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1 Introduction

Speci�cations describe models that programs are sup-
posed to implement. Testing is used to verify if a pro-
gram's implementation is correct. Speci�cation languages
such as Z [Dil90] don't provide ways to relate their model
to a program state. Alternatively, the program could be
developed independent of the speci�cation, so there is no
natural correspondence between speci�cation and code.

In this paper, we present a new speci�cation language
TASPEC which can serve as an intermediary between
a Z speci�cation and the testing process. TASPEC

can express close correspondences between code and ab-
stract semantics. Large portions of Z are shown to be
semi-automatically translatable into TASPEC. Test or-
acles and other testing artifacts can be derived from
TASPEC speci�cations. As an example, a recently dis-
covered aw [Guh95] in an implementation of the TCP
protocol is uncovered using this technique.

TASPEC has primitive constructs that enables it to
be easily translated into slicing criteria and execution
monitors. TASPEC includes the basic logical and tem-
poral operators, together with location speci�ers that al-
low events to be associated with code features. This pro-
vides the primitive data for analyzing higher-level seman-
tic features of the program.

TASPEC is a part of a larger methodology, property-
based testing. A property is a speci�cation that is inde-
pendent of program structure. For example, authentica-
tion is just one aspect of a login program; authentication
is just a property related to the program. Property-based
testing is a method for validating a program with respect
to a property, using TASPEC speci�cations of generic
properties or generic aws as a basis for testing programs.
Property-based testing is designed as a way to reconcile
code with property and aw descriptions. Property-based
testing consists of TASPEC, static slicing, path cover-
age criteria, and execution monitoring. The Tester's As-
sistant is a prototype implementation for TASPEC and
property-based testing.

2 Background

The goals behind using speci�cations in testing are estab-
lishing greater formalism for test results and increasing
automatability and re usability of test artifacts. Prior
methods for utilizing speci�cations in testing fall into
three loose categories: speci�cations to generate test

data, speci�cations to create test oracles (verifying the
correctness of an execution), and speci�cations re�ned
into code (and therefore having direct speci�cation-code
relationships that can be measured).

Speci�cation languages such as Z [Dil90] and
VDM [AI91] can be used to fully specify a system at a
more abstract level than source code. The data structures
and operations can gradually be made more concrete
through re�nements to the speci�cation, until at some
point the boundary between speci�cation and source code
is crossed. Presumably, the more abstract speci�cations
better reect the desired abstract functionality (though
they are less speci�c), so via the correspondences ex-
tracted from the re�nement process, concrete execution
states can be compared to abstract states. This compar-
ison can serve as a test oracle. Such a speci�cation could
also be used to generate tests; however this is little dif-
ferent from generating tests from the source code due to
the shared derivation of code and speci�cation.

Test oracles can also be automatically generated
from other speci�cation-based approaches such as
Larch [GH93] and TAOS [RAO92] [Ric94]. Function and
procedure behavior is speci�ed as in the re�nement meth-
ods, but in a separate process from the actual coding. The
speci�cations can then serve as independent test oracles
without being inuenced by implementation bias. Links
between speci�cation objects and implementation object
need to be provided, however, so that the respective states
can be compared. This linkage can be done easily if the
unit of speci�cation is the behavior of individual functions
(or modules) in the implementation. Formal parameters
can be linked with actual parameters, and so on.

Test data can also be generated from speci�cation ar-
tifacts. ADL [San89] [SH94] and TAOS have test de-
scription languages whereby test data can be categorized.
Once categorization is made, generating exhaustive test
data with respect to the structure of the speci�cation is
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possible [CRS]. Prior to this work, similar techniques had
been used with VDM [DF93]. Related work has also been
done to generate test data from the structure of code such
as in [GG75] and [How75].

With TASPEC and property-based testing, test or-
acles can be generated independently of descriptions of
speci�c modules or functions. With the emphasis on
properties and not on full speci�cation, test oracles can
be made to handle a wider class of behavior than that
rigidly de�ned by functional speci�cations. Translations
between other speci�cation languages and TASPEC can
provide additional exibility to the speci�cation and test-
ing phases of development.

