How To Write a Setuid Programn
Matt Bishop
May, 1985

Research Institute for Advanced Computer Scicace

NASA Ames Research Center

RIACS TR 85.6

Research Institute for Advanced Computer Science

———— e — ——

BN Y B g W B - -

SEATHEEL RUPSTRT S, SN o AR et

L 1

-~
L

St BIEN T

C e g———

+a

How To Write a Setuid Program

Matt Bishop

Research Institute for Advanced Computer Science
NASA Ames Research Center
Moffett Field, CA 94035

ABSTRACT

Setuid programs can pose a grave threat to UNIX systems
because they explicitly violate the protection scheme designed into
UNIX. However, setuid programs are often the only practical solu-
tion to problems of maintaining a fully functioning UNIX system.
Because of this paradox, they are among the most difficult pro-
grams to write. This paper lists and discusses some simple rules for
writing setuid programs that will decrease an attacker’s ability to
use such a program to compromise a UNIX system.

May 23, 1985

How To Write a Setuid Program

Matt Bishop

Research Institute for Advanced Computer Science
NASA Ames Research Center
Moffett Field, CA 94035

Introduction

A typical problem in systems programming is often posed as a problem of
keeping records [ALEP71|. Suppose someone has written a program and wishes
to keep a record of its use. This file, which we shall call the history file, must be
writable by the program (so it can be kept up.to date), but not by anyone else
(so that the entries in it are accurate.) UNIXt solves this problem by providing
two sets of identifications for processes. The first set, called the real user
identification and group identification (or UID and GID, respectively), indicate
the real user of the process. The second set, called the effective UID and GID,
indicate what rights the process has, which may be, and often are, different from
the real UID and GID. The protection mask of the file which, when executed,
produces the process contains a bit which is called the setuid bit. (There is
another such bit for the effective GID.) If that bit is not set, the effective UID of
the process will be that of the person executing the file; but xf the setuid bit is set

(so the program runs in setuid mode), the effective UID will be that of the owner

tUNIX is a Trademark of Bell Laboratories.

-2

of the file, not that of the person executing the file. In either case, the real UID
and GID are those of the person executing the file. So if only the owner of the
history file (who is the user with the same UID as the file) can write on it, the
setuid bit of the file containing the program is turned on, and the UIDs of this
file and the history file are the same, then when someone runs the program, that

process can write into the history file.

These programs are called setuid programs, and exist to allow ordinary users
to perform functions which they could not perform otherwise. Without them,
many UNIX systems would be quite unusable: -An example-of-a setuid program
performing an essential function is a program which lists the active processes on
a. system with protected memory. Since memory is protected, normally only the
‘privileged user. root could scan memory to list these processes. However, this
would prevent other usérs from keeping track of their jobs. As with the history
file, the solution is to use a setuid program, with root privileges, to read memory

and list the active processes.

Setuid programs introduce many securitsr problems [TRUS80]. This paper
describes how to write such programs to minimize these problems. The reader
should bear in mind that on. some systems, the mere existence of a setuid pro-
gram introduces security holes; however, it is possible to eliminate the obvious
ones. |

In this paper, all references to the UNIX Programmer’s Manual are to either
the 4.2 Berkeley manual [UPMS83] or to the System V manual [UPMS84]. As

usual, manual pages are indicated by following the italicized name with the sec-

tion number in parentheses.

I. Be as Restrictive as Possible in Choosing the UID

The basic rule of computer security is to minimize damage resulting from a
break-in. For this reason, when creating a setuid program, it should be given the
least dangerous UID possible. If, for example, game programs were setuid to
root, and there were a way to get a shell with root privileges from within a game,
the game player could compromise the entire computer system. It would be far
safer to have a user called games and run the game programs setuid to that user.
Then, if there were a way to get & shell from within a game, at worst it would be

setuid to games and only game programs could be compromised.

II. Do Not Write Setuid Shell Seripts

The Berkeley 4.2 Distribution of UNIX allows shell scripts to be run with
setuid permissions. To understand how this works, a brief explanation is in

order.

