Modeling Computer Insecurity

Sophie Engle, Sean Whalen and Matt Bishop
Department of Computer Science
University of California, Davis
{engle, whalen, bishop} @cs.ucdavis.edu

Abstract

In this paper, we present a formal model of computer se-
curity based on the universal Turing machine. This model
allows us to conclude that given a machine and policy, the
problem of determining if that machine is secure is not re-
cursively enumerable. However, two related problems are
solvable. The inverse problem of determining if a machine
is insecure is recognizable. Additionally, determining if the
current configuration of a machine is secure is decidable.
Given these theoretical results, we propose a shift in how
we discuss “security” in practice.

1. Introduction

Computers are becoming ever more embedded in every-
day life. Computers run our banks, provide us directions
in our cars, tell us when we are out of milk in our fridges,
provide us restaurant reviews on our cell phones, archive
our personal information, and even assist us in electing our
government representatives. As the ubiquity of computers
increase, so does the importance of computer security. The
presence of a vulnerability could cause a minor annoyance
in the form of lost time, cost billions in information theft,
bring down global networks, or even throw an election.

However, while a large volume of work has been done
on preventing and defending against known vulnerabilities,
it is not clear where vulnerabilities fit into the classic for-
mal model of modern computers - the universal Turing ma-
chine. This work attempts to formally answer two funda-
mental questions: what is a vulnerability, and when is a ma-
chine secure? We do this by providing a formal model for
computer security which uses universal Turing machines to
model computer systems.

By formally defining these concepts, we gain a precise
method for discussing and analyzing security, policy, and
vulnerabilities. As part of this formalization, we have been
able to precisely define the notion of conditions to describe
both vulnerabilities and security policy. Using our model

as a foundation, this may lead to a more precise method for
characteristic-based classification of vulnerabilities [4].

Finally, we discover that even with a specific policy, the
problem of determining if a machine is secure is not recur-
sively enumerable. We then propose a shift in focus in vul-
nerability research. Instead of focusing on how to evaluate
the security of a machine (which we find to be theoretically
impossible), we should focus on evaluating the insecurity of
a machine or on the current security of a machine.

2. Background

We use universal Turing machines as a theoretical model
of modern computer systems. Informally, a Turing machine
is a state machine with an infinite tape, capable of reading
and writing symbols, moving left or right along the tape as
instructed.

Formally defined, a Turing machine is a 7-tuple (Q, ¥,
T, 0, qo, qa> q:) Where @ is the set of states, 3 is the input
alphabet, I is the output/tape alphabet where ¥ C T, § :
Q xI — @ xT x {L,R} is the transition function where
{L,R} indicate the head is to move left or right respec-
tively, go € @ is the start state, g, € @ is the accept state,
and ¢, € @ is the reject state where ¢, # ¢, [2].

A universal Turing machine is a Turing machine which
is capable of simulating any other Turing machine [2]. We
specifically use decidable universal Turing machines as our
system model. A decidable Turing machine is one that
always accepts or rejects, and as a result always halts [2].

We also occasionally refer to a multi-tape Turing ma-
chine which is a Turing machine with multiple infinite tapes
[2]. Multi-tape Turing machines are computationally equiv-
alent to normal Turing machines.

A configuration of a Turing machine captures the cur-
rent state, the content of the tape, and the current location
of the head [2]. The configuration is often captured as the
string uqv where ¢ is the current state, the string uv gives
the contents of the tape, and the first position of v gives the
current location of the head. If the state of a configuration
is the state g,, it is considered an accepting configuration.

3. Vulnerabilities, Part 1

Computers are highly complex and inevitably have nu-
merous bugs due to human error. However, only a subset of
these bugs are considered vulnerabilities and hence a threat
to security. As part of our formal model, we attempt to cap-
ture the fundamental and intuitive difference between bugs
versus vulnerabilities.

To identify this difference, we must first explore what
makes a computer secure which is in turn dependent on
its security policy. As such, we start by exploring how to
formally define security policy for a deterministic universal
Turing machine.