3 Property-based Testing

Property-based testing [Fin95] uses speci�cations of
generic properties in the TASPEC language to produce
structural tests of speci�c programs. Through location
speci�cations, properties are associated with code. The
code thus designated, and all code related to the desig-
nated code, is subject to the testing process. The marked
code is monitored for correctness during execution and
for test coverage completeness.

Properties are de�ned independently of a speci�c pro-
gram, and so can be grouped together in libraries of prop-
erties. These libraries can be reused and also analyzed by
independent means to assess their completeness1.

Structural testing is used to assure that the actual
source code of the program adheres to the property spec-
i�cation. For this goal, it is important to know in what
ways the program can interact with the property, and
to rigorously test these ways. Property-based testing fo-
cuses on the generation of test cases from speci�cations
only indirectly; generation of test cases is driven by gaps
in code coverage (which is determined in turn by prop-
erty speci�cations). Therefore, property-based testing is
complementary to other speci�cation-based testing tech-

niques.

Program slicing reduces the amount of source code to
be analyzed. This reduction is of immediate value to a hu-
man tester inspecting the code manually. Further bene�t
is gained by applying automatic analysis tools to the slice
rather than to the whole program. To calculate a slice,
very detailed global dependencies need to be derived; this
dependence information is applied to the other analysis
tools as well.

Coverage metrics that are both practical and relevant
to satisfying validation requirements are used in property-
based testing. Given a formula of interest, the optimal
metric requires all possible results for that formula; for

1Through a previous iteration of property-based testing,

perhaps.

most formulas this requires a very large (or computa-
tionally infeasible) number of data values. Metrics based
upon program paths within the slice approximate this op-
timum, given the testing framework.

Automatic high-level execution monitors are derived
from property speci�cations in TASPEC. Primitive

events are produced via location speci�ers; higher-level
events are raised by the execution monitor as dictated by
the property speci�cations. Checking the adherence of
a program execution to a complex property speci�cation
therefore proceeds automatically.
The Tester's Assistant is a prototype implementation

of property-based testing for analysis of C programs;
its development is ongoing. Currently operational are
static analysis, slicing, and code instrumentation mod-
ules. Code can be instrumented both for the purposes of
obtaining path coverage information, and also for cap-

turing abstract behavior described in TASPEC. The
Tester's Assistant(and TASPEC) has been applied to
UNIX security properties and network server code [FL94].

4 The Z Speci�cation Language

Z is a formal speci�cation language developed at Oxford
University that allows software requirements to be spec-
i�ed using a precise mathematical notation. One of the
�rst industry successes using Z was in specifying portions
of IBM's CICS system [Kin92]. Since then, Z has gained
popularity as a formal tool in both industry and academia
world-wide.
In this paper the following terms are used: Declara-

tion Part refers to the upper half of a schema where data
declarations and schema inclusions are located. Predi-

cate Part refers to the lower half of a schema where
invariants, preconditions, and de�nitions are located.
State Schemas de�ne global data in a system. These
schemas usually contain invariants to constrain the data.
Operational Schemas specify an operation. Such a
schema will include one or more State Schemas and de-
clare Input and Output parameters. Schema Names

come in several varieties. Undashed and dashed names
let the same name indicate the before and after state of
an operation. Input parameter names end with a ? and
output parameter names end with a !. The terms pre-
names and post-names refer to the set of undashed and
input names and dashed and output names respectively.

Additional information about Z may be found
in [Spi92], [Wor92],[Dil90].

5 TASPEC

TASPEC was created as a speci�cation interface
to property-based testing and the Tester's Assistant.
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TASPEC needed to be able to describe generic aws and
properties but also needed to have a simple correspon-
dence with code in order for test oracles and property-
based coverage criteria to be easily derived. Event-based
semantics were chosen for their conceptual simplicity.
Event processing was augmented with �rst-order predi-

cate logic to provide expressive power.

Z and VDM do not provide the correspondence between
source code and logic. The non-executable nature of Z
makes it di�cult to convert into non-trivial test oracles
directly. The TASPEC language was designed speci�-
cally to meet the needs of property-based testing. Fur-
thermore, more sophisticated languages such as Z and
VDM can be translated into TASPEC, thereby combin-
ing the well-known utility of the former languages with
the testing machinery of the latter.

