

In chapter 1, we saw how hierarchies could be modelled using the
Take—Grant Protection System. We shall now begin Lo consider how to model 2

computer system.

We wish to caplure two types of theft in our model: thefts of rights and
thefts of information. The former we canp describe exactly, by the predicate
canssteal; but the latter we cannot yet describe. This chapter proposes a new
predicate, called canssnoop, which will describe thefts of information just as

the predicale canesteal describes thefts of rights,

II1.2 A New Proof of Can-Know

Before we do so, however, we will give an alternate proof of the necessary
and sufficient conditions for cansknow to be true. The proof given in [BISH79]
is very complex and does not generalize readily to the other cases we
shall touch upon in the next chapter. Because many of the results and proofs
in the extensions to the model are quite similar to those of the original

model, we wish to emphasize this parallel development between

35

the criginal model and each of the exlensions.
Jo the interesis of clarity, we need the following two lemmea s:

LEMMA 3.1: If there is a bridge from x Lo y, then x can obtain an implicil read

edge to y.

PrOOF: By the take rule and the definition of bridge, it suffices to prove the

lernma for bridges of length 2 or less. Six cases arise.

Case 1:

. e - ._;7.% y creales (rw io new) z

S XY Z
T
[@@ x takes (r to z} fromy
x y Z
!
r
- ost rule
X y P
t
Cuse 2:
._9_/70 F Tw y creates (rw to new) z
X ¥ X ¥ Z
T
[.@% lermma 1.2
P I Z
T

- -:. post rule

37

C3.1. an explicit read edge from X to y exists or may be added;
3.2. animplicit read edge from x toc y may be added; or
C3.3. an explicit write edge from y to X existe or may be added.

PROOF: If Lhere is a bridge between x and y, case £3.1 holds by LLemmna 3.1. So,
suppose there is 2 connection from x to y H the associaled word is in {7, by
using the take rule, X can obtain an explicit read edge to y, establishing case
C3.1. If the associated word is in 107 °, by using the take rule, ¥ can obltain an
explicit write edge to x, establishing case 03.3.)f the associaled word is in
7ol x and v can cach apply the take rule until x obtains a read edge to a
vertex Lo which y has & write edge {or vice versa); then x and y can use the post

rule Lo add an implicit read edge from x Lo y {case C3.2.) =

The last lemma is Lthe most importanl, because it states a sel. of conditions
which must be met before can<know is true. hence, Lhe theorem given next
really only Lries to establish when there will be a series of bridges ot connec-
tions from a verlex q to another vertex p elong which infermation can be sent.
(Note condition C3.5, which was implied but not explicitly slaled, in the earlier

version of the theorern.)
THEOREM 3.3: Let p and q be vertices in a protection graph Gp. Then
can«know(p, q. Gg}is true if, and only if, one of the following conditions holds:
C3.4. cansshare(r.p, q, Go) is true:
C3.5. can-share{w, q.p. Go)is true;
C3.6. all of the following conditions hold:

a. There is a subject p’ such that p*=p or p'is rw-initially con-

nected to p;

38

b. There is a subject q' such Lhat g' = g or g’ is rw-lerminally con-

nected Lo g;

c. There is a sequence of islands {/; | } <j<m] such that there isa
bridge or connection from /j Lo /j, 1<j<m.,and p' € /y,and q'

€ Iy -

INFORMALARGCMEN:: To prove the "if” part, note that conditions C3.4 and C3.5
imply by definition that caneknow is true. For condition C3.8, part C3.62 says
that p' can send any information it gels to p, and part C3.6b says that g' can
obtain any information it needs from q. Part C3.8c simply says that q' can send
the information to a vertex z, in /,,—-), which can in Lurn send it to 2 vertex z, in
Im-z, and so on, until a vertex z,,-; in /| gels Lthe information. By the properties
of an island, this means that p' can get the information. Putting all this

together, can=know is Lrue,

Going the other way involves considering the rule applications needed to
produce a witness. We can require all de facto rules to be applied last, and
examine the conditions needed for them to be applied. For example, in the
pass rule, there is a vertex y for which cansshare(w, y. p. Gn) and cansshare(r,
y. p. Gn) are true. From the conditions required for both cansshare rules to
hold, vondition C3.6 of the theorem must be true. (In the formal preof, we will
show this for the post and spy rules; the formal proof for the pass and find rules
are left as an exercise for the reader.) And if no de facto rules are used to gen-
erate a witness to cansknow, obviously one of conditions C3.4 or C3.5 must

hold.

PROOF: {<) By definition of cansknow, if either condition C3.4 or condition
C3.5 holds, cans=know is true. So assume neither condition C3.4 nor condition

C3.5 holds.

39

Consider condition C3.8a. As p'is rw-initially connected Lo p, il eilher has
or can oblain (through the take rule) a write edge Lo p. Similarly, by condilion
C3.6z,if qis rw-térrrunally connected to q. il either has or can oblain (using
the take rule) a read edge to q. Thus, it suffices to show can<know(p', q'. Ga) is
true by condition C3.6c; merely apply the spy rule (if g’'»q), and then the posL

rule (if p'#p). Lo obtain can<know(p, q. Go).

We show condition C3.6¢ irnplies cansknow(p‘, g'. Gp) by inducting on m,

the number of islands 1n that condition.

Basts: ket m = 1. Then p’ and q‘ are in {he same island, whence by lemma 2.1,

cansknow(p’, q', Gp) is true.

INDUCTION BYPOTIIESIS: For m =1, .., k. i{ condition C3.6¢c holds,

canaknow(p', q'. Go) also holds.

INDUCTION STEP: Lel m = k + 1. Let z, be the subjecl in /; thal bounds the
bridge or connection between J, and /i y; let 2.+ be z,'s counterparl in J ;4.
By lernma 3.2, can-know(zx.. q'. Gp) holds; by lemma 3.1, this rneans
cans=know(zy, q', Go) holds; and by the induction bypothesis, cansknow(p'. 2,
G¢) holds; whence by the spy rule, can-know(p'. q'. Gg) is true. This proves the

induction hypothesis, and hence the "“if" part of the theorem.

(=) Now assume can-<know(p, q, Gg) is true, and consider a minimal sel of rule
applications p needed to produce a witness. Without loss of generality, we may
reorder the p;'s so that all de jure rule applications precede any de factfo rule
applications, since de Yfaclo rule applications do not change the state of the
protection graph. If no de facfo rules are applied, the witness will end with
either an explicil read edge from p to q, in which case condition C3.4 holds, or
an explieit write edge from g to p, in which case eondition C3.5 holds. So sup-

pose that at least one de facto rule application 18 needed.

40

Induct on the number m of such de facio rule applications.

Basls: Let m = 1. Bach of Lhe de facio rules musl be considered. We will give

the proof for the post rule; the oLher rules are treated similarly.

Consider the post role. In order to apply this rule, there must be a2 vertex
¥ such that cansshare(r. p, x, Gg) and cansshare(w. q. y. Go) are true. By
theorem 1.3, this means that there is a2 sequence of islands /;,,}; withp €

{y, and a verlex a € }, which terminally spans Lo another vertex a', which has a

read edge to ¥

ap
bridge terminal &' ¢ X
Iy Ia !5

Similarly, there is a sequence of islands J,, Jy. withg € J;. and a ver-

tex b € J; which terminally spans to another verlex b’, which has a write edge

to x:
X w b’ {terminel bridge
& O~—ar (@b
gy Jre—1 Jr
Now, combining these two facls, relabel the izslands Jy,..., J: as

1’) J1=15+1

43

[] ® t T

5 G
e ® Bobby Alee aula '

co-workers

Becazuse he is honest, Bobby does not take Lhe key, bul merely suggests to
Alice that she be a bit more careful. (He is {aken aback when she tells him it is
her car key and not the key to the vault!) Later in the day, Alice takes a sensi-
tive document out of the vault, goes back to her desk, and begins to read the
document. Unfortunately, Robin, who sits directly behind Alice in her office,
can see what Alice is reading just by looking over Alice’s shoulder. In Take

Grant terms, this sitvation is:

r

o T
® ® Ro%i;n_ ‘Alice da%ﬁ Ge

co-workers

By the spy rule, Robin can read anything Alice can (the Robin-lo-Alice edge.
being unauvthorized, is implicit); hence, can=know(Robin, "'proprietary data’’,
Cz) is true as long as Robin can look over Alice's shoulder; if Alice read Lhe
document elsewhere, such as in the vault, Robin would no longer be able to read
the document over Alice's shoulder, so the spy rule would not be applicable
since there would@ be no (implicit or explicit) Robin-to-Alice edge. Notice the
diflerence between can=know(Robin, "proprietary data’, &) and
can-know{Bobby, '‘proprietary data’'’, &,); in the latter case, the cansknow is
true whether or not Alice cooperates by {(knowingly or unknowingly) allowing
her shoulder to be looked over. The cansknow predicate fails to capture this

distinction.

44

We define a new predicate, called canssnoop. This predicate will be true if
cansknow iz true and no-one who has any rights over the information being
snooped for cooperates with the snooper. For example, canssnoop(Robin,
“proprielary dala”, &) is false, since Alice has Lo pass the information Lo
Robin (by letting Robin leok over her shoulder, in this example). whereas
can=snoop(Bobby, '‘proprietary dala’, G ;) is true, since Bobby could see the

docurments whether or not Alice cooperated, once Bobby bad “taken™ them.
More formally, we define:

DEFINITION D3.1; The predicale canssnoop(p. q. Go) is true if, and only if, one of

Lthe folilowing holds:
C3.7. cansesteal{r, p.q, Go)is true;or

C3.B. there exists a seguence of graphs and rule applications

Golp - - FpoGn for which all of the following conditions hold:
a. thereisno explicit edge from p to q labelled rin Gy;
b. thereisan implicit edge from p to q labelled 7 in Gy;

¢. neither q nor any vertex directly connected to q is an actor in a
grant rule or 2 de focfo rule resulting in a read cdge with g as its

Ltarget.

Before we state necessary and sufficient condilions for can-snoop to be
true, let us examine the definition more closely. The predicate is rather clearly
the de focto analogue of canrssteal, just as cansknow is the de facto analogue of
cansshare. If p can steal read rights Lo g, clearly no-one who owns those rights
over q can prevent p frem obtaining information fram g. Similarly, if p has
auvthority Lo read q. it would strain the meaning of whal we are trying to define
to say canssnoop(p. g. Go} is true. In G,,, note that any read edge from p to q

must be implicit, for if not, canssteal{r, p, q. G¢} would have been true, meeting

45

condition C3.7. And for the purposes of Lhis discussion, we will assume Lhat q
wil) not cooperate {(either witlingly or unwittingly) with any snooping; il would
be equally reasonable to assume that q would cooperate, in which case whal

follows must be modified scmewhal.

THEOREM 3.4: For distinct vertices p and q in a proleclion graph Go with expli-
cil edges only, cans*snoop(p. q, G) is Lrue if ang only if one of the following con-

ditions holds:
C3.9. canssteal{r.p.q, Gg) is true; or,
C3.10. all of the following bold simultaneously:
a. thereisno edgelabelled 7 from p Lo g in Gy;

b. there 1s a subjecl vertex p' such thal p'=p or p’' rw-inilially

spans to p;

c. if g is a subject, Lthere is a vertex g’ such Lthal q° # q. there is no
edge labelled 7 from q’' Lo q in Go. and q' Tw-lerminally spans to

q. and
d. cansknow(p'.q’ Go)is true.

INFORMAL ARGUMENT: If canesnoop is lrue, and canssteal false, we have to show
all parts of condilion C3.10 are true. Condition C3.10a follows from Lhe
definilion. By part C3.Bb of Lhe definition, cansknow(p, g, Gg) is true, from
which condition C3.10b springs. Also, by theorem 3.3, condition C3.6b, we have
q’. Combining this with the definition, it becomes clear that although q' rw-
terminally spans to q, g’ # q, and there is no edge labelled r from q' to g in Go.
The proof that canaknow(p. q. Gg) is true involves proving that the first rule to

add a read edge wilh target q is a2 take rule, and working backwards.

48

Chapter IV

Some Extensions to the Take—Grant Model

IV.1. Intreduction

In its original form, the Take Grant model is 2 powerful theoretical tool;
unfortunately, there is one rnajor drawback in applying it to non-theoretical
situations. The rnodel deals with authorities between individual vertices, and in
practise, this is rarely done. Most computer systems have the concept of a
“protection group' designed into them, so that many users can share access to
a set of files. To apply the Take Grant model to this situation would require
that the graph rewriting rules be changed so that various combinations of

takes and grants were always performed in a given sequence.