4. Security Policy

A security policy defines what it means for a specific ma-
chine to be “secure” by specifying what is or is not allowed.
In practice, security policies may be implicit, informally de-
fined, or explicitly defined using rigorous mathematical no-
tation.

In this section, we explore the formal definition of secu-
rity policy, and why one common definition is insufficient
for our model.

4.1. Policy as a Partition

One definition of security policy is, “a statement that par-
titions the states of the system into a set of authorized, or se-
cure, states and a set of unauthorized, or nonsecure, states.”
In this sense, a system is secure if it “starts in an autho-
rized state and is unable to enter an unauthorized state” [1].
However, we argue that a simple partition to describe secu-
rity policy is insufficient.

Assume that we have a security policy defined as a par-
tition of authorized and unauthorized states in a machine.
If it is possible for the machine to be secure, then it is im-
possible to reach an unauthorized state from the start state.
In this case, these unauthorized states may be considered
useless states and removed from the system.

If an unauthorized state is reachable from the start state,
then the machine is not secure. In this case, removing the
unauthorized state may impede operations necessary in the
machine. Either the machine is poorly designed, or (more
likely) these unauthorized states are necessary under certain
circumstances and may not be removed from the machine.
For example, state ¢; may be necessary for a root user to per-
form maintenance operations, but should be unauthorized
under all other circumstances.

Policy as a partition is unable to capture this. Policy
should capture more than what is authorized or unautho-
rized, but also when it is authorized or unauthorized. For
this, we need a more robust definition of policy.

4.2. Policy as a Language

Instead of defining policy by a set of authorized states,
we focus on defining policy by a set of authorized configu-
rations. Note that accepting configurations (defined earlier)
are different from authorized configurations, which may in-
clude any state.

To capture the conditional nature of policy, we define
the concept of a policy condition as a set (or language) of
authorized configurations. For example, consider:

user : root I'* ¢; I'*
—————— T
u v

This regular language (where I'* represents any string of
tape characters) is a policy condition indicating that state g;
is authorized when the tape begins with user : root.

We define security policy as the union of policy condi-
tions. The result is a language of authorized configurations
for a Turing machine. By using policy conditions as a ba-
sis for our language, we capture not only which states are
authorized, but also when they are authorized.

We define two special cases of policy conditions. A state
policy condition (or state condition for short) is a policy
condition which does not depend on the tape. For example,
consider the regular expression I'* ¢; I'*. This state policy
condition indicates that the state g; is authorized no matter
what is on the tape. The definition of state policy conditions
leads us to our first theorem:

Theorem 4.1: A security policy defined exclusively
by state policy conditions is equivalent to a security
policy defined as a partition of authorized and unau-
thorized states.

PROOF OUTLINE: Suppose we have a security pol-
icy defined as a partition of authorized and unautho-
rized states. We are able to create a language of autho-
rized configurations by creating a state policy condi-
tion for each authorized state and taking the union all
of these conditions. In the other direction, if we have
a language of state policy conditions we can union
together all of the states included in the state policy
conditions to create the set of authorized states.

We also define a tape policy condition (or tape condi-
tion for short) as a policy condition which does not depend
on the state or on the position of the read head. For example,
suppose () is the set of all states and we have:

QabcUa@QbcUabQcUabcQ

This tape policy condition indicates that any state is autho-
rized when abc is the current tape. As shorthand, we indi-
cate tape conditions as just the tape contents with no refer-
ence to any states. In this example, we’d just state the tape

condition is abc. Tape conditions may be useful when defin-
ing policies such as the necessary requirements for a strong
password on a machine (must be a certain length, must have
digits and characters, and so forth).

As our definition of policy allows for more than just state
policy conditions, we are able to state a corollary to our
previous theorem:

Corollary 4.2: Security policy defined as a language
is more expressive than security policy defined as a
partition of states.