5.1 TASPEC language de�nition

A speci�cation in TASPEC describes an abstract state.
The abstract state is correlated with program locations.
During the program's execution, the abstract state speci-
�cation is converted into a concrete stream of state events.
This state stream is checked against the abstract state for
errors.

A concrete state element in TASPEC is a user-de�ned
term, e.g., arrayref(a; 10). If this element gets put into
the state stream, that signi�es that during the execution
of the program, element number 10 of the array a was
accessed.

TASPEC also can specify invariants that the program
must satisfy. The invariants are expressed by linking state
events together with standard logical connectives. These
invariants together form the abstract state that is com-

pared with the concrete state in order to check for errors.

Multiple assertions with a common identi�er can ap-
pear in the state at the same time. Most often, for each
instance there are di�erent argument values. Consider,
however, an example in which an abstract �nite set is be-
ing represented in TASPEC. The set is enumerated by
a state element named set, i.e., if a and b are to be in
the set, the concrete state would hold the two elements
set(a) and set(b). A very useful operation for this sort
of abstract state is the number of di�erent set elements
there are in the state. A built-in predicate sizeof returns
this number. In the above example, sizeof(set) would be
replaced with the value 2.

TASPEC's semantic model is loosely based upon that
of Prolog [CM84]. The state consists of a collection of
facts that are tied together by various predicates. The
language for expressing invariants is closely related to
constructs in Prolog, because the system was designed
with Prolog in mind as the engine for monitoring execu-
tion.

There are three other components in TASPEC: com-
pounding operators, location speci�ers, and event pro-
cessing. This section will explain each of these compo-
nents in more detail.

5.1.1 Compounding operators

� Arithmetic operations (+;�; �; =)

� Relational operators (=,<,>,<>)

� Logic operations ([;\;:;))

� Temporal operations (before;until; eventually)

Arithmetic and relational operators are used to place
constraints on data values. For example, consider this
fragment from the speci�cation of array bounds (See Sec-
tion 5.2 for the complete speci�cation):

arrayref(a; i) \ array(a; l;u)) i � u \ i � l:

The values i, l, and u are bound by their presence in
the state elements array and arrayref, which are tied to
array declarations and usages respectively.
Logic and temporal operations are used to group sim-

ple facts into more complex terms. The logical opera-
tors allow any �rst-order predicate to be expressed in
TASPEC. The temporal operators allow certain rela-
tionships of predicates in time to be expressed easily.

5.1.2 Location speci�ers

Location speci�ers are essential in tying TASPEC speci-
�cations to actual source code. Ideally, it should be possi-
ble to have location speci�ers linked to every point in the
program where the abstract state changes. For the pur-
poses of the current implementation, locations are limited
to function calls, variable usages, variable declarations,
and variable assignments. With this limitation, there is a
direct mapping between locations and nodes in the data-
ow graph of the program.
A conditional expression can be attached to a location.

At run-time, the conditional expression is evaluated when
the location is reached, to test to see if the speci�cation
should match. For example,

locationmalloc() returns ptr if ptr 6= 0

matches all instances of the malloc library call that re-
turn with a non-zero value.
Function, variable, and assignment locations can be pa-

rameterized by copying data values from locations in the
code. If a parameter appears in the location portion of a
speci�cation, its value is stored and is propagated to the
action portion of the speci�cation. For function locations,
the arguments to the function as well as the result value
can be used as parameters (See Figure 1). For variable
locations, array indices can be used.
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location calloc(n; s) returns addr

fassert object(addr; 0;n� 1); g

Figure 1: A result parameter is used in an assertion on
the right-hand side of a speci�cation