This version of UNIX checks the ﬁrs-t line of a shell script to see if it begins
with the two characters ‘4!”. When such a shell script is executed, the rest of
that line, up to the first 32 characters, is taken as the absolute path name of a
command ﬁtmmta, which is then executedt. If the shell script is setuid, the

setuid bits are applied to the command interpreter before execution.

Unfortunately, once one finds a setuid shell script, it is very easy either to-

obtain an interactive setuid shell, or to force the shell to execute any specified

t See czecup(8) for details.

-4 -

sequence of commands. This leaves the owner of the shell script open to a devas-
tating attack. Under mo circumstances should a setuid shell script ever exist on

. any system where security is a concern.

One way to avoid having a setuid shell script is to turn off the setuid bit on
the shell script, and rather than calling the script directly, use the following pro-

gram to call it:

/t
* This is a simple program to run
* a script as though it were setuid
* to the owner of this program. The
* executable of this must be setuid -
* to the owner of the shell script.
x

main(argc, argv)

int argce;

char **argv:

{
/t
* Replace the zeroth argument
* with the path name of the
* shell script.
*/

argv[0] = SCRIPT_FULL_PATH_ _NAME:

/t
* Overlay the script.
*

(void) execv(argv[0]. argv):

/t
* |f it gets here, the script
* did not run ...
t/ -
perror(SCRIPT _FULL_PATH__NAME):
exit(1):
}

In this program, SCRIPT_FULL_PATH_NAME is the full path name of the shell

script; as the comments indicate, the executable generated by compiling this pro-

-5-

gram must be made setuid to the owner of the shell script. However, the shell

script should not be setuid.

" III. Do Not Use ereat(2) for Locking

According to its manual page, ‘“The mode given [creat] is arbitrary; it need
not allow writing. This feature has been used ... by programs to construct a sim-
ple exclusive locking mechanism.” In other words; one way to make a lock file is
to creat a file with an unwritable mode (mode 000 is the most popular for this).
Then, if another user tried to creat the same file, creat would fail, returning —1.

For example:

/t
* This is supposed to provide a reliable locking

* mechanism for programs.
x

lock(lock _file__name)
char *lock_file_name: /* lock file */

return(creat(lock_ file__name, 0)):

The only problem is that such a scheme does not work when at least one of
the processes has root’s UID, because protection modes are ignored when the
effective UID is that of root. Hence, root can overwrite the existing file regardless
of its protection mode.

To do locking in a seﬁxid program, it is best to use link(2). If a link to an
already-existing file is attempted, link fails, even if the process doing the linking
is a root process and the file is not owned by root. Here is an Mpk of a lock-

ing routine that uses this:

/t

-6 -

* These routines provide a reliable locking
* mechanism for processes regardless of what
* user id they have or who owns them.
*/
#include <errno.h>
extern int errno: /* error code */

/t
* The locking routine; note you give it the lock
* file name and an existing file name so this
* routine can be used with processes creating
* multiple locks on different file systems.
* |t returns 1 if the lock was successful,
* 0 if the lock failed because some other process
* locked this one out. and —1 if the attempt
* failed for any other reason.

*
lock(existing_file__name. lock_file__name)
char *existing_file_name: /* name of existing file */
char *lock_file_name; /* name of lock file */

/ %
* Be sure existing__file__name exists
* |f it does. creat fails, so we ignore
* the failure.
x

(void) creat(existing__file name, 0):

/t
* Try to make the link
*/
if (link(existing_file__name, lock_file_name) == 0)
return(1):
/t

* Oops — It falled. Return the
* appropriate code.
*/
return(errno == EEXIST 7 0 : —1);

/t
* The unlocking routine; it's what you would
= expect. It returns 1 if the unlock succeeded,
* 0 if it failed because the lock file did not
* exist. and —1 if it failed for any other
* reason.
*/

unlock(lock_file__name)

-7

char *lock_file__name; /* name of the lock file * /
{
/*
* Try to break the link
*/
if (unlink(lock_file _name) == 0)
return(1):
/t