The first example policy condition is proof of this. We are
able to capture that ¢; is authorized only under a specific
condition. Using a partition of states, ¢; must be listed as
either authorized or unauthorized no matter the tape con-
tents.

4.3. Policy Representation

Defining security policy as a language is not the same
as the notion of “policy languages.” A policy language is
defined as “a language for representing a security policy”
which may be high-level or low-level in nature [1]. Policy
languages in this sense attempt to capture some abstract no-
tion of policy in a way understandable to modern programs
and systems. Consequently, policy and policy languages
are two separate notions. Our definition unifies the notion
of policy with the representation of policy.

There are, however, many different classes of languages
which may be used for security policy. Our examples so far
have used regular expressions to specify a security policy,
but policy does not have to be limited to the class of regular
languages. For example, we may instead try to use the class
of recursively enumerable languages for policy, which may
be recognized by Turing machines.

There are two major restrictions to which classes of lan-
guages may be used for security policy. The first restriction
comes from the theoretical limits of computation. Turing
machines are the most powerful model of computation, and
there exist some languages which may not be captured by
Turing machines [2]. As a result, the class of recursively
enumerable languages represent the most powerful class of
languages we are able to compute and hence use for security
policy.

The second of these restrictions comes from the nature of
security policy. In practice, security policy is often defined
by what is unauthorized versus authorized. For example,
suppose state g, is unauthorized when the tape begins with
user : xander. The unauthorized policy condition may be
described as:

user : xander I'* ¢, I'*

From this, we can derive the language of authorized config-
urations by using complementation:

user : xander ['* ¢, I'*

Security policy is defined as a language of authorized
configurations, but we must also be able to derive what con-
figurations are unauthorized to test for security. Again, this
is accomplished using complementation. As such, we must
be able to recognize both the language of authorized config-
urations and the language of unauthorized configurations.
This is only possible with languages that are closed under
complementation, which recursively enumerable languages
are not [2]. Therefore, we only consider recursive or decid-
able languages, which may be decided by Turing machines
[2].

Both of these restrictions illustrate the difference be-
tween what is ideal in specifying policy versus what is fea-
sible. While we may be able to express an ideal policy using
natural language, this representation is infeasible to imple-
ment at a machine level. To address the disconnect between
ideal and feasible policy, we turn to the Unifying Policy Hi-
erarchy Model as described in the next section.

4.4. Policy Hierarchy

As a result of technological limitations and configura-
tion complexity, the policy implemented on a particular ma-
chine may not match the intentions of the policy administra-
tor. This distinction between implemented versus intended
is critical when discussing security policy. To capture this
distinction, we adapt the Unifying Policy Hierarchy Model
which provides a hierarchical classification of four different
types of policy [3]. Each policy maps a query for a subject
attempting to perform an action on an object in the system
onto a valid or invalid response.

At the highest level of the hierarchy, the Oracle Policy
defines an abstract oracle which decides if a given subject is
allowed to execute a specific action on an object in the sys-
tem. The oracle can answer queries about subjects, objects,
and actions existing outside the system, whereas lower level
policies are limited to internal entities. The role of the ora-
cle is approximated in reality by a system administrator.

For example, a password-based system cannot distin-
guish between two people accessing the same account from
the same keyboard with the same password. In reality they
are different people, but the system cannot prevent the per-
son Xander from typing Yasmin’s username and password
if he obtains them. The oracle, however, exists outside the
system and can decide that the person Xander cannot login
as the account Yasmin. Thus, there are intended policy de-
cisions which cannot be implemented on an actual system
and can only be decided by an oracle.

The policy which may be practically implemented on the
system is the Feasible Policy. The policy decides if a sub-
ject, object, and action are allowed under the restrictions
imposed by working within the system itself.

The policy intended for a system is the Machine Policy.
In the space of all feasible policies for a system, a particular
policy is configured by an administrator.

Finally, the Real-Time Policy of a system is the policy
which is currently active. The implementable, intended pol-
icy for the system may differ from the policy actually in
place due to policy violations.