5.1.3 Event processing

Event processing controls how the concrete state is con-
structed, and also describes the invariants against which
the concrete state should be checked. The event process-
ing grammar will be presented in two parts. First is a
description of the mechanisms for altering the concrete
state. Then we describe invariants and how the state al-
tering mechanisms are activated.
The state is changed by either asserting a concrete state

element (adding it to the state) or retracting (removing)
it from the state. The state element consists of an identi-
�er that acts as a label and a list of parameters that make
the element more speci�c. There is an optional iterator,
which can be used in setting up larger state constructs.
The iterator is of special use when initializing the con-
crete state with information about an array or similar
structure. For example,

assert(i = 0;n)array contents(array; i; 0)

could be used to initialize each element in an array's rep-
resentation in the concrete state to 0. In this example n
and array are variables that are bound in the context of
the TASPEC fragment.
The fundamental unit of speci�cation is an event. An

event can either be a change of state (assert or retract) or
be a predicate. A predicate can have one of two possible
meanings, depending on whether or not an event list is
attached to it. If no event list is attached, the predicate is

an invariant. If the program, while executing, produces
a concrete state in violation of any invariant, then an
error message is printed with the description of the awed
execution.
If an event list is attached, then the predicate is treated

in the same way as a location. The predicate/location
provides variable bindings; any attached events are pro-
cessed in that context and only when the predicate or lo-
cation matches the execution of the program. The gram-
mar is recursive in this extent; any event description can
be predicate/location dependent, including a predicate
which in turn has nested events.
Consider the following example:

location : : : farray(a; l;u)fassert array(b; l;u)gg

The second array element is high level in that the cor-
respondence between the element and a location is not

location decl a[10]fassert array(a; 0; 9); g
location variable a[i]fassert arrayref(a; i); g
location assign a result b

farray(a; l;u)fassert array(b; l;u)g
arrayref(a; i) \ array(a; l;u)) i � u \ i � l

Figure 2: Speci�cation of array bounds checking.

direct; it only raised when the additional event formula
is satis�ed.

5.2 Example TASPEC speci�cation

The complete speci�cation for array bounds checking for
statically declared arrays is in Figure 2. A variant of the
variable location is used in this case, which matches the
declaration of a variable, and not the use of a variable (the
use being the default for variable location speci�cations.)
All array declarations and array references cause asser-
tions to be made. An invariant is added that constrains
the value of the array index. In some instances, this check
can be made at compile time (i.e. analysis/slicing time).
Usually, however, the exact equation that computes the
index will be too complex to analyze statically and so es-
tablishing the correctness of array reference must be done
through repeated test runs, using property-based testing.
In this case, the constraint becomes a run-time check for
validity of a test run.

6 Translations of Z to TASPEC

The translation of Z to TASPEC is semi-automatic since
the user must provide mappings between names in the Z
speci�cation and the given implementation. The trans-
lator contains information about Z data types such as
sets, sequences, and functions and how they map into
TASPEC. For example, if a Z type is a set, it is under-
stood that [ can be used to add new elements.

We begin by presenting the technical details of the
translation algorithm. Pseudo code for the algorithm is
provided in Appendix A. After the technical discussion
is an example of translation.

6.1 Translation Limitations

Translation is currently limited to accepting concrete re-
�nements of Z as input. We restrict the use of such Z
operators as �C or B and 7! or �! as well as functions
like partition and rev. The assumption is that such op-
erations wouldn't show up in a concrete re�nement due
to type limitations in the implementation language. This
simpli�es translation and seems reasonable from the re-
�nements thus far examined.
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Sample

�SomeState

p1? : Type1
p2? : Type2
r! : RetVal

: : :

Ret_Value SomeFunction(type_1 a, type_3 b,

type_2 c);

hSomeFunction 7! Sample;a 7! p1?;b 7! ?; c 7!

p2?; result 7! r!i

Figure 3: Information mapping a Z schema to a C func-
tion.

An additional limitation is that the user must provide
mappings between names in Z and the implementation.
Such information cannot be automatically determined in
most cases [GHM87].

6.2 User Required Information

As noted above, the user must provide mappings for
names in the speci�cation to names in the implementa-
tion. Translation of state schemas requires mappings be-
tween schema declarations and program variables. The
translator records type information about schema decla-
rations and program variables. This type information is
later used to �nd appropriate translation rules and gen-
erate bounds checking predicates for arrays.