* Oops — it falled. Return the
* appropriate code.
s/
return(errno == ENOENT ? 0 : -1):
}

Note that the link éall requires that its first argument exist, that both
existing_ file_name and lock_file_name be in the same file system, and
existing_ file__name not be a directory. The above locking routine returns 1 if the
locking attempt succeeds, O if it fails because another process has locked it out,
and —1 if it fails for any other reason. A return value of —1 means there is some
problem, such as being unable to create existing_file _name. Similarly, the
unlocking routine returns 1 if the unlocking succeeds, 0 if it fails b«a@e no lock-
ing was done, and —1 if it fails for any other reason.

With 4.2 Berkeley UNIX, an alternative is to use the flock(2) system call, but
this has disadvantages (specifically, it creates advisory locks only, and it is not
portable to other versions of UNIX).

The issue of covert channels [LAMP73] also arises here; that is, information
can be sent illicitly by controlling resonrces However, this problem is much

broader than the scope of this paper, so we shall pass over it..

IV. Catch All Signals

When a process created by running a setuid file dumps core, the core file has
the same UID as the real UID of the processt. By setting umaskst properly, it is
possible to obtain a world-writable file owned by someone else. On some UNIX
systems, a shell can be made to execute commands entered in that file with the

rights of the owner of the file.

To prevent this, setuid programs should catch all signals possible§. If init-
sig, defined below, is called on initialization, any signal will cause an immediate
exit without a core dump:

/t
* This catches all signals and exits
* without dumping core.
*/

#tinclude <signal.h>

/#
* This just exits. Since the signal number
* is just the first argument to this routine,
* you can get fancy if you want.
*/

catcher()

exit(1):

/#

t On some versions of UNIX, such as 4.2BSD, no core file is produced if the owner of the setuid
process is root. However, core files are produced for programs setuid to other users.

"1 See ¢h(1) for a description of the wmask command.

§ Note that some signals, suck as SIGKILL (ia System V aad 4.2BSD) and SIGSTOP (in
4.2BSD), cannot be caught. Moreover, on some versions of UNIX, such as Versior 7, there is
an inherent race condition in signal handlers, When a signal is caught, the sigral trap is reset
to its default value and them the handler is called. As a result, receiving the same signal im-
mediately after a previous one will cause the signal to take effect regardliess of whether it is be-
ing trapped. On such a version of UNIX, sigaals cannot be safely caught. However, if a signal
is being sgnored, sending the process a signal will not cause the default action to be reimstated;
50, sigrals can be safely ignored.

-9 -

* This Initializes the signal catching

* vectors to call the above routine. Note

* any signal (including the process control

* ones like "child just exited") will cause

* it to be called (You may want to change

* that: see the text.) If you want to allow

* those signals which don't cause core dumps
* to be ignored. put the code in here.

*/
initsig()
register int i /* counter */

/*
* On any signal, call catcher
* ynless the signal is being ignored

*/
for(i = 1: i < NSIG: i++)
if (signal(i. SIG_IGN) != SIG_IGN)
(void) signal(i. catcher):
With these two routines, catching any of SIGQUIT, SIGILL, SIGTRAP,
SIGIOT, SIGFPE, SIGBUS, SIGSEGYV, or SIGSYS will not cause a core

dump.

Note that all of SIGCHLD, SIGCONT, SIGTSTP, SIGTTIN, and
SIGTTOU also cause an exit. Unless there is a specific reason not to do this,
this is a good idea, because if data is kept in a world-writable file, or data or lock
files in a world-writable directory such as “/tmp”’, one can easily change infor-
mation the process (presumably) relies upon. Note, however, that if the sys-
tem(3) call is used, the SIGCHLD signal will be sent to the process when the
command given system is finished; in this case, it would be wise 'to ignore

' SIGCHLD.

This brings us to our next point.