4.5. Policy Violations

Using the Unifying Policy Hierarchy Model, we are able
to define different types of policy violations and narrow the
types of violations we consider in our security research.

The most abstract policy violation is the inherent policy
violation, which occurs whenever oracle policy does not
match the feasible policy. These violations are often the re-
sult of technological limitations on what portions of the or-
acle policy may be expressed, or due to poor or ambiguous
expression of the oracle policy.

Whenever the feasible policy disagrees with the machine
policy, we say a configuration policy violation has oc-
curred. These violations are often the result of misconfigu-
ration when the feasible policy was applied on the machine,
often due to the complexity of this process or policy, or poor
interface design.

Finally, a real-time policy violation occurs whenever the
machine policy disagrees with the real-time policy. In re-
lation to our model, we consider machine policy to be the
security policy, and the current configuration to be the real-
time policy of the machine. Therefore, we can state that
a real-time policy violation occurs whenever the current
configuration of a Turing machine is unauthorized as speci-
fied by its security policy.

We are only focused on when the machine behaves in
a way which violates its policy, and hence focus solely on
real-time policy violations. Addressing the limitations of
technology which cause inherent policy violations is an area
for future work, as is addressing how to avoid configuration
policy violations.

5. Vulnerabilities, Part 2

With the definition of security policy and of real-time
policy violations, we are now able to determine when a vul-
nerability occurs. However, our definition of vulnerability
is not focused solely on the policy violation, but also on the
conditions which lead to the violation.

Computation in a Turing machine is defined as a series of
configurations, sometimes called the computation history.

For example if we have the series of configurations:
AB ¢y cde — ABCgo de

We are able to determine that the Turing machine followed
a transition to state go which read a c, replaced it with a C,
moved the tape head right one position.

Using this computation history, we can identify not only
what configuration violated policy, but those configurations
which led to that policy violation. Again, we define a notion
of condition to be a language of configurations. We use
conditions to describe the computation history leading to a
policy violation. For example, suppose a buffer overflow
lead to a policy violation. If the buffer is of size n, we could
specify the tape condition I *! to describe what caused the
violation.

Using the notions of real-time policy violations and con-
ditions, we can finally define a vulnerability:

Definition 5.3: We define a vulnerability as the
pair (V,C'), where V is the unauthorized configura-
tion causing a real-time policy violation, and C' is a
set of conditions describing the computation history
leading to V.

The result is a vulnerability definition which not only
captures the unauthorized configuration, but also the condi-
tions which must be satisfied for that configuration to occur.

6. Computer Security

Intuitively, a machine is secure when it has no vulnera-
bilities. If there are no vulnerabilities in the machine, then
there are no policy violations. This is only true when the
machine is unable to enter an unauthorized configuration.
Following this line of reasoning, we state a machine is se-
cure if and only if it is unable to enter an unauthorized con-
figuration as specified by its security policy.

We define the language SECURE to be set of all pairs
(M, P) where M and P are decidable Turing machines
and M never enters a configuration not in L(P). We reduce
the problem of determining if a machine is secure to deter-
mining if a machine and policy belong to this language.

Theorem 6.4: The language SECURE is not recur-
sively enumerable.

INTUITION: The intuition behind this is based on the
fact that there are potentially an infinite number of
possible configurations for any Turing machine. To
be positive the machine is unable to enter an unau-
thorized configuration, each of these configurations

would need to be tested. Even with a decidable pol-
icy language and decidable Turing machine, this test
would never halt.

PROOF OUTLINE: The idea behind a more formal
proof is to use mapping reducibility and reduce the
language ETy to SECURE. The language Etyp in-
cludes all Turing machines M/ where L(M) = (), and
is known to be unrecognizable [2]. Given an input M,
build an enumerator P which simulates M on an in-
put string = and outputs every configuration entered
by M except any accepting configurations'. If the
language of M is empty, then there are no accept-
ing configurations and M will only enter those con-
figurations specified by L(P). Otherwise, an accept-
ing configuration is reachable in M and M will enter
a configuration not authorized by L(P). Therefore,
(M) € Erm < (M, P) € SECURE.