In this chapter, we will Jook at three ways in which the rules may be rewrit-
ten, and how doing so aflects the theorems and proofs. The rules we shall intro-
duce involve acting on classes or sets of vertices as well as individuatl vertices;
in the next chapter, we shall apply many of our results to an operating system
to show how, in practise, one would go about using the theory developed in this

chapter.
DEFINITION D4.1: A classis a collection of vertices.

In what follows, all vertices belong to at least one class. More than one
vertex may belong to the same class; similarly, one vertex may belong to many

classes. Should there be a one to one correspondence between classes and

50

definitions resemble each other, they are by no means identical; and in cases
where proofs are necessary, the proofs of two very similar claims will be quite
different. (As an example, look at lemmas 4.2, 4.16, and 4.31, proving the for-
mal definition of "terminal span’’ meets the intuitive requirements.) This is a

result of the different graph rewriting rules used by each extension.

IV.2. The One—Many Extepsion

In this extension, we change the graph rewriting rules so that one vertex

acts upon a class of vertices. The new rules are:
RULE R4.1: take

Let %, y, and z be vertices belonging to classes X, Y, and Z, respectively, and let
x be a subject. Suppose x has take, rights over y and y has « rights over z.

Then x obtains a rights over 2]l vertices in Z. In pictures,

(43
€Y cY
sexe—Jo X oepcz L x€ t I © €Z
[o 8
X ‘e X® Qz'cZ x'eX® ‘€Z

RULE R4.2: grant

Let %, y, and z be vertices belonging to classes X, Y, and Z, respectively, and let
y be a subject. Suppose y has granf rights over x and y has a rights over z.
Then x obtains o rights over all vertices in Z. In pictures,

«

cY
xeXo<2 Yo zcl |

X 'eX® Q'€

51

RULR R4.3: create_

Let x belong to a set of classes S and let x be a subject. Then x create a new
(subject or object) vertex y belonging to classes in a set S' C S, with x having «

rights over all vertices belonging to classes in S’. In pictures,

zeP.Q.R® - xeP.Q. a €Q
x
® ®
pcP qcQ TQR ng qQ<Q &R

RULE R4 .4: remove

Let x and y be vertices belonging to classes X and Y, respectively, and let x be a
subject. Suppose x bas a rights over y and let § ¢ a. Then x removes__ g rights

over all vertices in Y. In pictures,

x€ 2 €Y = xeXe—2"Pogyey
X'€E A ‘eY x'€X®—ﬁ>®y‘€Y

In what follows, as in the original model, we will not use the remove rule
except where necessary, since it was included mainly for completeness; its
presence rarely changes anything, because we (tacitly) assume that when an

edge or right is added to the protection graph, it remains there.

Before we begin defining terms, therc is one eflect of these rules that will
be seen over and over; basically, it says that if 2 subject has rights over one
member of a class, it can obtain these rights over all members of that class.

This 1s so useful that we state and prove it as a lemma:

LEMMA 4.1: Let 8 be a subject vertex, and let q and q' be vertices in the same
class in a protection graph Gg. If s has a rights over q, then s can acquire o

rights over q'.

52

PROOF: The [ollowing construction demonstraies the claim:

s8—>q s§—>@q _
L s creates_ (fgto new) s’
&q' s’ ®q’

s grants, {(atog’)tos’

g grants, {(atog’)tos’

This completes the proof. m

This lernma will have many consequences. The most interesting one is the
effect on the transfer of rights from one vertex to another; it is sufficient for a
vertex to obtain a right over any member of a class in order Lo gain that right
over all members of that class. To take a rmore conerete example, think of files
as objects, processes as subjects, and protection groups as classes. If a process
can access a file, it can access all files in that protection group. Basically, that

is all the lemma says.

Qur immediate goal is to determine necessary and suffcient conditions for
the transfer of authority in this model. Let us now look at the analogue to ini-

tial and terminal spans and bridges.

Recall that a ferminal span is a path along which rights can be obtained.
That is, if ¥ terminally spans to y, X can obtain any right y has. Under the four
rules R4.1 — R4.4, it is clear that the terminal span need not go fremx to ¥
directly, but may go from x Lo any vertex in the same class as y; for, if the ter-

minal span is of length 1, an appropriate application of the create, , Tule will

o4

p takes, (atoq) froms

INDUCTION HYPOTHESIS: The claim is true for a terminal span of length n,

INDUCTIONSTEP: Let n =k + 1. Then,

X X S=Xn
X o=p o) O—>®q
t t
O
. y: n
1 X X S=Xy
Fxo=p) 02 O—a—>®q
L L Lemma 4.1
O
yi y: ¥n
t X Xz g=X
FXo=p l ®) O——>8 = q
3
£
O
yi y:z Yn

p takes_ (f, toyz)fromx,

Now, the terminal span is of length k, so the claim follows from the induction

hypothesis. Hence, p can obtain a rights to gq. m
We can make this lemma more general:

COROLLARY 4.3: Let g and q' be vertices (not necessarily distinct) in the

same class in a protection graph. Let the following two conditions bold:

=35)

C4.1. Thereisa vertex s withan a edgetoqg’.

C4.2. There is a subject vertex g’ such that &' =5 or §" terminally, spans

to s.
Then s' can acquire « rights to q.

Proo?r:If ' = g, then by lemma 4.1 we are done. If q’' = q. the corollary is trivi-
ally true. Finally, by lermma 4.2, 8' can acquire o rights over g '; then by lermma

4.1, 8" can acguire x rights over q.)

Going back to definitions, recall that an initial span is & path aleng which
rights may be bestowed; that is, if p imitially spans to q, p may pass any right it

has to q. More formally,

DEFRINITION D4.3: A subject verlex p initinlly spons to a (subject or object)
vertex q if therc exists a segquence of verlices xg, ..., X5, 7 >0, such that
P = ¥0.9 = Xn, and there are vertices y, , ..., ¥rn.n >0, such that y; and x;
are in the same class, there is an edge labolled g from xy- to y5. and for all

i # n,thereisan edge labelled { from x,— to y;.

As with terminal__ spans, lel us show that this definition meets Lhe intui-

tive requirements.
LEMMA 4.4: Lel the following condition hold:
C4.3. There is a subject verlex p' such Lhal p' = p or p’ initially, spans
to p.
Then p’' may pass to p any right it has.

ProoF: If p'=p, we are done. So, assume p'# p; by corollary 4.2, taking
s'=p'q =p.q'=¥r,8 =X,,and a = g, the result follows. u
Finally, we define the analogue of a bridge; recall thal a bridge is a path

along which rights may be transferred from one subject Lo another.

56

DEFINITION D4.4: Two subject vertices p and g are joined by a bridge, if one of

the following conditions holds:

C4.4. Either of the two subjects terminal spans to the other;

1Y om

C4.5. Either of the two subjects initially__ spans to the other;

C4.6. There is an object vertex s such that one of the subjects initiallyOm

spans to s, and the other terminally_ spans to s.
Again, we show this formal definition meets the intuitive requirements.

LEMMA 4.5: let p and q be subjeclts with a bridge between them. Then p can

obtain any right q has,

PROOF: If case C4.4 applies, either p termirelly spans to q or vice versa; in
either case, by definition D1.5 or by lemma 4.2, Lhe claim is proven. If case C4.5
applies, either p initially, . spans to q or vice versa; in either case, by dafinition
D14 or by lemma 4.4, the claim is proven. If case C4.6 applies with p
term.inallyom spanning to s, and q initially, spanning to s, by lemma 4 4 g can
pass any right to s, which p can then acquire by lemma 4.2;if p initially__ spans
to s, and q terminally spans to s, by the construction used to prove case 2 of

lermrna 3.1, we are done. |

Note that, by lermuma 4.1, if there is a bridge from a vertex in one class to a
vertex in another class, either vertex can acquire rights over any member in
the other class; therefore, we will often speak of a vertex and a class being
linked .. All this means is that there is a bridge from the vertex to a vertex in
the class. The vertex linked, to the class, incidentally. will often be called a

linkom vertex.

57

We can now consider several classes with verlices linked by bridges.

LEMMA 4.8: Let the following condilion be true:

C4.7. There exists a sequence of classesCy, C .. such that subjects p'
£C,.8'€Cp.andineach £, thereisa subject vertex c; 1inkedom ta

Cin,forl=i=<m.
Then p' can acquire any right g" bas.
PROOF: We induct on the number m of classes.

Basts: Whenm =1,if p’' =8' we are dene. If not,

p'e® os ~ pe<l & I g

and now s' can grant any right top".
INDUCTION HYPOTHES!IES: Form =1, k., the claim holds for m classes.

INDUCTION STEP: Let m. = & + 1, and consider e¢z. Hy the induction hypothesis,
c» can cbtain any righl s' has. By assumption, ¢, is a subject; hence, by lernma
4.1, ¢, can obtain any right e¢2 has, so0 it can obtain any right s' has. And by
using the create rule as in the basis, e, can grant to p' eny right it has.

Hence, p' can acguire any right s’ has. |

Given lemmas 4.2, 4.4, and 4.6, we can characterize sharing compleately. If
conditions C4.1, C4.2, C4.3, and C4.7 hold, by lemma 4.2, s' can get o rights to q:
by iemma 4.6, p’' can pet o rights to g from g’ and by lemma 4.4, p can be given

arights toq by p‘. Hence, we define the predicate

DEFINITION D4.5: The predicate can-share, (a, p. g. G¢) is true if and only if
there is a finite sequence of the four om graph rewriting rules which, when

applied to the protection graph &g, result in an edge labelled o going fromp to

q.

58

The necessary and sufficient conditions for this predicate to be true are:

THROREN 4.7: The predicate cansshare{a, p, g, Gg) is true if and only if condi-

tions C4.1,C4.2, C4.3, and C4.7 hold simultaneously.

Proo¥: (=) Consider what happens if any one of the conditions fails. If C4.1
fails, no vertex can obtain o rights Lo g, since nene of the graph rewriting rules
add new incoming rights to a vertex; if C4.2 fails, no verltex in any class Cp, cen
obtain a rights to q: if C4.3 fails, no vertex can grant__ p a rights to q:; and if
C4.7 fails, no vertex which can grent_ p rights wilt be able to obtain a rights to
g. Hence, all four conditions must hold simultaneously for can-shere__(a. p. q.

Go) to be true.
{<=) Imrmediate from lemmas 4.2, 4.4, and 4.6.]

Now that we have characterized sharing, let us think about stealing rights.
Informally, we want the predicate can-stealnm{a. p.q. Gp) to be true whenever p
can obtain a rights to g without the owner of that right granting it. However,
suppose an owner grants to p the right to a 2 vertex q" in Lhe same class as q.
It is reasonable to bar this from taking place in a theft, because a vertex granlt-
ing rights grants rights to e class, not to 2 vertex. Se, if such a graent takes

place, we shall not consider the action a theft.
More formally, we define the predicate

DEFINITION D4 6: Let p be a vertex and let q be a vertex in class Q. The predi-

cate can=steal _{«, p. q. Go) is true if and only if all the following hold:
C4.8. thereis no edge labelled afromp to g in G

C4.9. there is =& seguence &y, . .., Gn of protection graphs and

Dy p£r Of rule applicalions such that

ob

b. thereisan edgelabelled a fromp log in Gy, and

c. ifshasarightsoveranyq' € Qin g, no p; has the form

s grants, (atoq’)tox;

foranyx; € Gy, 1 =i,5<n.

Clearly, part C4.9c of the definition is the key part. We can modify the con-
ditions necessary and sufficient for can-share to be true to give conditions

both necessary and sufficient for canssteal , to be true:

THEOREM 48: lLet p and q be vertices in a protection graph &g Then

canesteal__{a, p.q,G¢) is true if and only if the following conditions all hold:
C4.10. thereis no edge labelled a frompto gin Gg,

C4.11. thereisa verlex swilh an o edge to a verlex g’ in the same class as
q.
C4.12. there is a subject vertex p' for which p' = p or p’initially, spans

to p,and
C4.13. can-sbarenm(t. p' 5, Go) is true.

INFORMAL ARGUMENT: To show the “‘only if" part, note C4.10 comes from the
definition; as being true means cansshare . is true, conditions C4.11 and C4.12
botbh hold. ¥We can deduce C4.13 by showing the first rule to add an o edge to q°

in Q@ rmust be a take_rule. Proving the "if" part merely requires that we show

L
part C4.9c of the definition is met, which invelves checking several cases.