- 10 -
V. Check Data for Consistency

When writing a setuid program, it is often tempting to assume data upon
which decisions are based is reliable. For example, consider a spooler. One
setuid process spools jobs, and another (called the daemon) runs them. The dae-
mon should not assume that the spooled jobs were spooled by the setuid pro-
gram,; it should try to verify this by other means, for example, checking that the
owner of the command file is the same as the ov;'ner of the spooler, and that the

file has not been changed since being spooled.

The precise information to be stored depends a lot on what is being dome.
For example, with a printing spooler, at a minimum the device number and
inode number associated with each data file should be stored, since those two
numbers uniquely identify any file on the system; in addition, storing the time of
last modification is useful, as that will enable the daemon to determine if the
data has changed since the job was spooled. All this informatién should be
obtained twice — once by the spooling program, which stores it in the control
file, and once again by the daemon process, which then compares it to the data
stored in the control file. If any of the stored quantities are different, the
integrity of the data file is suspect, and appropriate action should be taken.

‘With a printing spooler, for example, the job should not print the file.

VI. Make No Assumptions About Recovery Of Errors.

If the setuid program encounters an unexpected situation that the program
is not prepared to handle (such as running out of file descriptors), the program

should not attempt to correct for the situation. It should stop. This is the

-11 -

opposite of the standard programming maxim about robustness of programs, but
there is a very good reason for this rule. When a program tries to handle an
unknown or unexpected situation, very often the programmer has made certain
assumptions which do not hold up; for example, he may assume that lack of file
descriptors means there is a problem with the system that requires the user to be
given root privileges to fix. Such assumptions can pose extreme danger to the

system and its users.

When writing a setuid program, keep track of things that can go wrong — &
command too long, an input line too long, data in the wrong format, a failed
system call, and so forth — and at each step ask, ‘‘if this occurred, what should
be done?” If in any case the #nswer is “‘assume ...”, at that point the setuid pro-
gram should stop. Do not attempt to recover unless recovery is guaranteed; it is

too easy to produce undesirable side-effects while trying to recover.

Once again, when writing a setuid program, if you are not sure how to han-
dle a condition, exit. That way, the user cannot do any damage as a result of

encountering (or creating) the condition.

For an excellent discussion of error detection and recovery under UNIX, see
“Can’t Happen or /* NOTREACHED */ or Real Programs Dump Core” m the

1985 Winter USENIX Proceedings ((DARWSS]).

VII. Close All But Necessary File Descriptors Before Calling ezect

Thiﬁ is another requirement that most setuid programs overlook. The

t Ezec is a generic term for a number of system and library calls; these are described by the
manual pages ezee(2) in the System V manual and ezscve(3) and ezecl(3) in the 4.2 BSD manu-
al.

-12 -

problem of failing to do this becomes especially acute when the program being
ezec’ed may be a user program rather than a system one. If, for example, the
setuid program were reading a sensitive file, and that file had descriptor number
9, then the user program could also read the sensitive file (because, as the
manual page warns, ‘‘[d]escriptors open in the calling process remain open in the

new process ..."")

The easiest way to prevent this is to set a flag indicating that a sensitive file
is to be closed whenever an ezec occurs. The flag should be set immediately after
opening the file. Let the sensitive file’s descriptor be SENSITIVE__DESC. In both
System V and 4.2 BSD, the system call

fentl(SENSITIVE__DESC. F_SETFD. 1)
will cause the file to close across ezees; in both Version 7 and 4.2 BSD, the call
locti(SENSITIVE__DESC. FIOCLEX. NULL)

will have the same effect. (See fentl(2) and ioctl(2) for more information.)