Mappings are required for operational schemas to link
schema and function names and match parameters. Fig-
ure 3 shows an example of the mapping information be-
tween a schema and a C function. Given are the schema
declaration part and the function signature. Below that is
a sequence which shows how names are mapped from Z to
C. The �rst term links the function name to the schema
name. Subsequent terms link the function parameters
to schema input and output values. As shown, not all
of the implementation parameters may be represented in
the speci�cation. The special value result maps function
return values.

An operational schema need not map to a C func-
tion. In some cases, for example the TCP example in
section 7, a schema can describe variable assignments. In
that example, the mapping information indicates that a
schema maps to an assignment operation. Translation of
the schema results in location speci�ers being linked to
variable assignments.

6.3 Translation Rules

Prede�ned rules are used to translate Z expressions to
TASPEC. The translation rules are divided into two
kinds: data-type translation and operator translation.
Data-type translation rules de�ne how Z types map
into TASPEC. The operator translation rules de�ne the
TASPEC query or state change resulting from a given Z
operator.
The following describes how Z types are represented in

TASPEC. Additional rules are described in [Hel95].

Sets are represented as assertable facts. For example, s :
PStudent becomes s(x). If used in a matching ex-
pression, x is bound to some value of the set s. More
complicated sets are represented by adding more pa-
rameters to the fact: records : P(Artist � Title)
becomes records(a; t).

Relations/Functions are treated as a tuple with some
constraint between elements. Given some function
fun : X1 � X2 ! Y1, we match with fun(x1; x2;y1).
Values for the function would be asserted into the
database and matches performed to get values for
di�erent parameter values.

Numbers are stored as single element sets. For example,
a variable max : N is represented as max(x). The
translator will only assert one value at a time to the
name max.

Operator translation rules allow simple Z expressions to
be transformed into TASPEC. The translation algorithm
will break a Z schema into a series of simple predicates.
A simple predicate can be of the forms:

1. Expr op Expr or op Expr

2. v op Expr.

Case 1 represents preconditions and invariants. Case 2
represents variable de�nitions in postconditions. Each
Expr may be composed of further simple predicates.
Many of the translation rules have di�erent forms de-
pending on the form of the predicate. For example, the
equality operator has a di�erent translation in a variable
de�nition than in a precondition.
The following are examples of operator translation

rules:

Sets: In the examples, sn is a set and en is an element.

e1 2 s1 and e1 62 s1 become s1(e1) and :s1(e1).

s1 = s2 becomes s1(e1) \ s2(e1).

s
0

1
= s1 [ e1 becomes assert s1(e1).

Functions: x0

1
= x1 � fy1 ! y2g becomes

assert x1(y1;y2).
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Numbers: x0 = x � y becomes
x(e1) \ y(e2)fretract x(e1); assert x(e1 � e2)g.

x < y becomes x(e1) \ y(e2) \ e1 < e2.

6.4 Required De�nitions

The translator must be able to distinguish preconditions
from de�nitions in schemas. Preconditions can only con-
tain pre-names. Predicates that de�ne new values con-
tain a mixture of pre- and post-names. For example,
foo < bar is a precondition and foo

0 = foo + 1 is a
de�nition, as is foo0

< bar.

The order of evaluation of predicates in schemas is not
always the order in which they appear in the schema.
To successfully translate from Z to TASPEC, dependen-
cies between predicates must be identi�ed, and de�ning
predicates potentially reordered, so as not to make use of
values before they are de�ned. For a de�ning predicate
to be evaluated, all free variables in E (denoted Var[E])
must be de�ned.

A sequence of de�ning predicates A = hv1 := E1; v2 :=
E2; : : : ; vn := Eni are termed \well-ordered" ([Jia95])
with respect to the pre-names of the schema if each v

is distinct and the variables in each E are only those with
previously de�ned values. Each de�ning predicate can
proceed only when all free variables in Ei have been pre-
viously de�ned either by starting in the set of pre-names
or by being given a value by a previous de�ning predicate.
Predicates in a schema may be connected by conjunc-

tions and disjunctions. By default, a series of predicates
listed without any logical connectives between them are
connected by implicit conjunctions. Predicates connected
by disjunctions result in multiple paths through a schema.
The translator will generate separate location speci�ers
for each distinct \branch" of predicates.