Proor: (=) Assume can-stealom(a. p. q. Ggp) is true. By part C4.9¢
of definition D4.6, condition C4.10 holds. By part C4.2b of the definition,
can-shaream(a. p. 9 Go) 1s true, so condition C4.3 of theprem 4.7

gives condition C4.12 of this theorem, and condition C4.1 of theorem 4.7 gives

61
x takes_ (atoz)froms
x takes_ (g toy)froms
x grants, {(atoz)tos

whenever x # y, and

x takes (a to z) froms

whenever x =y. Thus, since s need never grant a to do the sharing,
y 4 om g

can -shareom(i. y. s. Gg) is true. This satisfies C4.13 of this theorem.

(=) Let the four conditions in the theorem hold. If p is a subject, it can take

(a to q') from s since it gets the take_ right to s, and hence get an a right to q.

So, suppose p is an object. Then by condition C4.3, there must be a subject
p’ that initially, spapsto p,and by condition C4.7, cansshare__(¢,p". 5, Go). If
in Go p' does not have an « edge to g', then p' can take (e to q') from s and
grant, it to p. If p*does bave an o edge to q' in Gp. note simply that by condi-
tions C4.3 and C4.7 there is 2 G; such that p' has a take_ edge to g and a
grant_ edge to p, the following sequence enables p' to pass the right (a to q)
to p without ever granting it

p ' creates_ (g to new subject) z
p’ grants, (ftos)toz
p grants__(gtop)toz
z takes (o toq)froms
z grants_ (atog)top

This is a witness for can-stealom(a. p. q. Go). thus proving the theorem.

62

Thus far, we have deait with the transfer of rights in a protection graph.
Let us now consider the transfer of information. As in the original model, we
shall define predicates analogous to can-know and canssnoop to test for infor-

mation flow.

First, let us define conditions under which a vertex can grant or take, .

om'
read and write rights. Recall that an rw-initial path is a path aleng which
information can be transmitted. We define an rw-initial path to be the same

under the om rules:

DEFINITION D4.7: A verlex p rw-initially,, spans to q if there is a vertex s with
a write edge to another vertex ¢" in the same class as g. and p terminally, .

spans to s, 0rp = 8.

To see this meets the intuitive requirements, we now show:
LEMUMA 4.9; Let the following condition be true:

C4.14. thereisa subject p' which rw-initially, spanstop,orp’'=p.
Then p' can acquire «w rights to p.

PRooF: lIf p' # 8, as p' terminally_ spans to s, p’ can acquire w rights to g by
lemma 4.2. If p' =8, it already has those rights. As q" 2and q are in the same

class, and p' is 2 subject, by lemuna 4.1, p’ can acquire w rights over q. =

Also, recall that an rw-terminal span is a path along which information
can be obtained. Again, we define an ru~terminal, span to be the same under

the om rules:

DEFINITION D4.B: A vertex p rw-terminally _ spans to q if there is a vertex s
with a read edge to another vertex g " in the same class as g, and p terrminally

spanstos,orp =s.

63

Once again, we must prove this definition meets the intuitive requirement.:
LEMBA 4.10: Let the f_ollowing condition hold:

C4.15. thereisa subject g which rw-terminally _ spanstoq.orq'=gq.
Then q ' can acquire read rights over q.

PROOF: 1f q’' # s, as q' terminally_ = spans to s, q' can acquire read rights to a
vertex g" in the same class as q, by lemma 4.2. If ' = s, it has such rights to

q'. Asq"and qarein the same class, and q'is & subject, by lemma 4.1, q" can

acquire read rights to q. -

With these two definitions, we can develop an analogue to ‘‘connection’
using the om rules. Informally, a join_ is a path along which information, but

not rights, may fiow. More formally,

DEFINITION D4.9: Let p and q be subject vertices. If p rw-initially, spans to q,
or q rw-terminally . spans to p, or p 7w-initially _ spans to a vertex to which q
rw-terminally_ spans, then q is said to be joined to p, and the path between

themis called a join,, .
As usual, we check that this meets the intuitive requirements:
LEMMA 4.11:)f g is joined _ to p. then one of the following cases holds:
C4.16. p can obtain an explicit write edge to q;
C4.17. g can obtain an explicit read edge to p; or,
C4.1B. q can obtain an implicit read edge to p.

PROOF: If p rw-initially = spaps to q, by lemma 4.9, case C4.16 holds; if q rw-
terminally =~ spans to p. by lemma 4.10, case C4.17 holds. So, suppose p rw-
initially spans to a vertex x,and q rw-terminally . spans to x. By lemma 4.4,
p can acquire write rights over x, and by lemma 4.2 q can acquire read rights

over x; then case C4.18 holds with an application of the post rule.

68

In other words, if p can obtain information from q, can+know__(p, g, Go) is
true. We can also state necessary and sufficient conditions for cansknow_ _ to

m

hold:

THEOREM 4.13: Let p and q be vertices in a protection graph Gg. Then

can -knowom(p. q. Go) is true if and only if at least one of the following holds:
C4.23. can -shareom(w. q. p. Go) is true; or,
C4.24. can-shareom(r.p,q.Go)is true; or,

C4.25. allofC4.14,C4.15, and C4.19 hold simultaneously.

INFORMAL ARGUMENT: Assume exactly one of the Lhree conditions holds. By
definition, if either conditions C4.23 or C4.24 hold, can<know_ (p, q. Go) is
true. So, assume only condition C4.25 holds. By lemmas 4.9, 4.10, and 4.12, p
can obtain information from q. Going the other way, again if condition C4.23 or
C4.24 is true, the result is immediate; if only condition C4.25 holds, we will show

that if one of C4.14, C4.15, and C4.19 is false, can-knowom is also false.

PROOF: () If condition C4.23 or condition C4.24 holds, caneknow__(p. q. Go) is
true by definition. So, assume both are false and condition C4.25 is true. By
lemma 4.9, it suffices to have p' € D, acquire information from q: by lemma
4.10, it suffices to have q' € D, transmit information to p’; and by lemma 4.12,

this can be done. Hence, can-knowom(p. q. Go) is true.

(=) Assume can-know__(p.q. Go) is true. Then, if there is an explicit read edge
from p to g, condition C4.24 holds; if there is an explicit write edge from q to p,
condition C4.23 holds; so, assume there is an implicit read edge from p to q. If
C4.14 fails, the implicit edge cannot originate at p; if C4.15 fails, the implicit
edge cannot terminate at g; if C4.19 fails, no such implicit edge can exist. In
any case, we have a contradiction, so al]l three conditions C4.14, C4.15, and

C4.19 must hold simultaneously.

87

Now that we have cstablished conditions for the sharing of information, let
us consider the theft of information. To do this, we define a predicate analo-

gous to cans<snoop, namely

DEFINITION D4.11: Let p and q be vertices in a protection grapb G, Then

can=snoop__(p,q, Go) is true if, and only if,
C4.28. can-stealom(r, p. q. Go) is true; or,
C4.27. there exists a sequence of protection graphs and rule applications
Golp, Fp, Gn for which all of the following hold:
a. thereisno edge fromp toq labelled 7in Go:
b. thereisan edge fromp to q labelled 7 in G, ; and
c. neither q nor any vertex directly connecled to q" in the same
class as g is an actor in a grant__ rule or a de facto rule resulting
in an {(explicit or implicit) edge labelled r going to q, or an expli-
cit read edge golng toq".
Just as we derived necessary and csufficient conditions fpr canesteal . we
can do so for can»snoop -
THEOREM 4.14: For distinet vertices p and q in a protection graph Go.
can=snoop,_ (p,q. Go) is true if and only if one of the following is true:
C4.28. can-stealom('r, P, q. Go) is true, or
C4.29. all of the following hold:
a. thereisno edge fromp to qlabelled 7in Go;

b. there is a subject vertex p’ such that p =p’ or p' ru-inilially_

spans to p;

65

contradicting assumption] or g musl actively participate in a grant . spy, or
pass rule application [which contragdicts parl C4.27c of the definition of
canssnoop . contradicting assumption again]. In either case, there is no edge
labelled 7 frommg Lo g in Go.

It remains to be shown that can=know_ (p'. q'. Gp) is true. Let
Gotop oo - |5, Gn be a minirnum length derivai';ion sequence, and let 7 be the
first index such that the first (explicit or implicit) read edge with target vertex
in q's class is added in G,. That is, 7 is the least index such that Gi-, 5 Gi.
there is no (explicit or implicit) read edge from any vertex x to q" in the same
class as q in Gy-;, and there is an (explicil or implicit) read edge from x to q * in
G,. Consider what rule p; was used to add this edge. It cannot be a2 grant
rule because that would violate part C4.9¢c of definition D4.11. Nor can it be a
spy. pass, or find rule, or a post rule, for this would violate the same part of the
definition. As the create_ and remove__ rules do not add edges to existing

classes, p, cannot be either of these. Hence, p; must be a take_ rule.

We therefore have:

f T
Pr: > : ® I‘
s q

(L

Recalling that can-knowom(p‘ q . Gp) is true, by theorem 4.13 we see
can-kno"\'om(P ', q. Go) is true. Apply theorem 4.13 again: by this theorem, there
is a subject vertex q' such thatq'=q orq’ rw-terminally __ spans to q. Noting
that there is no edge from q' to q labelled 7 in Gy, we take @' = X in theorem

4.18, whence can=know_ (p'. q', Go) immediately follows.

70

(<) I condition C4.28 of Lhe thecrem holds, by parl C4.2%a of the definition,

cans=snoop, {p, q.Go) is true.

S0, assume condition C4.29 holds. Part C4.92 of the definition is the same
as condition C4.28a of the theorem. By theorem 4.13, conditions C4.29b,
C4.28c, and C4.294 establish part C4.9b of the definition. And as q'# q whenq

is a subject, part C4.9¢c of the definition also holds.

This completes the proof.]

IV.3. The Many—One Extension

In this extension, we change the graph rewriting rules so that a class of

vertices act upon one vertex. The new rules are:
RULE R4.5: take

Let x, ¥, and = be vertices belonging to classes X, Y, and Z, respectively, and let
X be a subject. Suppose x has teke, . righte over y and y has «a rights over z.

Then ell vertices in X obtain o rights over z. In pictures,

cY
xexe— L& % ogacz -

X'eX® ox X
RULE R4.8: grant,,

Let 2, y. and z be vertices belonging to classes X, Y, and Z, respectively, and let
¥ be a subjeck. Suppose y has grent . rights over x and y has o rights over z.

Then all vertices in X obtain & rights over z. In pictures,

71

2 4
xex®<g—yo—g—>®zez -

X '€X® ®z'€Z
RULE R4.7: create,

Let x belong to a set of classes S and lel x be a subject. Then x creates a new
(subject or object) vertex y belonging to classes in a set S' C S, with all vertices

in cless S having a rights over y. In pictures,

x<P.Q.Re F xeP.Q.

p%’ ng r&R

RULE R4.8: remove

Let x and y be vertices belonging to classes X and Y, respectively, and let x be a
subject. Suppose x has a rights over y and let 8 ¢ o. Then all vertices in X

removes, f rights overy. In pictures,

x€ o €Y - xeXxe—2"F.gyey
B
X'€ g y'€Y x‘€X®—£>®y'€Y

The remove_ rule is present mainly for completeness; since we assume

(o]
that, once given, a right has been exercised, and hence should remain exhibited

in the corresponding protection graph as something to be considered when

testing predicates, this rule is rarely used.

Before we begin defining terms, there is one eflect of these rules that will
be seen over and over; basically, it says that if a subject has rights over another

vertex, all vertices in the subjecl's class can obtain these rights over that

73

Rcceall that a terminal span is & path along which rights can be obtained.
That is, if ¥ terminally spans to y, x can obtain any right y has. Under the four
rules R4.1 — R4.4, it is clear that the Lerminal span need not go from x to y

directly, but may go fromany vertex in the same classasx to y.
More formally,

DEFINITION D4.12: A subject verlex p terminally spons to another (subject or
object) vertex g if there is a vertex r in the same class as p that terminally

spans to q.
Here, r spans to q with a terminal span, in the sense of the original model.
Pictorially,
t
pEP. o O0—0q

rep

To see that this formal definition meets the intuitive one, we show:

LEMMA 4.16: Let p, r, and s be vertices in a protection graph, let p and r be in
the same class, and let r terminally span to s. If s has a rights over g, then p

can obtain o rights over q.
PROOF: We induct on the length m of the terminal span fromr to s.