VIII. Reset Effective UIDs Before Calling ezee

Resetting the effective UID and GID before calling ezee seems obvious, but
it is often overlooked. When it is, the user may find himself running a program

with unexpected privileges. The following version of system does this:

/* |
* This is like system(3). but resets the
+ effective UID and GID;
* it returns —1 if the setuid/setgid fails,
* otherwise returns what system(3) does
®
/
su__system(s)
char s; _ /* command */

{
/t

-13 -

* Reset the effective UID and GID
* to the real UID and GID

if (setuid(getuid()) == ~1|| setgid(getgid(}) == —1)
return(—1):
/a
* Now call system(3)

return(system(s)):

IX. Check the Environment of the Process

The enuvironment includes those variables which are inherited from the
parent process. Among these are the variables PATH (which controls the order
and names of directories searched by the shell for programs to be.executed), IFS
(a list of characters which are treated as ﬁrord separators), and the parent’s
umask, which controls the protection mode of files that the subprocess creates.

Also relevant is any attempt to restrict the process’ access to the file system with

the system call chroot(2).

The chroot system call, which may be used only by root, will force the pro-
cess to treat the argument directory as the root of the file system. For example,
the call

chroot("*/usr/riacs’)
will prevent the process from ever accessing ‘‘/usr”’. However, even though sym-
bolic links are handled properly, be aware that hard links to directories outside

the tree rooted at the argument directory can be followed; for example, if

“[usr/demo” were linked to *‘/usr/riacs/demos”, the sequence of syitem callst

t See chdir(2) for more information..

-14 -

chdir(”"/demos");
chdir(*..")

would make the current working directory be ‘‘/usr’’ Using relative path names
at this point (since an initial *‘/”’ is interpreted as “‘/usr/riacs”), the user could
access any file on the system. Therefore, when using this call, one must be cer-

tain that no directories are linked to any of the descendants of the new root.

One of the more insidious threats comes ffom routines which rely on the
shell to execute a program. (The routines to be wary of here are popen(3), sys-
tem, ezeelp(3), and ezecvpi.) The danger is that the shell will not execute the
program intended. As an example, suppose a program that.is setuid to root uses
popen to execute the program printfile. As popen uses the shell to execute the
command, all a user needs to do is to alter his PATH environment variable so
‘that a private directory is checked before the system directories. Then, he writes
his own program called printfile and puts it in that private directory. This
private copy can do anything he likes. When the popen routine is executed, his

private copy of printfile will be run, with root privileges!

On first blush, limiting the path to a known, safe path would seem to fix the
problem. Alas, it does not. When the Bourne shell sh is used, there is an
environment variable IFS which contains a list of characters that are to be
treated as word separators. For example, if IFS is set to ‘‘e”, then the shell
command spell(1) will be treated as a command sp with one argument Il (since
the ‘“e” is treated as a blank.) Hence, one could force the setuid process to exe-

cute a program other than the one intended.

1 exeelp and czeevp are in section 2 of the System V manual.

-15 -

With a setuid program, all subprograms should be invoked by their full

path name, or some path known to be safe should be prefixed to the command;

- and the IFS variable should be explicitly set to the empty string (which makes

white space the only command separators.) The following version of system

forces the path VANILLA to be used as the execution path for the command:

/t
* This forces system(3) to use the path
* defined in the macro VANILLA. A return of
* —1 means there was not enough space for

* the command and the vanilla path. -

#define VANILLA " /usr/ucb:/bin:/usr/bin"

safe_ system(s)

char *s; /* command */
{
char *cmdbuf: /* safe path + command */
/t .
* Allocate space for the command
*/

}

cmdbuf = malloc((unsigned) (strlen(s)+strien(VANILLA)+35)):
If (cmdbuf == NULL)

return(—1):
/*

* Prepend the path to the command

(void) sprintf(cmdbuf, "IFS= : PATH=%s : export PATH IFS : %s".
VANILLA. s);

/*
* Call su_system(3) so UID/GID get reset

* (see above)

return{su_ system(cmdbuf)):

The danger from a badly-set umask is that a world-writable file owned by

the effective UID of a setuid process may be produced. When a setuid process

must write to a file owned by the person who is running the setuid program, and

- 16 -

~ that file must not be writable by anyone else, a subtle but nonetheless dangerous
situation arises. The usual implementation is for the process to create the file,
chown(2) it to the real UID and real GID of the process, and then write to it.
However, if the umask is set to 0, and the process is interrupted after the file is
created but before it is chowned the process will leave a world-writable file owned

by the user who has the effective UID of the setuid process.