6.5 Translation Algorithm

Translation of state schemas is handled separately from
operator schemas due to di�erences in user required infor-
mation and di�erent kinds of mappings from speci�cation
to code. The di�erent algorithms are discussed below.

Operator Translation

An overview of the operator translation algorithm is as
follows:

1. Break a complex predicate into simple predicates.
Operators connecting simple predicates are stored.
Translation of simple predicates proceeds in order of
operator precedence.

2. Given a simple predicate, identify the operator and
choose the correct translation rule.

3. Generate names for new identi�ers, apply the trans-
lation rule, and output the translated predicate.

State Schema Translation

This translation algorithm takes declarations and invari-
ants in a state schema and translates into TASPEC. The
user supplies mappings between declared names in the
state schema and global variables in the implementation.
This information allows arrays to be identi�ed so that
bounds checking predicates can be generated.
The following is an outline of the translation steps:

1. The translator requires name mapping information,
the schema declaration list, and the predicate list:
UserInfo, DeclList, and InvList.

2. For each declaration in DeclList, identify and record
the Z type and generate any required initializations
for this type (required for sequences). If a declaration
maps to an array, generate array bounds checking
predicates.

3. For each invariant in InvList, perform operator trans-
lation as previously described.

Operator Schema Translation

This translation algorithm takes an operational schema
and translates to TASPEC. A part of the translation algo-
rithm is inspired by the EX algorithm presented in [Jia95].
Translation is performed in two parts: preparation and
translation. Both algorithms are shown in Appendix A.
The algorithm PrepareSchema is required to take a

schema and return a list of precondition predicates and
assignment predicates. The algorithm accepts a conjunc-
tive list of predicates Pred that represent one possible
path through the schema. Additionally, the list of pre-
names and post-names must be provided. The assignment
sequence that is returned will be correctly ordered.
The algorithm TranslateSchema takes name mapping

information from the user, the list of preconditions, and
the correctly ordered list of assignments and generates a
TASPEC speci�cation.
The overall translation algorithm is as follows:

1. The user chooses a Z operator schema to trans-
late and constructs the appropriate information (Sec-
tion 6.2) stored into UserInfo.

2. The chosen schema is expanded to include all schema
inclusions (except state schemas) and resolve schema
operations such as disjunction and conjunction.

3. Set PreNames to the pre-names from the declaration
part and PostNames to the post-names. Convert
the predicate part of the schema, Pred, to disjunctive
normal form.
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4. Call PrepareSchema(P;PreNames;PostNames;

PreCond;AssignSeq) for each element P in the
sequence Pred.

5. Call TranslateSchema(UserInfo;PreCond;
AssignSeq) for each PreCond and AssignSeq

assigned from the previous step.

The Z speci�cation for this example (see �gure 4) is
taken from [Wor92]. The example is of a database to
keep track of whether students are enrolled in a class and
whether they have taken a particular test. Only a repre-
sentative portion of the example will be translated.

[Student]

size : N1

ClassC

sarray : (1 : : size)! Student

ectr : 0 : : size
tctr : 0 : : size

tctr � ectr

8 i; j : 1 : : ectr j i 6= j � sarray i 6= sarray j

EnrolokC

�ClassC
s? : Student
r! : Response

8 i : 1 : : ectr � sarray i 6= s?
ectr < size

tctr
0 = tctr

ectr
0 = ectr+ 1

sarray
0 = sarray� ectr

0
7! s?

r! = success

Figure 4: State schema for Class Enrollment example.

An array holds the students with partitions of that ar-
ray indicating enrolled and tested students. The invari-
ants show that there should not be more tested than en-
rolled students and that all enrolled students are unique.