Basisim = 1. We have the following:

8
P& 2 -9q F

rtakes {atoq)froms

T4

INSGUCTION HYPOTHRS!S: The claim is true for a terminal . span of length m,

mo

INDUCTION STEP: Let m = k£ + 1. Let the object vertices on the terminal _ path
fromrtosbex,.. .. X 1. b suffices Lo show that r can acquire take rights,

at which point we can apply the induction hypothesis. But, since

o
1 ¢ @
e >0 >0 -
r X X2 r X Xz
rtakes (f to x3) fromx,
we are done. -

We cap make this lemma more general:

COROLLARY 4.17: Let q be a vertex in a protection graph. Let the following two
conditions hold:
C4.30. Thereisa vertex s with an o edge to q;
C4.31. There is a subject vertex s§' such that s'=s or s’ terminally
spans to s.
Then g8’ can acguire a rights to g.
Proor: If s' =g, we are done. Suppose €' = 5. By definition D4.12 and lemmasa

4.16, the corollary is immediate. [

Going back to definitions, recall that an initial span is a path along which
rights may be bestowed; that 1s, if p Initially spans to q, p may pass any right it

has to g. More formally,

DEFINITION D4,13: A subject vertex p initially . spans toa (subject or object)

vertex g if there is a subject r in the same class as p and r initially spans to q.

75

Again, r spans to q in the sense of an initial span in the original model.
Again, let us show that this definition meets the intuitive requirements.
LEMMA 4.18: Let the following condition hold:

C4.32. There is a subject vertex p'such that p’' =p or p’initially spans
to p.

Then p’ may pass to p any right it has.

PROOF: Let 5 be a vertex in the same class as p', and let s initially_ span to p.

We induct on the length m of this initial span.

BasIiS:m = 1. We have

p'e p F pe—Lsgp
g g
g Lernma 4.15

INDUCTION HYPOTHES!S: The claim holds when s initially spans to p with a2 path

of lengthm , form =1,..., k.

INDUCTION STEP: Let m =k + 1. Let the object vertices on the initial path be
X1,.... Xm-y. It suffices to show that s can acquire x,'s rights over x3; then we

merely apply the induction hypothesis. But, for a € {f, g,

p'® SR o -

s takes (o to Xxp) fromx,
we are done. |

Finally, we come to characterizing a bridge; recall that a bridge is a path

along which rights may be transferred from subject to subject.

76

DEFINITION D4.14: Two subject vertices p and q are joined by a bridge_ if one

of the following conditions holds:
C4.33. Either of the two subjects terminally , spans to the other;
C4.34. Either of the two subjects initially spans to the other;

C4.35. There is an object vertex s such that one of the subjects initially_

spans to g, and the other terminally . spans to &.
Again, we show this formal definition meets the intuitive requirements.

LEMMA 4.18: Let p and q be subjects with a bridge between them. Then p can

obtain any right q has.

PROOF: If case C4.33 applies, either p terminally_ spans to q or vice versa; in
either case, by definition D1.5 or by lemuna 4.16. the claim is proven. If case
C4.34 applies, either p initially . spans to q or vice versa; in either case, by
definition D1.4 or by lemma 4.18, the claim is proven. 1f case C4.35 applies with
p terminally o spanning to s, and q initially spanning to s, by lemma 4.18 q
can pass any right to s, which p can then acquire by lemma 4.16; if p initiallymo

spans to s, and q term.inallymo spans to s, by the construction used to prove

case 2 of lemma 3.1, we are done. [

Note that, by lemma 4.15, if there is a bridge from a subject vertex in one
class to a subject in anolher class, any vertex in either class can acquire rights
over any vertex in the other class; therefore, we will often speak of a class and
a verlex being linked . All this means is that there is a bridge froma vertex in
the class to the vertex. The vertex linked to the class, incidentally, will often

be called a linkmo vertez.

77

One more lernma will be useful in our nexl proof:

LEMMA 4.20: Let the class X be linked to a vertex ¢, and let ¢ hbave o rights

over another vertex g distinct from ¢ and the link = vertex x € X. Then any

o
vertex x' € X can acquire a rights to q.

PRroOOF: Consider how x would obtain these rights. Either ¢ would grant_ then
to %, or x would take them (using the bridge_ from x to ¢.) When either of
these is done, all vertices in X would acquire exactly the same rights as x, that

is, a rights to q. Hence, x’ can acquire a rights to gq. m
We can now consider several classes with verlices linked by bridges.

LEMMA 4.21: Let the following condition be true:

C4.7. There exists a sequence of classesC,,.. . C,, such thal subjects p’
€ C,,8' € Cpn, and in each C, there is a subject verltex ¢; to which

Ci~ is linkedmo, fori<it<m.,andep, =5
Then p' can acquire any right s’ has.
PROOF: We induct on the number m of classes.

BASIS: When m =1, p’ and s' are in the same class. If p' =s', we are done. If

not, as s'is a subject, we need only apply lemma 4.15.
INDUCT:ONHYPOTHES!S: Form = 1k, the claim holds for m classes.

INDUCTION STEP: LeL m =k + 1. As s8' € Cy+1, by assumption there is a subject

vertex ¢ € C, with a bridge to s’ Bylemma 4.20, c, can acquire any rights
g' has. At this point, we may apply the induction hypothesis to show that p' can

acquire any right ¢, has, whence p‘ can acquire any right s’ has. [

Given lemmas 4.16, 4.18, and 4.21, we can characterize sharing completely.
If conditions C4.30, C4.31, C4.32, and C4.38 hold, by lemma 4.16, g' can get a

rights to q; by lemma 4.21, p’' can get a rights to q from s’ and by lemma 4.18, p

78

can be given a rights to q by p’. Hence, we define the predicate:

DEFINITION D4.15: The predicate can-sharemo(a, pP- q. Gg) is true if and only if
there is a finite sequence of the four mo graph rewriting rules which, when
applied to the protection graph Gy, result in an edge labelled o going from p to
q.

The necessary and sufficient conditions for this predicate to be true are:

THEOREM 4.22: The predicate cansshare_ (o, p, g, G¢) is true if and only if con-

ditions C4.30,C4.31, C4.32, and C4.36 hold simultaneously.

ProoF: (=) Consider what happens if any one of the conditions fails. 1f C4.30
fails, no vertex can obtain a rights to g. since none of the graph rewriting rules
add new incoming rights to a vertex: if C4.31 fails, no vertex in any class C,,
can obtain a rights to g; if C4.32 fails, no vertex can grant p « rights to q;
and if C4.36 fails, no vertex which can grant_ p rights will be able to obtain «
rights to gq. Hence, all four conditions must hold simultaneously for

can-share_ {(a.p,q. Go) to be true.
(<=) Immediate from lemmas 4.16, 4.18, and 4.21. n

Now that we have characterized sharing, let us think about stealing rights.
Informally, we want the predicate can -stealmo(a. p.q. Go) to be true whenever p
can obtain a rights to g without the owner of that right granting it. However,
suppose an owner grants to a vertex in the same class as p the right to a q. It is
reasonable to bar this from taking place in a theft, because a vertex granting
rights grants a closs, and not a vertex, rights to a vertex , So, if such a grant

takes place, we shall not consider the action a theft.

78

More formally, we define the predicate

DRFINITION D4.16: Let p be a vertex in class P and let q be a vertex. The predi-

cate can-stealmo(a. P.q. Go) is true if and only if all the following hold:

C4.37. there is no edge labelled a fromp to q in Go;

C4.38. therc is a sequence G,.,. ... G, of protection graphs and
Pl pn of Tule applications such that
a. GO }‘_p’ l_pn Gn\

b. thereisan edgelabelled a fromp toqin G,,and

c. if shas arights over q in Gy, no p; has the form

s grants__{(atoq’)tox;

foranyx; e PinG-.1=1,5sn.

Clearly, part C4.38c of the definition is the key part. We can modify the
conditions necessary and sufficienl for cansshare Lo be true to give condi-

tions both necessary and sufficient for canesteal to be true:

THEOREM 4.23: Let p and q be vertices in a protection graph Go. Then
can=steal (a.p,q,Go) is true if and only if the following conditions all hold:
C4.39 thereis no edge labelled a fromp to qin Gy.
C4.40 thereisa vertex s withan a edge toq in Gy,
C4.41 there is a subjecl vertex p’ for which p* = p or p'initially _ spans
to p, and
C4.42 cansshare_ (f,p' 8. Go)istrue.

INFORMALARGUMENT: To show the '‘only if” part, note C4.39 comes from the

definition; as canssteal & being true means canesshare_ is true, conditions

43

C4.40 and C4.41 both hold. To show that C4.42 holds, we show that the firsL

B0

rule to add an a edge to g rust be a take_ rule, and then we show the condi-
tion cannot fail te hold. Proving the “if” part merely requires that we show

parl C4.38¢c of the definition is met, which we do by looking at various cases.

PROOF: (=) Suppose canssteal (a, p. q. Gp) is true. By part C4.37 of definition
D4.18, condition C4.32 holds. -By part C4.38b of the definition, cansshare (a,
p. q. Gg) is true, which by condilions C4.32 and C4.30 of theorem 4.22 give con-
ditions C4.41 and (C4.40 of this theorem. All that is left is lo show

cansshare_ (t.p’ & Go) is true.

To prove this, we first require {(without loss of generality) that the deriva-
tion sequence Golp, Fom Gn Wwitnessing can-sharemo(a, p. q. Gg) be of
minimal length. Let 7 be the index for which &, is the first grapb in the deriva-
tion segquence where an edge labelled a to 7' is added; that is, © is the first
index for which &G I—p(Gi. there ic an edge labelled a from some vertex x in
class X to @' in Gy, but there is no edge labelled a fromxtoq'in &,-;. What rule
pi added this edge? The rule is neither a ereate . nor a remove_ rule, neither
of which add incoming edges to existing vertices. By part C4.38c of the
definitien, it cannot be a grant rule, since by our choice of 1. all vertices with
arightstogqin G;_; are also in &3 Hence, p; must be a take . rule of the form

x takes_ (ato q) froms,

In pictures,

o
b e— e g = m

X 5 q X 5 q

By C4.32, there is a subject vertex s' such that s8' =5 or g° terminally
spans to s. By C4.7, there are «classes C,.,...,C,, such that

p'ecC, and s'€Cy, and Lthere are vertices c; € Cy such that C,-,

B1

is joined toec,.1 <7 <m, withs =c¢m.

Suppose sis an object. Thens # s and g is not in the same class as x, then
our derivation sequence would not be minimal because we could eliminate the
class containing s from the sequence C, , .. ., Cm: hence, if sisan objecl, take
s'=x,as s and x are in the same class and both terminally_ = span to x. Hence,

if sis an object, canashare_ (f.p'. s, Go) holds.

Suppose, therefore, s is a subject; that is, s' = s. The vertex xisin C,, or
Cm-1; hence, if x € Gy, all of C4.30, C4.31, C4.32, and C4.36 are satisfied, and we
are done. If not, since s € Gp and new labels on incoming edges cannot be
added to existing vertices, there must be some subject y in some class such
that can-sharemo(i. y. s, Gg) holds. Note that s need never grant, ., a to accom-
plish the sharing, as

x takes (a toq) froms

if x =y,and

s grants_ _(atoq)toy

can be replaced by

x takes__ (atoq)froms
x takes (gtoy)froms
x grants (atog)toy

if x # y. Thus, since s need never grant o to do the sharing, canasharemo(t. y,

s, Gg) ts true. This satisfies C4.42 of this theorem.

(=) Let the four conditions in the theorem hold. Jf p is a subject, it can take

(a to q) from s since it gets the take right to s, and hence get an a right to q.

B84

With these two definitions, we can develop an analogue to ‘‘connection”
using the mo rujes. Informally, a _']D'mmo is a path along which information, but

not rights, may flow. More formally,

DEFINITION D4.19: Let p and q be subject vertices. If p rw-initially spanstoq,
or q rw-terminally_ spans to p, or p rw-initially ., spansto a vertex to which g
rw-terminally spans, then q is said to be joined to p, and the path between
them is called a joun . .
As usual, we check thatl this meets the intuitive requirements:
LEMMA 4.26: 1f g is joined, to p, then one of the following cases holds:
C4.45. p can obtajn an explicit write edge to q;
C4.48. q can obtain an explicit read edge to p; or,

C4.47. g can obtain an implicit read edge to p.