There are two ways to prevent this; the first is fairly simple, but requires
the effective UID to be that of root. (The other method does not suffer from this
restriction; it is described in the next section.) The umask{2) system call can be
used to reset the umask within the setuid process so that the file is at no time
world-writable; this setting overrides any other, previous settings. Hence, the

following routine should be used, rather than the usual open(2):

/* |
* This opens the file: it takes the same parameters as the
* 4.2BSD and System V open(2) call: to modify for Version 7.
* change the parameters to open(2) and this routine as appropriate.

*/
int safe_open(filename, flags. mode)
char *filename; /* file name */
int flags. mode; /* how to open, creation mode */
{ .
unsigned oumask: /* old umask */
register int opnval; /* return value of open */
/t

* Reset the umask to block non-owner from
* writing to the file.
*/
oumask = umask(022):
/t
* Open the file. Note the group and world write bits
* in the protection mask will be cleared regardless
* of the setting of "mode", due to the umask call.
*/

opnval = open(filename. fiags. mode):

-17 -

/t
* Restore the initial value of the umask.
s/

(void) umask(oumask):

return(opnval):

}

Upon return, the process can safely chown the file to the real UID and GID of
the process. (Incidentally, only root can chown a file, which is why this method
will not work for programs the effective UID of which is not root.) Note that if
the process is interrupted between the open and the chown the resulting file will
have the same UID and GID as the process’ effective UID and GID, but the per-
son who ran the process will not be able to write to that file (unless, of course,

his UID and GID are the same as the process’ effective UID and GID.)

As a related problem, umask is often set to a dangerous value by the parent
process; for example, if a daemon is started at boot tixhe (from the file *“/etc/rc”
or “/etc/rc.local”), its default umask will be 0. Hence, any files it creates will be
created world-writable unless the protection mask used in the system call creat-
ing the file is set otherwise. The above routine will set the umask to 022 before

any file is created, so it may be safely used in such situations.

Library routines should be used with great care. In particular, the routine
getlogin(3) should not be used to determine the user’s login name, since it may
not return the login name expected. Rather, use getuid(2) and getpwuid(3), as
the following routine does: |

. / &
* Routine to retum the login name
* of the user of this process. If
* none, retumn the UID as a string.
* Everything is returned In a static
* area.

-18 -
*/
#include <pwd.h>
static char retval[BUFSIZ]; /* return buffer for UID */
char ‘glogln(j

register int *pwd; /* passwd structure */

/t
* get the structure associated with the real UID
)
if ((pwd = getpwuid(getuid())) == NULL){
/t
* Something’s out of date.
* Return the numerical UID

* as a string.
x

(void) sprintf(retval, "%d". getuid()):
return(retval);

return(pwd->pw__name):

X. Be Careful With I/0 Operations

When a setuid process must write to a file owned by the person who is run-
ning thé setuid program, and that file must not be writable by anyone else, a
subtle but nonetheless dangerous situation arises. The usual implementation is
for the process to create the file, chown it to the real UID and real GID of the
process, and then write to it. However, if the umask ig set to 0, and the process
is igtempted after the file is created but before it is chowned, the process will
leave a world-writable file owned by the user who has the effective UID of the
setuid procesa |

The second method of preventing a setuid process from creating a world-

writable file owned by the effective UID of the process is far more complex, but

-19 -

eliminates the need for any chown system calls.

In this method, the process fork(2)s, and the chila resets its effective UID
and GID to the real UID and GID. The parent then writes the data to the child
via pipe(2) rather than to the file; meanwhile, the child creates the file and copies
the data from the pipe to the file. That way, the file is never owned by the user

whose UID is the effective UID of the setuid process.