The translation of Figure 4 proceeds as follows. The
state schema is mapped to the implementation by:
hstudent list 7! sarray; e ctr 7! ectr; t ctr 7! tctri.
The constant size is a prede�ned number. sarray is iden-
ti�ed as an array and has bounds checking schemas gen-
erated for it. TASPEC code generated for the predicate

part will be:

assert size(initial value);
location decl student list[initial value]

fassert array(student list; 0; initial value); g
location variable student list[i]

fassert arrayref(student list; i); g
arrayref(a; i) \ array(a; l;u)) i � u \ i � 1;
ectr(x) \ 0 � x \ size(y) \ x � y;
tctr(x) \ 0 � x \ size(y) \ x � y;

The array bounds checking will be triggered by the array
declaration and any reference to the array. Checking is
also included for the legal ranges of ectr and tctr.
The �rst invariant is translated using a standard rule

for numbers. The second invariant relies on TASPEC us-
ing implicit universal quanti�cation for database matches

(i.e. each assert will trigger all appropriate predicates as-
sociated with the asserted element). The translation uses
a standard rule for universal quanti�cation, inequality,
and function evaluation. The result is:

ectr(x) \ tctr(y) \ x � y

sarray(i; s) \ sarray(j; t) \ i 6= j \ s 6= t

Translation of EnrolokC requires the following
user information: henrol ok 7! EnrolokC; stud 7!

s?; result 7! r!i. The result of PrepareSchema will be
a PreCond list containing the �rst two predicates in the
EnrolokC declaration list and a AssignSeq list with the
remaining predicates in order as given. There is only one
path through EnrolokC so PrepareSchema is only called
once. TranslateSchema performs operator translation on
the two lists output from PrepareSchema and results in
the following speci�cation:

location enrolok(s)result success
f(:sarray(i; s) \ i � 1 \ ectr(x) \ i � x)\

(size(y) \ x < y)f
retract ectr(x);
assert ectr(i+ 1);
assert sarray(i+ 1; s)gg

7 Example: TCP

This example examines how the previous techniques can
be applied to testing the TCP protocol. TCP/IP is the
de-facto standard for Internet communications. Imple-
mentations of TCP have several known security aws that
have been well documented elsewhere [Bel89]. This ex-
ample examines the detection of a new security related
bug in the TCP driver for 4.4BSD-Lite [Net93].
The TCP protocol is speci�ed as a �nite state machine.

Each state in the protocol represents a stage in the pro-
cess of opening, closing, or using a network connection.
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Syn-Sent

Estab

Closed

Listen

Time Wait

Last-Ack

Closed

Close Wait

Closing

Syn-Rcvd

Fin Wait-1

Fin Wait-2

CLOSE

CLOSE

CLOSE

passive OPEN

rcv SYN SEND

rcv SYN

rcv ACK of SYN rcv SYN,ACK

rcv FIN

rcv FIN

CLOSE

rcv FIN (security bug)

rcv ACK of FIN

rcv FIN

rcv ACK of FIN

time-out

active OPEN

CLOSE

rcv ACK of FIN

Timeout = 2MSL

Figure 5: TCP State Transition Diagram

Transitions between states occur based on the types of
messages sent and received during communication. For
the purposes of testing the protocol for aws, it is neces-
sary to �nd if illegal transitions between states are pos-
sible in a given implementation. We will accomplish this
by specifying the TCP state machine in Z, translating
the speci�cation to TASPEC, and then by applying auto-
mated testing tools driven by the TASPEC speci�cation.
This testing will demonstrate the existence of a newly
discovered bug in the 4.4BSD-Lite source code [Guh95].

7.1 Z Speci�cation for TCP Protocol

States

This example takes a partial Z speci�cation of TCP and
uses it to drive the testing process. Our goal in testing has
been �nding improper state transitions in the protocol.
This goal removed the need for a full speci�cation (such
as described in [GJ]) which is a great time savings when
only a part of a system need be tested. Since only illegal
TCP state translations are being tested for, only the TCP
state machine is speci�ed (see Figure 5).

A speci�cation of this in Z is straightforward and illus-
trated in Figure 6. First the di�erent states are enumer-
ated. Next de�ned is the TCP state schema that holds
the current state. Finally, a series of schemas specifying
how each state is entered is de�ned. A state is potentially
entered only from a set of legal prior states as illustrated
in Figure 5.

TCP State ::= Closed j Listen j Syn Sent j

Syn Received j : : :

TCP

state : TCP State

Enter Listen

�TCP

state = Closed

state
0 = Listen

Enter Syn Received

�TCP

state = Listen _ state = Syn Sent

state
0 = Syn Received

Figure 6: Partial Speci�cation of TCP in Z.