PROOF: lf p 'rw—initiallymo spans to q, by lemma 4.24, case C4.45 holds; if q rw-
terminally . spans to p, by lemma 4.25, case C4.48 holds. So, suppose p rw-
initiallym spans to a vertex x. and q rw-terminally_ spans to x. By lemma
4.18, p can acquire write rights over x, and by lemumna 4.16 q can acquire read

rights over x; then case C4.47 holds with an application of the post rule. [
As a result, we may prove a stronger lemma, namely:
LEMUMA 4.27: Let the following condition hold:

C4.48. There is a sequence of classes D,, D,, such that there are
subjects p'€D,, q' € Dy, and there is a subject d; €D,, i <m,
such that either D, -, is linkedm0 tod;,ord:—; € D,-, is joined | to

di.and q'=dn.

85

Then one of three cases holds:
C4.49. q' can obtain an explicit write edge to p':
C4.50. p'can obtain an explicit read edgetoq’;
C4.51. p'can obtain an implicil read edge to q;
PROOF: The proof is by induclion on the number m of classes.

BasSIS:m = 1. Thenp'and q'are in the same class Dy; so,

B %+ '

p' creates (rw to new) xeD,

post rule

and case C4.51 holds.
INDUCTION HYPOTHSIS: The claim holds form =1, ..., k.

INDUCTION STEP: Let m =4 + 1. 1f D, is linked to q'=dyx«, let d' be the
link = vertex. We must exhibit a witness to prove the claim. The following

sequence of rule applications suffices:

87

C4.52. caneshare_ (w.q,p, Go)istrue;or,
C4.53. can-sharemo(r. p.q. Gop) is true; or,

C4.54. allof C4.43, C4.44, and C4.48 hold simultaneously.

INFORMAL ARGUMENT: Assume exactly one of the three conditions holds. By
definition, if either condition C4.52 or C4.53 holds, can-knowmo(p. q. Ga) is
true. So, assume only condition C4.54 holds. By lemmes 4.24, 4.25,and 4.27, p
can obtain information from q. Going the other way, again if condition C4.52 or
C4.53 is true, Lhe resull is obviouws; if only condition C4.54 holds, we will show

that if any of C4.43, C4.44, and C4.48 is false, can-knowmo is also false.

PROOF: (=) If condition C4.52 or condition C4.53 holds. cansknow_ (p.q. Go) is
true by definition. So, assume both are false and condition C4.54 is true. By
lemma 4.24, it suffices to have p’' € D, acquire information from q; by lermnma
4.25, it suffices to have q ' acquire information from q; and by lemma 4.27, this

can be done. Hence, can-knowmo(p, q. Go) is true.

(<) Assume cansknow_ (p.q, Gg) is true. Then, if there is an explicit read edge
from p to q, condition C4.53 holds; if there is an explicit write edge from g to p.
condition C4.52 holds; so, assume there is an implicil read edge from p to q. If
C4.43 fails, the implicit edge cannot originate at p: if C4.44 fails, the implicit
edge cannot terminate at q: if C4.48 fails, no such implicit edge can exist. In
any case, we have a contradiction, so all three conditions C4.43, C4.44, and

C4 .48 must hold simultaneously. B

Now that we have established conditions for the sharing of information, let
us consider the theft of information. To do this, we define a predicate analo-

gous to cans=snoop, namely

88

DEFINITION D4.21: Let p and q be verlices in a protection graph &p. Then

can-snoopmo(p, q. Gp)is true if, and only if,
C4.55. can-steal (r.p,q.Gg)istrue;or,

C4.58. there exists a2 sequence of prolection graphs and rule applications

GoFp . .. Fam Gn for which all of the following hold:
a. Lthercisno edge fromptoqlabelled 7in &y,
b. thereis an edge fromp to q labelled r in G, ; and

c. neither g nor any vertex directly connected Lo q is an actorin a
grant_ rule or a de fario rule resulting in an {explicit or impli-

cil) edge labelled 7 with q as its larget.

Just as we derived necessary and sufficient conditions for canssteal . we

can do so for canssnoop, . :

THEOREM 4 .29: For distincl vertices p and q in a prolection graph Gy,

canssnoop, {p.q. Gp) is true if and only if one of the following is true:
C4.57. canssteal (r.p.q.Gg)is true, or
Ca.58. all of the following holad:
a. thereisnoedge fromptoqlabelled 7 in Go;

b. therc is a subject vertex p’ such that p =p’ or p’ rw-initially_
spans to p;

c. if qis a subject, there is a vertex g’ such that q*' # q. there is no
read edge from q' to g in Go. 2nd g’ rw-terminzlly spans to q;

and

a. can-knowmo(p'. q G is true,

[which contradicts parl C4.56c of Lhe definition of canssnoop,, . contradicting
assumption again]. In either case, there is no edge labelled r from q* to q in
Go.

IL remains o De snhown (nhat cansknow {p’. g, Gg) s true. Let
Galp .- . F,, Gy be a minimum Jength derivation sequence, and let i be the
first index such that the first (explicit or irnplicit) read edge with target vertex
in q's class is added in G,. That is, 1 is the leasl index such that G-y [, Gi.
there is no (explicit or implicit) read edge from any vertex x to g in Gi-y. and
there is an (explicit or implicit) read edge from x to q in G,. Consider what rule
p was nsed to add this edge. Jt cannot be a grant rule because that would
violale part C4.58c of definitjon D4.21. Nor can it be a de facio rule, for this

would violate the same part of the definition. As the creatc and remove

o
rules do not add edges to existing classes, p. cannot be either of these. Hence,

p, must be & Lakemo rule.

We therefore have:

{
P e——=>0 - —
X q X q

Recalling that can-knowmo(p. qQ Ge) is true, by theorem 4.28 we see
can -knowmo(p . g, Go) is true. Apply theorem 4.2B again: by this theorem, there
is a subject vertex q‘ such thatq'=q or q' rw-terminally spans to q. Noting

that there is no edge from q' to q labelled 7 in Gy, we take @' = x in theorem

4.28, whence can»know_ (p', q'. Go) immediately follows.

81

(<) If condition C4.57 of the theorem holds, by part C4.55 of the definition,

canssnoop_ (p.q., Go) is true.

So, assume condition C4.58 holds. Part C4.56a of the definition is the same
as condition C4.58a of the theorem. By theorem 4.28, conditions C4.58b,
C4.58c, and C4.584 establish part C4.56b of the definition. And as q'# q when

g is & subjcct, part C4.56¢ of the definition is also true.

This completes the proof. H

IV.4. The Many—Many Extension

In this extension, we change the graph rewriting rules so that one class of

vertices acts upon another class of vertices. The new rules are:
RULE R4.9: takemm

Let %, y, and z be vertices belonging to classes X, Y, and Z, respectively, and let

X be a subject. Suppose x has take, rights over y and y has a rights over z.

m

Then a)l vertices in X obtain a rights over all vertices in Z. In pictures,

X '€X® ®x'eX
RULE R4.10: grant

Let X, y, and z be vertices belonging to classes X, Y, and Z, respectively, and let
y be a subject. Suppose y has grant_ rights over x and y has a rights over z.

Then all vertices in x obtain a rights over all vertices in Z. In pictures,

82

RULE R4.11: create,

Let x belongto a set of classes Sand let x be a subject. Then x creates a new
(subject or object) vertex y belonging to classes in a set S’ C S, with all vertices
in the same classes as x having a rights over all vertices in classes to which y

belongs. In pictures,

xcP,Q.R@® B

pgp ng r gR

RULE R4.12: remove_,

Let x and y be vertices belonging to classes X and Y. respectively, and lel x be a
subject. Suppose x has a rights over y and let 8§ C «. Then all vertices in X

removes . B rights over all vertices in Y. In pictures,

a a—f8

b = €Y - xcX@g—>®ycY

x e xgl Y X 'eX® Qy'eY

As in the original model and the previous two extensions, we will rarely use

the remove . rule, because once added, it is very difficult do guarantee that

s 43
deleting 2 right undoes all eflects of its having existed. Thus, it is better to

assume that once an edge is added Lo the protection graph, it remains there.

Using these rules, we can easily show that if a subject vertex in one class
has the right to a a vertex in another class, then any member of the first class

may obtain a rights to any member of the second class:

83

LEMMA 4.30; Let s be a subject vertex in class 5, and lel s' be a vertex distinct
fromsin 8. Let g and q’ be vertices in class Q in a protection graph Gg. If s has

o rights over g, then s’ can acquire a right= overg'.

PROOF:
o S n
s—=2q g q
F s" s creates (g, lonew)s"”
E'® ®q' g ® ®q’
= s grents, (atog)tos”
This completes the proof. n

This lemma will have many consequences. The most interesting one is the
effect on the transfer of rights from one verlex te another; it is sufficient for a
member of one class to obtain a right over any member of 2 class in order that

all members of the first class gain that right over all members of that class.

Our immediate goal is to determine necessary and sufficient congditions for
the transfer of authority in this model. Let us now look at the analogue to ini-

tial and terminal spans and bridges.

Recall that a terminal spogn is a path along which rights can be obtained.
That is, if x terminally spans te y, X can obtain any right ¥ has. Using the four

rules R4.9 — R4.12, we can define:

DEFINITION D4.22: A subject vertex p ferminally . spans to another (subject
or object) vertex q if there exists a seguence of vertices x¢,..., Xu, o > 0,
with X a subject, such that p iz in the seme class as x4, 4 = ¥,, and there are

vertices vy,, ¥n for which there is an edge labelled f from x; to y,4,, and

54

Y.+j 18 in the same class as x;+,. Pictorially,

X 1EX ¥n-1EXn_
X o€P O & =Xn€X,
t 4
cEPe@
P Y|€X1 YnEXn

Now we show this definition agrees with our intuttion:

LEMMA 4.31: Let p. s, and q be vertices in a protection graph, let s have a rights

over q, and let p lerminally span to s. Then p can oblain a rights over q.
PRrOOF: We induct on the Jength m of the terminal span.

Basis:mm = 1. We have the following:

t
pe o—2 >@q pe— >0 >®q
S=X\ S=X,
- Lemmsa 4.30
H t
Xo@——0OY 1 X o@—=0Y)
a
m
I_ S;;!l d
4
X o@—=0OY1

p takes_ {(atoq) froms
IJNDUCTION HYPOTHESIS: The claim is true for a terminal _ span of length m,

INDUCTION STEP: Let m = k + 1. Then apply the following scquence of rule

applications, which witnesses a reduction of the length of the path involved:

95

Xy X2 S=Xn ¢
ol J O Oo——=®q
t
t
X o@—>0 @)
y: yeo Yn
t X1 X2 S=Xn
- p O q
¢ Lemma 4.30
t
X o@0———0O O
Y y2 Yr

q

Yn

p takes_ (ttoye) fromx,
Now, the terminal span is of length k, so the claim follows from the induction
- hypothesis. Hence, p can obtain a rights to q. B

We can make this lemma more general:

COROLLARY 4.32: Let q and q ' be vertices (not necessarily distinct) in the same

class in a protection graph. Let the following two conditions hold:
C4.59. There is a vertex s with an o edge to g ' in the same class as q;
C4.60. There is a subject vertex s’ such that s'=s or s’ terminally_
spans to a vertex 8" in the same class as s.

Then 8’ can acguire o rights to q.

PROOP: If s' = s, then by lemma 4.30 we are done. If 8" = s, we use lemma 4.31.
If neither of these is true, we can still use lemma 4.31, taking s = s” in that

lemma and noting that by the take_ rule, the claim holds.]

96

We also do this for initial spans. recall that an initial span is a path along
which rights may be bestowed; that is, if p initially spans to q, p may pass any

right it has to q. More formally,

DEPINITTION D4 .23: A subjecl vertex p inifially spans to a (subject or objecl)
vertex g if there exists a sequence of vertices xp, Xn.n >0, with xga sub-
ject, such that p and x¢ are in the same class, @ = x», and there are vertices
LA ¥, n > 0, such that y; and x; are in the same class, there is an edge
labelled g from %y-; to y,, &and for all i # n, there is an edge labelled t from
Xi-y toy,.