" The following routines provide a very primitive interface for this:

/t .
* Routines to open. write to, and close a file;
* this is done with a fork and pipes
* so no chown(2)'ing need be done

*/

#include <sys/param.h> /* may need to include <sys/types.h> */

extern Int errno: /* error code */

static int chpid: /* child’s PID */.

static int ackline[NOFILE]: /* pipes for acknowledgements */

union{ /* used to pass error of open around */
char a[1]: /#* ... as a char array */
int i; /* ... as an integer */

}u_em; :

/ *
* This opens the file: it takes the same parameters as the
* 4.2BSD and System V open(2) call: to modify for Version 7.
* change the parameters to open(2) and this routine as appropriate.
* The child process is contained entirely within this routine

*/
int safe_ open(filename, flags. mode)
char *filename; /* file name */
_int flags. mode:; /* how to open. creation mode */

{ | :
int desc[2]: /* pipe for information flow */
int status|2]: /* pipe for acknowledgement */
int forkval; /* value returned from fork(2) */
/> :

* Bulld the pipes.
* |nformation to be written to the file
* flows through desc to the child.

- 20 -

* The status pipe carries acknowledgements
* from the child to the parent.
*x
/
if (pipe(desc) == —1)
return(—1):
if (pipe(status) == —1){
(void) close(desc[0]):
(void) close(desc[1]):
return(—1):

/* Spawn the child process.

if (/(forkval = fork()) == —1){
(void) close(desc|0]):
(void) close(desc[1]):
(void) close(status[0]):
(void) close(status[1]):
return(—1);

else if (forkval == 0){
/* |
* This is the child; it never leaves this
* branch of the conditional.

* First, some useful variables.
x

char buf[BUFSIZ]: /* 1/0O buffer x/

int fildes = —1: /* descriptor of output file */
int ctread: /* count of bytes read */
/*

* Reset effective UID. GID.
*
if (setuid(getuid()) < 0 || setgid(getgid()) < 0)
_exit(1):

/t
* Read only from the desc pipe,
* and write only to the status pipe.
*/

(void) close(desc[1]):

(void) close(status[0]):

/t
* Open the file as requested.
* Handle an error by exiting.

-21-

s/
if ((fildes = open(filename, flags. mode)) < 0)
/*
* Shucks ... pass back the error number.
s/

u_erri = errno:
(void) write(status[1]. u__err.a, sizeof(int)):
__exit(0); :

/*
* Signal all's well.
*/
u_erri=-1:
(void) write(status[1]. u_ err.a, sizeof(int)):
/t .
* Main loop — just read from the desc pipe
* until there's nothing more to read.
* Do acknowledge every read. though.
*/
u_erri=-1;
while((ctread = read(desc[0]. buf. BUFSIZ)) > 0){
if (write(fildes. buf. ctread) != ctread){
u_err.i = errno:
(void) write(status|1]. u_err.a. sizeof(int)):
__exit(0);

(void) write(status[1]. u_err.a. sizeof(int)):

}
/*
* We just read an end of file.
* Close the pipe and the file and quit.
. %/
(void) close(status[1]):
(void) close(desc[0]):
(void) close(fildes):
_exit(0):

/*
* This is the parent process.
* Close the descriptors we don’t need.
*/
~ (void) close(status{1]):
5void) close(desc|0]):
%
* Now save the status descriptor.
*

ackline[desc[1]] = status|0]:

-22 .

/*
* Get the status of the open(2).
*/
if (read(status[0]. u_err.a. sizeof(int)) != sizeof(int)){
/*
* No status was sent — assume catastrophe.
*/ :

(void) close(status[0]):
(void) close(desc[1]):
return(—1);

/t
* We read something and it wasn't good. so
* set errno to the error code and quit.
*/
if (u_erri!= —1){
(void) close(status[0]):
(void) close(desc[1]):
errno = u__err.i;
return(—1);
}
/t
* Return the pipe descriptor.
*/
return(desc([1]):

}
/t

* This writes to the child/file and
* takes the same parameters as write(2)..