This allows us to make a more general statement about
security:

Corollary 6.5: The general problem of security, even
with a specific security policy, is unsolvable.

This result matches other formal results (as discussed in
related work), and the intuition of security professionals to-
day. In fact, most measures of “security” are actually mea-
sures of insecurity, which we find to be a solvable problem.

7. Computer Insecurity

Insecurity is the complement of security. A machine is
insecure if it is capable of entering an unauthorized con-
figuration according to the security policy. We define the
language INSECURE as the complement of SECURE — or
simply SECURE. While SECURE is not recursively enu-
merable, we find that is not the case with the language IN-
SECURE.

Theorem 7.6: The language INSECURE is recur-
sively enumerable.

PROOF OUTLINE: Consider a Turing machine M’
which on input (M, P) nondeterministically simu-
lates M on a string w. If M ever enters a configura-
tion not in the language of P, then it should reject.
Since we only consider decidable Turing machines
for M and P, this check will always halt. However, if

IRecall from our background discussion that we are only considering
decidable Turing machines as our system model, which allows us to build
this enumerator.

there does not exist such a w, then our nondetermin-
istic Turing machine M’ will never halt. As such the
language INSECURE is recursively enumerable, but
not recursive (or decidable).

This result shows that attempting to determine if a ma-
chine is insecure is “easier” than attempting to determine if
it is “secure.” This result matches the intuition of security
professionals today. Professionals today focus on determin-
ing if a machine is insecure by checking for known vulner-
abilities or insecure programming practices. Additionally,
machines which haven’t yet been marked insecure are con-
tinually checked against new vulnerabilities.

This suggests that the focus of security research is and
should be on the insecurity of a machine, not on the secu-
rity of a machine. While this may be arguing the semantics
of security, it has a significant impact on the public percep-
tion. Claiming a machine is “secure” is different from “not
known to be insecure,” and the latter helps stress the impor-
tant of constantly checking for new vulnerabilities.

From these results, we know the general problem of de-
termining if a machine is secure is unsolvable and that de-
termining if a machine is insecure is only recursively enu-
merable. Instead, a more focused approach on special cases
of these problems is required to make security fully solv-
able. One type of special-case security is real-time security,
as we discuss in the next section.

8. Real-Time Security

While determining if a machine is secure with respect
to its policy is an undecidable problem, we are able to de-
cide if the current configuration of a machine is secure. We
call this concept real-time security. Specifically, we say a
machine is currently real-time secure if and only if every
configuration in its computation history is authorized by the
security policy. This leads us to the following claim:

Theorem 8.7: Real-time security is decidable.

PROOF OUTLINE: This is only true because we limit
ourselves to decidable (or recursive) policies. As
the machine moves from one configuration to another
during computation, we are able to decide if that con-
figuration belongs to our language of authorized con-
figurations as given by our security policy. If the
machine ever enters an unauthorized configuration, a
special flag can be set on the tape.

While this does not tell is if the machine will be secure
in the future, it does at least allow us to determine if it is
currently secure. This allows us to react when the machine

becomes insecure, but does not allow us to predict or defend
against the potential vulnerabilities.

Unfortunately, the concept of real-time security has lim-
ited application in practice. Aside from the fact that real-
world systems and polices are too complex to describe as
Turing machines, constantly checking if the machine is still
secure is likely prohibitively time consuming. However,
real-time security is at least achievable theoretically, unlike
the general notion of machine security. This validates the
generally accepted assumption that detecting vulnerabilities
is an easier problem than preventing them.

9. Example Machine and Policy

Since our definitions depend on configurations, we must
fully specify the Turing machine and policy to determine
if a machine is insecure or real-time secure. While it is
possible to provide a Turing machine and security policy il-
lustrating vulnerabilities such as buffer overflows, the com-
plexity of the specification overwhelms the example itself.
We have instead chosen to provide a simple example Turing
machine and security policy to illustrate the concepts of in-
security and real-time security. This example illustrates the
use of configurations in determining these properties with-
out burying the reader in the details of a more complicated
Turing machine specification.