As with lermipal _ spans, let us show that this definition meets the intui-

tive requirements.
LEMMA 4.33; Let the following condition hold:
C4.61. There is a subject verlex p’ such that p' = p or p’initially, spans
to a vertex p" in the sarne class as p.
Then p' may pass to p any right it has.
PrROOF: If p'=p, we are done. So, assume p’ # p; by corollary 4.31, taking
Q' =p.S =X,,8'=p.s8"=p" and a = g, the result follows. K
Finally, we define the analogue of a bridge, called a link_ , as:
DEFINITION D4.24: Let C and X be distinct classes, and let ¢ and x be subject

vertices in C and X, respectively. Jf there is a bridge from ¢ to x, then class X is

said to be l.in)cedmm to class C,and x and ¢ are called h’;n.)cedmm vertices,

Recall that a bridge is a path along which rights may be transferred from
subject to subject; specifically, in the above definition. X can acguire righls

from ¢. Given rules R4.9 — R4.12, we have:

87

PROPOSITION 4.34: Let X and C be linked, , classes, with ¢ € C, and lel ¢ have «
rights over a vertex g distincl from the link vertex x € X and c¢. Then x can

acquire a rights over g.

PROOF: Choose ¢’ Lo be the link vertex in C associated with the bridge from x

Lo e. Then

Yo ji“_]&nm_. e

c”creates (ftonew)c"eC

Then, by definition of bridge, x can obtain take_ rights to ¢” and due Lo the

graph rewriting rules, also to e; at which point, x takes . (atoq) frome. [

One comment about this proof — it is very tempting to create the edge
fromc'lo ¢ " as being labelled ¢, g, and simply have ¢ grant o rightste q te ¢,
whence x can obtain the right directly. The only problem is that this sequence

requires c to be a subject, something not assumed in proposition 4.34.

Bearing in mind .thaL when x either takes = or is granted _ a right, all
vertices in the class X (to which x belongs) obtain the same right, we have as a

corollary:

COROLLARY 4.35: Let X be linked to C, and let ¢ € C have a rights over a ver-

tex q distinct fromany vertex x € Xand ¢. Then x can acquire a rights over q.
PROOF: Follows from the link vertex taking . o rightstoq. |

The main reason this corollary is mentioned is that the proposition 4.34
reguires ¥ to be an endpoint of a bridge, and hence a subject. The corollary
shows that the result in the proposition is true whether or nol x is a subject, so

long as all other conditions are mel.

98

Recall thal rights can be transmitted in either direction along a bridge.
Thal is, if one endpoint bhas a rights to a vertex, the other endpoint can also

obtain that righl. This Jeads to
LEMMA 4.36: The relation linked _ is symmetric.

PRrROOF: Let X be linkedmm to C. and let x and ¢ be their respective linkmm ver-
tices. Recall that a bridge 1s a {g-path with associated word in
ff° . fe. gl £ §f°}. Clearly, if there is a bridge from x to ¢, there is also a

bridge from ¢ to x. Thus, C is also linkedmm to X. a

To reflect this symmetry, we will speak of classes as being linked - unless

we wish to emphasize a particular direction of the link .. Asa result,

COROLLARY 4.37: Let Dand C be linked _ classes with at least one subjecl each.
Then any vertex in either class may acquire any rights that another vertex in

either class has.

PROOF: If both vertices are in the same class, then by corollary 4.34 a vertex in
the other class may acgquire the right, wherevpon the vertex seeking to acquire
the right may use that corollary to get it. 1f the vertices are in different

classes, Lhis corollary may be applied directly. [
Also true is:

COROLLARY 4.3B: Let A and B be linkedmm, and B and C be linkedmm. Then any

vertex in A may acquire any rights a vertex in C has.
PROOF: Apply corollary 4.37 twice.]

Cne word of warning — corollary 4.3B does not mean that the relation
linkedmm is transitive. ln fact, linkedmm 1s not transitive; here is a counterex-

ample:

88

where A, B, and C are the three relevant classes. Obvicusly, A and B are

linkedmm, and Band C are linked, .but Aand C are not linkedmm.

Given corollary 4.38, an immediate gquestion iz whether or not one vertex
in the same class as 2 second can obtain any right the second has. In general,
the answer is no; Lhe class may be an object-only class. But if the class has one

subject, the result is different:

LEMMA 4.39: Let C be a class, and let x, ¥y, and z € C with y a subject. Thenx can

obtain any right 2z has.

PROOF: Let z have a rigbts over g. Then

&

-
® S
X Z q
-
o
y takes {atoqg)fromz
This completes the proof.]

Again, note x peed not be the subject.

Combining all these lemmas, propositions, and corollaries, we can staie

and prove the following lemma, which provides a basis for the sharing of rights

101

PrROOF:; () Consider what happens if any one of the conditions fails. If C4.59
fails, no vertex can obtain «a rights to q, since none of the graph rewriting rules
add new incoming rights to a vertex; if C4.80 fails, no vertex in any class C,,
can obtain o rights to q; if C4.61 fails, no vertex can grant p a rights to g:
ang if C4.62 fails, no vertex which can grant_ p rights will be able to obtain «
rights to q. Hence, all four conditions must hold simulitaneously for

cansshare _(a.p.q, Go) to be true.
(<) Immediate from lemmas 4.31, 4.33, and 4.40.]

Now that we have characterized sharing, let us think about stealing rights.
Informally, we want the predicate can-stealm(a. P. q, Go) to be true whenever
p can obtain a rights to q without the owner of that right granting it. However,
suppose an owner grants to a vertex p the right to « a vertex q" in the same
class as q. It is reasonable to bar this from taking place in a theft, because a
vertex granting rights grants rights to a class, not to a vertex. So, if such a

grant takes place, we shall not consider the action a theft.
More formally, we define the predicate

DEFINITION D4.26: Let p be a vertex and let q be a vertex in class Q. The predi-

cate can -stealmm(cx. p. q. Go) is true if and only if a)l the following hold:

C4.63. thereis no edge labelled o fromp to q in Gg;

C4.84. there is a sequence Gy..... Gn of protection graphs and
Pr,. . .. pn of rule applications such that
a GQ l_Pl ,,,,, l_P'n Gn

b. thereisan edgelabelled a fromp to q in Gn. and

c. ifshes arights overanyq’' € Qin Gg, no p; has the form

s grants _ (atoq’)tox;

102

for any vertex x, € G¢-1.1 £ 1,7 £ n.

Clearly, part C4.64.c of the definition is the key part. We can modify the
condjtions necessary and sufficien(for caneshare_ to be true to give condi-

tions both necessary and sufficient for can-stealmm to be true:

THROREM 4.42: Let p and g be vertices in a protection graph Gy Then

canssteal (a.p.q. Go) is true if and only if the following econditions al) hold:
C4.85. thereisno edgelabelled o fromp toqin Go,
C4.66. thereisa vertex s with an o edge to a vertex q'in the samne class as
q.

C4.87. there is 2 subject vertex p' for which p' = p or p' initially _ spans

to a vertex in the same class as p. and
C4.88. can-share_ (f,p' s, Go)is true.

INFORMAL ARGUMENT: Going from the conditions to the predicate involves
finding a witness that satisfies part C4.64.c of the definition. Going the other
way involves applying the definition Lo obtain the first three conditions, and

proving the fourth by checking various cases.

PROOP: (=) Assume can-steal (a, p.q, Go) is true. By part C4.83 of definition
D4.26, condition C4.85 holds. By parl C4.64.b of the definition, can-sharem(a.
p.q. Gg) is true, so condition C4.61 of theorem 4.41 gives condition C4.67 of this
theorem, and condition C4.59 of theorem 4.41 gives condition C4.88 of this

theorem.

To prove condition C4.68 holds, consider the minimal length derivation
sequence Gg |p, Fon Gn witnessing can-share_ (a, p.q. Go). Let 1 be the
index for which G, is the first graph in the derivation sequence where an edge

labelled a to g'is added; that is, 1 is the first index for which &,]—m G,, there

103

is an edge labelled o from sorne veriex x, in a different class than s, tog'in Gy,
bul there is no edge Jabelled a from x to g' in &;—,. Clearly, p; is not a
remove . Tule, and since X and s are jn different classes, o is not 2 create
rule. By part C4.64.c of the definition, il cannot be a grant , _ rule, since by our
choice of 1, all vertices with a righls to q'in G,_, are also in Gp. Hence, p, must

be & Lakem rule of the {form

x takes_ {(atoq'} froms.

Pictorially, this rule looks like:

a4
!
piT @ — @2 e - S
X 5 q X s q

By C4.60, there is a subject vertex g’ such that s' = sP or s' terminally_
spans to 5" in the same class as 5. By C4.61, there are classesC,,.... Cy such

that p'€ Cyands' €Cp.

Suppose sis an ocbject. As s'and x are in different classes, then our deriva-
tion seguence would not be minimal because p, could be omitied entirely;
hence, s’ is in the same class as x, and terminally .- spans lo x; thus, take

s' = x. In this case, cansshare__({, p'. 5. Gp) holds.

Now suppose s is a subject; then s =s'=5. The vertex x is in Cpn-,, for if
not, p, could be omitted, whence the derivation was not of minima) length.} Jf x
€ o, all of C4.89, C4.80, C4.61, and C4.62 are satisfied, and we are done. So, let
& Go- As s € Gp and new labels on incoming edges cannot be added to extant
classes, there must be a subject y in €y, for which caneshare (t.y 8", Go) is
true, where s* € (g 15 1n the sarne class as s. But then take x =y and s° = 5;
this again establishes the conditions for can-knowmm(t, p’. 8 Go). 80 we are

done.

104

(=) Let the four conditions in the theorem hold. By condition C4.65, part C4.63

of definition D4.26 holds. Let Gy }—pl }—pn‘ Gn, be a witness to
can-sharemm(t, p'.s, Go): by C4.68, such a witness exists. Let p, .+ be the rule
application

p takes _ (atoq’)froms

and let Gnyr1 Fpp iz - - sy Gn be a witness to cane-share_ (¢, p. q. Gp): such

a rule may be used by conditions C4.68 and C4.68, and by condition C4.67 the

witness exists. Then Go |, Fp. Gn 1s @ witness satisfying part C4.64.c of

the definition. Thus, can-stealmm(cx. p.q. Go), and the theorem is proven. m

Thus far, we have dealt with the transfer of rights in a protection graph.
Let us now consider the transfer of information. As in the original model, we
shall define predicates analogous to cansknow and can=snoop to test for infor-

mation flow.

First, let us define conditions under which a vertex can grantmm. or
take . read and write rights. Recall that an rw-initial path is a path along
which information can be transmitted. We define an rw-initial | path to be the

same under the mm rules:

DEFINITION D4.27: A vertex p rw-initiolly . spans to q if there is a vertex s
with e write edge to another vertex g’ in the same class as g, and p

terminally spanstos,orp =s.

105

To see that this definition is whal we wanl, we now show:
LEMMA 4.43: Let the following condition be true:

C4.69. thereisa subject p' which rw-initially ~ spanstop,orp’' =p.
Then p’ can acquire wrights to p.

PROOF:lf p' % s, as p' terminally_ spans to s, p' can acquire w rights to " by

lemma 4.31. Jf p' = s, it already has those rights. As q' and p are in the same

class, and p'is a subject, by lemma 4.30, p’' can acquire w rights over p. [|

Also, recall that an rw-terminal span is a path along which information
can be obtained. Again, we define an rw—terminalm span to be the same under

the mm rules:

DEFINITION D4.28: A vertex p rw-terminally _ spans to g if there is a vertex s
with a read edge to another vertex g'in the same class as q, and p terminally

spanstos.orp =s.

Once again, we must prove this definition meets the intuitive requirement:
LEMMA 4.44: Let the following condition hold:

C4.70. thereis e subject q' which rw-terminally spanstoq.orq’'=gq.

Then g’ can acquire read rights over q.

PROOF: lf g’ # s, as q' terminally spans to s, q' can acquire read rights to a
vertex q " in the same class as q, by lemma 4.31. If g' = s, it has such rights to

g". Asq"” and q are in the same class, and q ' is a subject, by lemma 4.30,q'can

acquire read rights to q. m

With these two definitions, we can develop an analogue to ‘‘connection”
using the mm rules. Informally, a join__ is a path along which information, but

nol rights, may flow. More formally,

1086

DEFINITION D4.29: Let p and q be subject vertjces. If p rw-initially spans to
q. or q Tw-terminally spans to p, or p Tw-initially - spans to a vertex to
which q 7w-terminally spans, then q is said Lo be joined , Lo p,and the path

between them is called a join .
As vsual, we check thal this meets the intuitive requirements:

LEMMA 4.45: If q is Joined to p, then one of the following cases holds:
C4.71. p can obtain an explicit write edge to q:
C4.72. g can obtain an explicit read edge to p; or,
C4.73. g can obtain an implicit read edge to p.