7.2 Translation of TCP Speci�cation

To perform the translation, the TCP implementation
must be examined. The TCP driver manages state tran-
sitions by storing the current state in the \t state" �eld
of the \tcpcb" structure. State changes are accomplished
by storing a new value in the \t state" �eld.

Translation requires the following user information
for each state transition schema: hassignment 7!

Enter Listen; tcpcb:tstate 7! statei. Translation pro-
ceeds as described in the previous section with the result-
ing speci�cations:

location assign tcpcb:t state = Listen

fstate(Closed)
fretract state(Closed);

assert state(Listen)gg
location assign tcpcb:t state = Syn Sent

fstate(Closed)
fretract state(Closed);

assert state(Syn Sent)gg
: : :

7.3 Testing TCP

The speci�cation in Section 7.2 identi�es assignments to
tcpcb:t state as signi�cant (it tracks the TCP state) and
worth testing. The use of state(Closed) as a predicate
indicates that prior de�nitions of tcpcb:t state are of in-
terest (since that is where the state element is raised.)
Therefore, the coverage requirements with respect to this
speci�cation are pairs of potentially sequential assign-
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ments to that variable (determined by syntactically valid
paths through the program).
The test oracle keeps track of the TCP abstract state,

through the retract and assert mechanisms. When a
state transition to Listen or Syn Sent is made, the ex-
ecution monitor checks the abstract state. If the state

element state(Closed) is not present, an error condition
is raised.
Such an approach �nds an illegal transition from the

Syn-Received state to the Close-Wait state. As shown
in Figure 5, receiving a FIN packet in the Syn-Received
state will cause an illegal transition to Close-Wait. This
transition will be detected because the coverage require-
ments are to test all pairs of sequential assignments to
tcpb:t state. Any illegal pairs that are tested and suc-
ceed will be detected as errors.

8 Conclusion

TASPEC is a step towards providing a translation level

between speci�cation languages like Z to implementation
languages like C. Currently, test oracles and coverage cri-
teria are created automatically from TASPEC. Eventu-
ally other testing tools will also be developed to use the
TASPEC notation. The advantage of using a language
like TASPEC as a communication with testing technol-
ogy is that it is speci�cation language independent. Cur-
rently, translation from Z to TASPEC is available. Fu-
ture work includes automation of the Z translation and
investigation into translations of other widely-used spec-
i�cation languages such as Larch and VDM.
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A Translation Algorithms

Algorithm A.1

proc PrepareSchema(inPred;PreNames;PostNames;
outPreCond;AssignSeq) �

PreCond :=
fp : Pred j p involves only PreNamesg;

De�nition := fp : Pred j p is definitiveg;
AssignSeq := hi;
DefNames := ?;
done := false;
while :done do

progress := false;
for d 2 De�nition do d is of the form v = E

if Var[E]� DefNames [ PreNames

then
De�nition := De�nition n fdg;

DefNames := DefNames [ fvg;

AssignSeq := AssignSeqa hv := Ei;
progress := true;

�
od
done := :progress _ De�nition = ? _

DefNames = PostNames;
od

end

Algorithm A.2

proc TranslateSchema(inUserInfo;PreCond;
AssignSeq) �

if UserInfo indicates a translation to a function

then
output \location funcall <FcnName>";

\result <ResultName>";
if UserInfo indicates a return value for

the function AND return value is assigned

a constant value in AssignSeq

then
rval := fe : AssignSeq j variable assigned

to is return valueg;
AssignSeq := AssignSeq n frvalg;
output \if <rval assignment";

\variable> = <rval constant";
\ assignment>";

�
for p 2 PreCond do

p tas := translate p to TASPEC;
output \<p tas>";
connect each consecutive precondition

with \AND";
od
for a 2 AssignSeq do

a tas := translate a to TASPEC;
output \<a tas>";
connect each consecutive assignment

with\,";
od

elsif UserInfo indicates a translation to assignment

then
output \location assign <VarName> =";

\<AsgnValue>";
if p 2 PreCond guards assignment

then
p tas := translate p to TASPEC;
output \if <p tas>"

�
a tas := translate a 2 AssignSeq to TASPEC;
output\<a tas>";

�
end
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