Suppose we have a Turing machine M = (Q, £, T, J, qo,
Ga» ¢r) With input alphabet ¥ = {0,1,2,3,4,5,6,7,8,9},
tape alphabet I' = ¥ U {_} where . indicates a blank space
on the tape, and the states Q@ = {qo, ¢a, ¢: }- Let M take any
digit n on the tape and replace it with n 4+ 1 mod 10. This
gives the transition function:

5(qo,) = {(qo,a: + 1 mod 1Q,R) ifzex
(¢a, , R) otherwise

For example, given input 3579 the computation of our
Turing machine M would complete with 4680 on the tape
as show in the following computation history:

§03579.—4q 579 .
—46q 79 -
—468q 9 -
—4680q .
—4680 g

Our security policy could be that we never want a Fi-
bonacci number to appear on the tape. The language of Fi-
bonacci numbers is a decidable language, and hence there
exists a Turing machine F' which decides this language.
Therefore our policy P would be the language of tape con-
ditions P = L(F).

We know from section 8 that we can determine the real-
time security of a machine. For example, the only numbers

that appear on the tape given input 3579 are:
3579, 4579,4679, 4689, 4680

Since none of these are Fibonacci numbers, we can say for
input 3579, the machine M is always real-time secure with
respect to P.

However, is this system secure? We know from section
6 that we are unable to say M is secure. However, section
7 tells us we may be able to determine if M is insecure.
Consider the input 1484. The Turing machine will compute
as follows:

Go1484_—2qy484.
25 qy84.

Notice here that number 2584 appears on the tape, and
is a Fibonacci number (with n = 18). At this point, we can
say that M is not currently real-time secure, and further-
more that M is insecure with respect to its security policy.

10. Related Work

Other models of vulnerabilities generally assume an un-
stated policy or model flaws generally accepted to be vul-
nerabilities, for example buffer overflows. For example,
Chen et al. [5] use a finite state machine model to rea-
son about vulnerabilities identified in the bugtraq database,
a standard repository of information about vulnerabilities.
They then use this model to reason about other (potential)
vulnerabilities. Throughout, the authors assume that buffer
overflows are vulnerabilities. This is true when the over-
flow allows a user to add privileges which that user is not
authorized to have. But buffer overflows in unprivileged
programs do not do this, and so under most policies are not
vulnerabilities.

Our work is more general, in that it takes policy into ac-
count. Further, it provides a mechanism to define explicit
conditions that compose the vulnerability.

Much work has applied modeling to specific systems and
situations in order to analyze vulnerabilities. Shahriari and
Jalili [6] use a variant of the Take-Grant Protection Model
to analyze vulnerabilities in networks. Zakeri et al. [7] have
used description logic to model the TCP/IP protocol to find
vulnerabilities. Frantzen et al. have applied dataflow mod-
els to analyze vulnerabilities in firewalls. This work points
out the value of applying formal modeling to systems. Our
work speaks more to the characterization of what vulner-
abilities are and how they interact with different layers of
policies, and is not tied to any particular system.

The use of formal models to analyze attacks and tech-
niques for attacks relates to our work in that the attacks
set up conditions needed to exploit vulnerabilities. Clearly,
the conditions that must hold for attacks to succeed are

those that create one or more vulnerabilities. Templeton and
Levitt captured this notion in their requires/provides model
[9]. Even though their model is informal, a formal model
analogous to ours can be readily constructed. At a higher
level, Jha et al. [10] treat vulnerabilities as aspects of safety
properties that can be violated, and uses that to develop at-
tack graphs automatically. Again, our work is more founda-
tional, and focuses on the definitions of what a vulnerability
is, and how to model it.