PROOF: If p Tw-initially_ ~ spans to q, by lemma 4.43, case C4.71 holds; if q rw-
terminally, = spans Lo p, by lemma 4.44, case C4.72 holds. So, suppose p Tw-
initially spans to a vertex x, and q spans to X. By lemma 4.33, p can acquire

wrile rights over x, and by lemma 4.31 q can acquire read rights over x; then

case C4.73 holds with an application of the post rule. n
As a result, we may prove a stronger lemma, namely:
LEMMA 4.48: Let the following condition hold:

C4.74. There is a sequence of classes D,, D,. such that there are
subjects p'€D,, q' € Dy, and either D; is linkedmm to Dy+1. or
there are vertices d; € D.. di+; € D,+;, which are joinedmm, for
1<i<m.

Then one of three cases holds:

C4.75. gq'can obtain an explicit write edge to p;

C4.76. p'can obtain an explicit read edge toq’;

107

C4.77. p'can obtain animplicil read edge toq';
PROOF: The proof is by induction on the number m of classes,

Basis:m = 1. Thenp'and q'are in the same cless D,; so,

T
p'® e’ p q'
p'creates, (rtonew)p”
P
ang case C4.78 holds.
INDUCTION HYPOTHESI[S: The claim holds form =1, ..., k.

INDUCTIONSTEP: Let m =k + 1. Ifd, and d.+, are joinedm_m, then we have by
Jexnma 4.45 that one of the three cases holds for dx and dg+;. Noting that d ¢+

is a2 subject, we have

T™w

dg+1. de+ X
}_ TW 0
q'e Q'

and hence one of the three cases applies to d;y and q'. By the induction
hypothesis, one of the three cases also applies to d, and p'. so using the

appropriate de factorule

Now, if D and D, are 1inkedm_m, consider the linkm_m vertices d'y and
d 'y +1. By the construction above, d'v«) can acquire read rights over q', whence
by corollary 4.35, d'x can also obtain those rights. By hypothesis, one of the
three cases applies betweend’x and p’, so by applying either the spy or pass de

facto rule, the claim follows. B

As with the om rules, notice that case C4.75 or C4.76 will be possible only

when all of the classes D, . .., D,. are connected by links_ . as joinsmm only

108

transfer information. not rights, only implicil read edges can occur among

classes which are joined .
With these terms we can now define the sharing of information:

DEFINITION D4.30: The predicate can-knowmm(p. q. Gg) is true if and only if
there is a finite sequence of mun de jure and de facto rule applications resulting
in an explicil write edge from q to p, or an (explicil or implicit) read edge from
ptogqg.

In other words, if p can obtain information from q, can<know__(p.q, Go) is

true. We can also state necessary and sufficient conditions for can=know to

hold:

THEOREM 4.47: Let p and g be vertices in a protection graph Ga. Then

can-knowmm(p. q. Gg) is true if and only if at least one of the following holds:
C4.78. can-Sharem(w. q. p. Go) is true; or,
C4.79. can-sharemm(r. p.q. Gop) is true; or,
C4.80. all of C4.69, C4.70, and C4.74 hold simultaneously.

INFORMAL ARGUMENT: Assume exactly one of the three conditions holds. By
definition, if either condition C4.78 or C4.79 holds, can-knowmm(p. q. Go) is
true. So, assume only condition C4.80 holds. By lemmas 4.43, 4.44, and 4 .46, p
can obtain information from q. Going the other way, again if condition C4.78 or
C4.79 is true, the result is immediate; if only condition C4.80 holds, we will show

that if one of C4.69, C4.70, and C4.74 is false, cans=know_ is also false.

PROOF: (=) Jf condition C4.78 or condition C4.79 holds, cansknow__(p. q. Go)
is true by definition. So, assume both are false and condition C4.80 is true. By
lemma 4.43, it suffices to have p’' € D, acqguire information from q; by lemma

4 44, it suffices to have q' € D, transmit information to p*‘; and by lemma 4.46,

109

this can be done. Hence, cane<know_ _(p.q.Go) is true.

(<) Assume cansknow_ (p, q, Go) is true. Then, if there is an explicit read
edge fromp to q, condition C4.79 holds; if there is an explicit write edge from g
to p. condition C4.78 bolds; so, assume there is an implicit read edge from p to
q. If C4.69 fails, the implicit edge cannot originate at p; if C4.70 fails, the impli-
cit edge cannot terminate at g; if C4.74 fails, no such implicit edge can exist. In
any case, we have a contradiction, so all three conditions C4.69, C4.70, and

C4.74 must hold simultaneously. u

Now that we have established conditions for the sharing of information, let
us consider the theft of information. To do this, we define a predicate analo-

gous to can=snoop, namely

DEFINITION D4.31: Let p and g be vertices in a protection graph Gg. Then

can=snoop_ (p. g, Go) is true if, and only if,
C4.81. can-steal(r.p.q.Go)is true;or,
C4.82. there exists a sequence of protection graphs and rule applications
GoFoy oo ko, Gn for which all of the following hold:
a. thereisno edge fromp to g labelled 7 in Gy:
b. thereisan edge fromp to g labelled 7 in G,: and
c. neither q, any vertex directly connected to g, or any vertex in the
same class as q is an actor ina grant or create_ rule ora de
facto rule application resulting in an (explicit or implicit) edge

labelled r going to q.

110

Just as we derived necessary and sufficient conditions for can -stealmm, we

cando so for canesnoop_ _:

THEQOREW 4.4B8; For distinct vertices p and q in a protection graph Go,
can-snoopmm(p, q. Go) is true if and only if one of the following is true:
C4.83. canssteal _{(r.p.q, Go)istrue, or
C4.B4. all of the following hold:
a. thereisnoc edge fromp to qlabelled rin &Gp;
b. there is a subject vertex p' such that p = p' or p’ rw-initially_
spans to p;
c. thereis e vertex q not in the same class as q or that of any ver-

tex directly connected to g such that g’ rw-terminally , = spans

to q; and
d. can-knowm(p', q'. Ga)is true.
PROOF: (=) Let canesnoop__(p. q. Go) be true. If canesteal {r, p. q. Go)

holds, we are done, since part C4.B1 of the definition is part C4.83 of this

theorem. So, assume canssteal {7, p, q.Go) is false.
Part C4.B2z of definition D4.31 gives condition C4.B84a of this theorem.

By part C4.82b of the definition, there is an implicit read edge from p to q
in &p. whenece by definition can-snoopm(p. q. Go) is true; so, condition C4.84a

of this theorem results from condition C4 .89 of theorem 4.47.

By condition C4.70 of theorem 4.47, there is a subject g‘ such thatq'=q
or q' rw-terminally spans to q. If q is an object, take q ' to be the g ' in condition

C4 . B4r of this theorem.

111

If q is a subject, by part C4.82c of the definition of canasnoop_ . il is not
vsed in the sequence of rule applications witnessing can»snoop_, . Jn this case,
choose g ' in condition C4.84c to be this q'. If q' and q are directly connected
(or any vertex in g''s class is directly connected to any vertex in q's class, for
that matter) by a read edge in Gg, then either can-sharemm(t. P.q'. Gop)is true
[in which case canessteal _(f, p. q, Go) is true, contradicting assumption] or q°
must actively participate in a grant_ . create .ora de facto rule application
[which contradicts part C4.82c of the definition of canssnoop ., contradicting
assumption again]. In either case, there is no edge labelled 7 from any vertex in

g's class to a vertex in q'"'s class in Go.

Jt remains to be shown that cansknow_ (p'. q', Go) is true. Let
GoFpy.--.. F,, Gn be @ minimum length derivation seguence, and let i be the
first index such that the first (explicit or implicit) read edge with target vertex
in q's class is added in G;. That is, i is the least index such that G,-; |, G:.
there is no (explicit or implicit) read edge from any vertex x Lo g " in the same
class as q in G,-y, and there is an (explicit or implicil) read edge fromx toq" in
G;. Consider what rule p; was used to add this edge. It cannot be a grant_ _ or
a create_ rule because that would violate part C4.82c of definition D4.31. Nor
can it be a spy, pass, or find rule, or a post rule, for this would violate the same
part of the definilion. As a remove_ . rule application deletes rights Lo existing

classes, p; could not be that, either. Hence, g, must be a take rule.

We therefore have:

1
P @ —>® = m

112

Recalling that can-knowmm(p, q. Go) is true, by theorem 4.47 we see
can*know,_ (p'. g, Go) is true. Apply theorem 4.47 again: by this theorem,
there is a subject vertex g’ such that q' =q or q' rw-terminally _ spans to g.
Noting that there is no edge from q' to q labelled 7 in Gy, we take g’ = x iIn

theorem 4.47, whence can -knowm(p . q'. Gop) immediately follows.

(<) If condition C4.83 of the theorem holds, by part C4.81 of the definition,

canssnoop_ (p.q.Go) is true.

So, assume condition C4.84 holds. Part C4.82a of the definition is the same
as condition C4.84a of the theorem. By theorem 4.47, conditions C4.84b,
C4.84¢c, and C4.B4d establish part C4.82b of the definition. And conditions
C4a.B4c and C4.844 of this theorem lead immediately to part C4.82c of the

definition.

This completes the proof. [

IV.5. Discussion

At this point, let us take stock of what we have done. We have proposed
three extensions, each of which incorporates a notion of ‘class’, to the
Take—Grant Protection Model. Although all three of these extensions are simi-
lar, there are enough differences to make the derivations for each extension

interesting.

The technigque used empbasized the similarities among the three exten-
sions; in fact, the theorems proving what conditions are necessary and

suficient for can-knowom. cansknow and can-knowmm to be true are virtu-

mo'
ally identical. Of course, since the terms in the statement of the theorem

change meaning from extension to extension, one cannot say that the proof for

all is therefore obvious. An alternate development {considered but rejected as

113

too confusing) would bave been Lo derive the three exlensions simultaneously.
And not all the predicales have the same necessary and sufficient conditions —

the theorems for the various canssnoop predicates do vary substantially.

Having derived these three extensions. lel us now proceed to consider

their practlical applications.

114

Chapter V

Applications of the Model

and its Extensions

V.1l. Introduction

In this chapter, we shall examine practical aspects of computer security
vsing the theory developed in the preceding chapter. We shall first define &
reference rmonitor in terrns of our predicates, and then we shall describe in
depth some security flaws in the UNIX operating system (including one class of
problemns, as we)l as a few specific ones) which involve vielations of prolection.
lo order to do these things, however, we must define a securify breach in terms
of the extensions previously described, and determine which extension or
extensions are to be used. Next, we shall abstracl the relevant features of UNIY
into a suitable representation, and from this exhibit the security breaches, as

wel) as suitable remedies.

As the Tuke Grant model dea)s only with autbority and information
transfer in a protection graph, many known security holes cannot be found
vsing the form of the model being discussed here; an example is the holes
resulting from the failure of 8 command interpreter to ebheck its input properly.
It is not the purpose of this chapter to demonstrate how this extension to the

Take Grant model may be used to cover all such situations; the goal of this

116

~conssteal.(a, %X, y.Go) V aCR., X.yEV, X 2y (C5.1)

Dealing with information flow is a bit more complex, as a result of the de
facto rules we use. These rules require the active cooperation of all subjects
involved, and with one exception (the post rule) each requires two subjects at

least one of which has access Lo the information being transferred.

In this case, the question of what constitutes a "breach of security”
depends on the intent of the subject with the rights to the information. To take
an example, suppose il is possible for one process to read another process’
memory. There are two processes, A end B. F hasaccess to a file to which 4 has
no rights. If B reads the confidential file, and A reads the memory of B al the
same time {thereby seeing the contents of the confidential file), has Lhere been

a breach of security?

If B's intent in reading the file was to make it available to 4, then there has
been no breach of security. All B has done is (indirectly) copied the
confidential file into another file and changed the protections so A could read it
— certainly allowed as B can read the confidential file. But if B's intent in read-
ing the file was simply to see what it contained without passing any of its con-
tents on to 4, 2 breach of security has certainly occurred, since A has read a
file which it had no authority to read. But note that 4 has not violated any res-

trictions imposed upon it by the system!