*/
int safe_ write(fd. buf, bufsiz)
int fd: /* file descriptor from safe _open */
char *buf: /* data to be written */
int bufsiz; /* number of bytes to be written */
{
register int i; /* counter in a for loop */
register int tokid; /* bytes written to child */
/*

* Do this in packets of BUFSIZ
* so you don't flood the pipe.
*/
for(i = 0: i < bufsiz: i += BUFSIZ){
/* .-

* See how much to write.

*/

-23-

min = bufsiz - |;

if (min > BUFSIZ)
min = BUFSIZ;

/t

* Write it.
if (/write(fd. buf. min) != min)
return(l):
/*

* Wait for an acknowledgement:
* if none, assume the worst.

If‘(/read(ackllne[fd]. u_err.a. sIzeof(lAnt)) I= sizeof(int))
return{—1):
if (u_erri!=-1){
errno = u__err.l.
return(—1);
}
}
}
/*

* This closes the child/file and
* takes the same parameters as close(2).
* Note it waits for the child process.
*/
int safe_ close(fd)
int fd: /* file descriptor from safe__open */

{

register int waltval; /* process that died */

/#
* Close the send pipe and the acknowledgement pipe.
*/

(void) close(fd):

(void) close(ackline[fd]):
3

* Wait for the child to bite the big one.
*/

while((waitval = wait(0)) != —1 && waitval |= chpid):

-24 -

Conclusion
To summarize, the rules to remember when writing a setuid program are:

e be as restrictive as possible in choosing the UID

e do not write setuid shell scripts

e do not use creat for locking

e catch all signals

e check data for consistency

e make no assumptions about recovery of errors

e close all but necessary file descriptors before calling ezee
o reset effective UIDs before calling ezee

e check the environment of the process

be careful with I/O operations

/

Setuid programs explicitly violate the protection scheme designed into UNIX.
On systems where security is not a problem, this is a blessing, since it enables
many things to be done easily that otherwi\se would be very di_mcult; but on sys-
tems where security is a problem, these programs also pose very real threats.
Unfortunately, they are also very necessary, so the designers and implementors

of setuid programs should take great care when writing them.
Acknowledgements: Thanks to Bob Brown, Peter Denning, George Gobel, Chris
Kent, Rich Kulawiec, Dawn Maneval, and Kirk Smith, who reviewed an earlier

draft of this paper, and made many constructive suggestions.

References

[ALEP71] Aleph-Null, “Computer Recreations,” Software - Practise and
"~ Ezperience 1(2) pp. 201 — 204 (April — June 1971) '

[DARWS5] Darwin, Ian and Collyer, Geoff, “Can’t Happen or /*
NOTREACHED */ or Real Programs Dump Core,” 19856 Winter
USENIX Proceedings (January 1985)

- 25 -

[LAMP73] Lampson, Butler, ‘A Note on the Confinement Problem,” CACM

[TRUSS0]

[UPM83]

[UPM84)]

16(10) pp. 613 — 615 (October 1973)

Truscott, Tom and Ellis, James, “On the Correctness of Set-User-ID

Programs,” Department of Computer Science, Duke University
(unpublished)

UNIX Programmer’s Manual, 4.2 Berkeley Software Distrsbution,
Virtual VAX-11 Version, Computer Science Division, Department of
Electrical Engineering and Computer Science, University of Califor-
nia, Berkeley, CA (August 1983)

UNIX Programmer’s Manual, Version 1.0, Silicon Graphics, Inc.,
Mountain View, CA (June 1984)

M

MM-M-
A -“'d

te"#ﬁ

!"a

,‘p._._t.__.S._n.-.'-c — @

L m-fu kT er i 1

m{m BIER
%i“lg’*
s

AL: {!‘"‘*‘

AN

|1||.| "l

A.‘;k’m}"e
T e

i3

S
t‘h_

Uu"\-.

- .l |".
%‘ hi '}‘\.-

RINGS

_ Mail Stop 230-5
NASA Ames Research Center
Moffett Field, CA 94035
(415) 694-6363

The Research Institute for Advanced Computer Science
is operated by
Universities Space Research Association
The American City Building
Suite 311
Columbia, MD 21044
(301) 730-2656