11. Conclusion

In practice, we do not have infinite time and comput-
ers do not have infinite memory. Problems which are solv-
able by Turing machines may take too much space or too
much time to solve on modern systems. Furthermore, mod-
ern systems and security policies are too complex to specify
as Turing machines.

However, theoretical work does place an upper bound
on what is achievable in computer security and suggests di-
rections to focus research. Our theoretical results suggest
measures of insecurity or real-time security may be more
achievable than measures of security.

Specifically, we show that it is theoretically impossible
to determine if a generic machine is secure with respect to
its security policy. The complement, computer insecurity,
is a problem we can recognize. We argue that any machine
claimed to be secure is in fact not known to be insecure.

We can avoid known insecurities, but we must never
grow complacent. A system which is not known to be inse-
cure today may become insecure tomorrow. Systems must
be continually checked for vulnerabilities or insecure cod-
ing practices. Emphasizing this is the notion of real-time
security, which we find to be a decidable problem. We are
able to determine if a machine is and has been secure, but
not if it will always be secure. Once a vulnerability is de-
tected, it may be addressed.

The “security” of voting systems is one example of
where these results may be applied. Vendors make claims
of security, but resist in-depth security code reviews. From
these results, we know that such reviews are necessary to
guarantee the system is not known to be insecure. This
necessity does not come from poor programming or weak
design, but from the very nature of security itself.

Finally, these results stress that methods for prevention
of vulnerabilities must be based on empirical knowledge.
We are only able to determine what makes a machine inse-
cure today, and may only guess from that what problems we
may face in the future.

While security versus insecurity may be an argument of
semantics, it is important. It shapes public perception, and
places emphasis on the evolving nature of the field. Much
of computer security today involves studying insecurity by

analyzing vulnerabilities and unsafe coding practices, or de-
tecting and reacting to real-time or static vulnerabilities.
Our work provides the theoretical foundation for intuition
already held by security professionals today.

References

[1] Bishop, M., Computer Security: Art and Science,
Addison-Wesley, Boston, 2003.

[2] Sipser, M., Introduction to the Theory of Computation,
PWS Publishing Company, Boston, 1997.

[3] Carlson, A., “The Unifying Policy Hierarchy Model,”
Master’s Thesis, University of California, Davis,
2006.

[4] Bishop, M., “Vulnerabilities Analysis,” Proceedings
of the Second International Symposium on Recent Ad-
vances in Intrusion Detection, September, 1999, pp.
125-136.

[5] S. Chen, Z. Kalbarczyk, J. Xu, and R. Iyer, “A Data-
Driven Finite State Machine Model For Analyzing Se-
curity Vulnerabilities,” Proceedings of the 2003 Inter-

national Conerence on Dependable Systems and Net-
works, June, 2003, pp. 605-614.

[6] H. Shahriari and R. Jalili, “Vulnerability Take Grant
(VTG): An Efficient Approach To Analyze Network
Vulnerabilities,” Computers and Security, 26(5), Au-
gust, 2007, pp. 349-360.

[7]1 R. Zakeri, R. Jalili, H. Shahriari, and H. Abolhassani,
“Using Description Logics for Network Vulnerability
Analysis,” Proceedings of the 2006 International Con-
ference on Systems and International Conference on

Mobile Communications and Learning Technologies,
April, 2006, pp. 78-83.

[8] M. Frantzen, F. Kerschbaum, E. Schultz, and S.
Fahmy, “A Framework for Understanding Vulnerabil-
ities in Firewalls Using a Dataflow Model of Firewall
Internals,” Computers and Security, 20(3), May, 2001,
pp. 263-270.

[9] S. Templeton and K. Levitt, “A Requires/Provides
Model for Computer Attacks,” Proceedings of the
2000 New Security Paradigms Workshop, September,
2000, pp. 31-38.

[10] S. Jha, O. Sheyner, and J. Wing, “Two Formal Analy-
ses of Attack Graphs,” Proceedings of the 2002 Com-
puter Security Foundations Workshop, June, 2002, pp.
49-63.