It is reasonable to hold either opinion. Due to the personal preference of
the author, we shall use the latter, because we are not examining the adequacy
of the protection system, but just looking at ways to evade it. Hence, we use

the restriction

cansknow.(x.y.Go) = cans=share.(r,x,y,Go) Vx.yeV,x#y (C5.2)

o

120

The above algorithm shows something very important; whenever a process
is created, it gains access to all files with the owner corresponding to the pro-
cess’ UMD as indicated by the owner part of each file’s protection mask, access to
all files with the group corresponding to the process' GID as indicated by the
group part of each file's protection mask, and access to all other files as indi-
cated by the world part of each file's protection mask. If a process spawns a
new process, the new one has the same UID and GID as its parent, so it will have
the same accesses as the parent process. Thus, the one-many version of the
model is the proper one to use for interactions involving processes and files.
The relevant classes will be classes corresponding to the possible UIDs and GIDs
of processes. These classes will be distinguished from each other to avoid con-

fusion.

Explicitly, we represent processes as a triple

(PoD,{UID}.{GD1,..,6Dn})

and a file as a sextuple

(inode, { owner |, { group }, owner_rights , group _rights , world _rights)
The algorithm for determining if an explicit edge goes from a process P to

a file F'is:
(*

* return the rights in the bit mask M as a set of rights
*)

function labels(M : bitmask) : set of rights;

begin
labels := ¢;
if { M bitand 0100) then labels := labels + [7 ;
if (M bitand 0010) then labels := labels + [w];
il (M bitand 0001) then labels := labels + [z |;
end (* labels *);

122

Note that fexplicit is symmetrical.

The term protection state refers Lo the explicit edges present and the
tuples representing processes and files. If any of Lhese change, or new ones
added or deleted, the protection state of the system being modelled has

changed.

As for the graph rewriting rules: both the de jure and de facto rules are the
same. there is one new right, that of execute. Strictly speaking, this right
encompasses two rules, one for directories and one for files; but, in the discus-
sion of security holes below, we will not be dealing with searching directories,
so we will just treat “execute’ as the right to load and run an executable file.

We still have Lo define the rule, however.

In UNIX, a parent process can communicate with its child via pipes (in which
case the communication is usually in both directions) or via signals (in which
case, while the child communicating with the parent is still possible, it is con-
siderably more complicated.) To capture this, we define a rule for erecufe as

follows:
RULERS.1: execute

Lel pp be a process and let f be a file. Suppose p, has execute rights over f.
Then pp creates a second process p. with p, having read and write rights over
pc. In pictures,

arx

}_ pp TWIT NP azx 1

c

pr@8—2F 50t

No doubt the astute reader will have noticed that this is not really a new rule,
but giving a new name to the crealen, rule. This is quite true, but the execute

rule explicitly specifies that the newly created child process p, is an executing

123

image of the contents of the file f. So, it is really a constrained version of the
create,, rule; in face, so far as processes are concerned, it is the only create

rule.

This last observation brings up a key point in the application of the model.
JLt may be necessary to mix the different extensions of the theoretical model to
capture certain aspects of the system. In UNIX, for example, changes in the pro-
tection state (caused by, for example, adding a new process, as in the execute
rule) affect all processes in that class. For example, in the situation discussed
for the execute rule above, all processes with the same UID as p, have read and
write rights over p. (albeit crudely; one would need to use signals rather than
pipes for all communication except between p, and p..) Hence UNIX interac-
tions between processes should be modelled by the many-one extension to the
Take Grant model {which should not be a surprise, considering how close the

execute and create rules are.)

In short, when modelling UNIX, we use the many-one extension to model
process—process interactions, and the one-many extension to model
process—file interactions. Obwviously, which of these extensions modelling any
given computer system will require (if, indeed, any of them apply) will depend
entirely on the nature of the system. One must choose the extension or version
of the model that best captures the real situation. In this there is some sci-

ence, but far more art.

V.5. Files WriLteable by Anybody

This is a security hole which, most of the time, poses no threat to the sys-
tem; op those rare occasions when it does, however, the eflects can be devastat-

ing. The loophole here is simply to allow anyone to write on a file, whether or

124

not that person is the owner, or in the group corresponding to the file’s GID. If
the file involved is a directory, such as ‘‘/tmp", there will most likely be no
danger {although one could ezsily dream up ways in which il would be
dangerous); but if Lthe file contains a system program, the likelihood is just the

opposite.

The security hole, in this model, may be described as follows. Let a process
u have UID uy and the set of GIDS G = {g. gn}. Let there be two files, the first
s, with s.owner # u,, s.group § &, and u having w rights over s; the second {,
with u having 7 righls over {, and s.owner # { .owner and s.group # ! .group.

Pictorially, we have this situation:

TW TWI
? & O
u 8

Note here that the UID of process u is nof Lhe same as the UID of file 5, and s's GID
is not in the set of ¢IDs of u. Hence, there is no read edge from { to s. However,
by use of ibe post rule, information can flow from { to s. This clearly violates

condition C5.2 of the security principle.

In graphic terms, there are three ways to fix this hole. Deleting the read
edge to f is not practicable, because u can always create a file over which it has
read rights. Deleting the write edge to s is certainly practicable, and is an ade-
quate solution; thus, no process should be able to write to a file unless its UID
corresponds to the file's owner, or the group of the file is in the set of the GIDs of
the process. A third, less obvious, fix is to change the owner of the file to that
of the process writing to the file. This would result in can-shareom(r, f. 5 Go)
being true, and hence condition C5.2 being satisfied. This also, from the graphi-

cal standpoint, is perfectly acceptable.

125

In practical terms, either the second or the third solution is adequate.
Actually, owing to the existance of selUID programs {(see section V.7 for a
description of these programs), the second is probably overly restrictive; how-

ever, this is something which must be decided on a system by system basis.

V.6. Processes and Memory

This is an example of a security hole which, most of the time, is not
dangerous; bul il could be disastrous if it occurred when confidential data was
being accessed. It also provides a good example of the use of the security prin-

ciple discussed earlier.

In UNIX, mernory is considered a file (called *“/dev/kmem"). Often this file is
not protected from nonprivileged processes reading it. Herein lies one security
bole. Let process p have the right to read a confidential file f; let process q not
bave that right. As /dev/kmem is unprotected, q has the right to read it, and
hence the memory of p. When p reads f, we have in Take Grant terms the follow-

ing protection state:

Now, when q exercises its right to read /dev/kmem and hence p. by the spy

rule, we have:

126

Consider the security principle. Since no transfers of aulhority were
made, condition C5.1 still holds. How aboub information flow? First,
can-knowom(q. f, Go) is true by theorem 4.13 (takingp'=q.q'=p,and m =1
in that theorem.) But by 4.7, can-shareom(r, g.f, Gg) is false since p and q are in
classes not connected by a bridge . Hence the security principle is violated

and we have a security hole.

To fix this hole on the protection graph, we need to make cansknow,
false. There are two ways to do this: delete the read edge from p to I (which
would prevent botbh p and g from reading I) or delete the read edge between p
and q. These would make can-lcnowom(q. 1, Gg) false, satisfying condition C5.2 of

the security principle.

Now, how does this translate into UNIX terms? The first proposal, deleting
the r edge from p to q, would require that p be barred from reading f. This is
not tenable, because it contradicts the assumption that p has the right to read
f. The second, deleling the » edge from g to p, would require that g be barred
from reading the memory in which p is located. This is very reasonable, and
would require only that UNIX memory be read-protected. The best solution,

therefore, is to read-protect UNIX memory.

V.7. SetUID Processes

A typical problem in systems programming [BISHB3] is often posed as a
scorekeeping problemn [ALEP71]. Suppose someone has a game program and
wants to keep a record of the highest scores. This file, which will be called the
high score file, must be writable by the game program (so it can be kept up to
date), but not by anyone else (so that the entries in it are accurate.) UNIX solves

this problem by providing two sets of identifications for processes. The first

129

It is time for an example! The example here is thal of a setUID process with
escapes. Such escapes allow one to execute an arbitrary command from within
the setUID program. Let the setUID program be s, the corresponding process p,
the process invoking the sctUD program u. and the confidential file to be read
from the setliD program y. Note that in what follows, we are using the many-one
exlension to model process—process interaction and the one-many extension to

model process—file interaction. The sequence of steps is: initially,

x

Then the setUID process begins:

TwIT
p
N
N
N Ltz
& rlwtlz
N
s
y

Now, u can read y as though it were the owner of s.

In this case, note that both C5.1 and C5.2 are satisfied; the failure of secu-
rity is due to the failure of condition C5.8, because the edge from u to the
confidential file does not pass through the setUID program. The solution is to
reset the UID and GIDs of u before the process p is started. This way, a setUID

process is nol involved in the viewing of the confidential file.

130

Chapter VI

Conclusion

V1.1. Hierarchies

In our discussion of hierarchies, we established conditions under which a
hierarchical protection system is secure regardless of how many of its subjects
are corrupt. We also found restrictions on de jure rules thal ensure security

without restricting the transfer of rights cther than reading or writing.

It is somewhat surprising that the de focto rules need not be restricted to
ensure security. But de focfo rules merely indicate graphically how information
fiows through the graph, whereas the de jure rules control the paths along

which information can flow. So restricting the de jure rules is logical.

Would it be possible to restrict the de facfo rules to acheive the same
results? No, for two reasons. The first is that there are graphs in which one can

breach security by using de jure rules only, such as

tgri

131

The second is more subtle, and hinges on the distinction between an implicil

and an explicit edpe.

The de gure restriction is not a modification of the de zure rules, but only
ol the instance of 2pplization. Unfortunately, such a restriction is meaningless
with respecet to the de focto rules, because the information can still fiow; the
only restriction is on acknowledging that flow. Implicit edges, added by de
focto rules, merely indicate the paths along which inforrmation can flow, and do
not crcate new paths {or delete old ones). On the other hand, explicit edges,
added by de sure rules, do create (or remove) paths along which information

can flow; hence restrcting them does restrict Lhe flow of information.

In the model described in ¢hapter 1), the security classification of informa-
tion cannot be changed without compromising security. No classification can
be raised, because anyone wilh access to the information could have made a
private copy. then, after the classification level is raiced, he still has access to
the information which 15 now at a higher level. Lowering a classification of
some information can also lead to a viclation, because a high-level person
could declassify confidential information so that someone at a lower level could

cbtain it. Under the definition of secure used here, thisis a security violation.

Permitting declassification would raise a hosl of problems. Suppose a file
were declassified. Unless the protection systemn were to ensure that no user at
a level higher than the new level of the file were to have write rights on the file,
the system is no longer secure; all one of those users would have to do is teo
write classified information into that file. Such a protocol would involve assum-
ing a user or classification manager could be trusted — and this would violate

an underlying assumption.

BIBLIOGRAPHY

ALEP71.

ANDE72.

BELL74.

BIERS579.

BISH78.

BISESBI.

BISHS83.

BROAT7SB.

136

BIBLIOGRAPHY

Aleph-Null, “Computer Recreations,” Software — Practise and
Ezperience 1(2) pp. 201-204 (April—June 1971).

Anderson, J. P., “Computer Security Technology Planning Study,”
Technica) Report ESD-TR-73-51, Vols. |1 and]I, USAF Electronic Sys-
terns Division, Bedford, MS (October, 1972).

Bell, D. and LaPadula, L., "Secure Computer Systems: Mathematical
Foundations and Model," Technical Report M74-244, The Mitre Cor-
poration, Bedford, MS (October 1974),

Berson, T. A. and Barksdale, G. L., 'KS0OS — Development Methodology
for a Secure Operating System,” pp. 385-371 in Proceedings of the
National Computer Conference, AFIPS Press, Montvale, NJ (1879).

Bishop, M. and Snyder, L., “The Transfer of Information and Authority
in a Protection System," Proceedings of the Seventh Symposium on
Operating Systems Principles, pp. 45-54 (December 1979).

Bishop, M., "Hierarchical Take—Grant Protection Systems,”' Praceed-
ings of the Fighth Symposium on Operafing Systems Frinciples, pp.
109-122 (December 1981).

Bishop, M., '‘Security Problems with the UNIX Operaling System,”
{(unpublished), Purdue University, West Lafayette, IN (January,
1983).

Broadbridge, R. and Mekota, J., "Secure Communications Processor
Specification,” Technica} Report ESD-TR-76-351, AD-A055164,
Honeywell Information Systems, McLean, VA (June 1978).

