
August 17, 2006

Principles and their Use

Matt Bishop
Dept. of Computer Science

University of California, Davis
One Shields Ave.

Davis, CA 95616-8562

email: bishop@cs.ucdavis.edu

1



August 17, 2006

Failure comes only when we forget our 
ideals and objectives and principles.

    
— Jawaharal Nehru

2



August 17, 2006

Outline

• Definition of “secure” software

• Quick review of Saltzer and Schroeder’s 
principles

• Example of applying one to software 
development

• Some thoughts on developing curricula 

3



August 17, 2006

What is “Secure” 
Software?

• CBK titled: “Software Assurance: A Guide to 
the Common Body of Knowledge to 
Produce, Acquire, and Sustain Secure 
Software”

• Security involves systems and system 
environments, not just software 

4



August 17, 2006

In This Talk …

• “Secure software” means:

1. The set of security requirements that the 
software is to satisfy is complete; and

2. The software is developed, deployed, and 
operated in a manner that provides 
sufficient assurance to assert that the 
software satisfies the security 
requirements.

5



August 17, 2006

Assurance

Definition 18-1. An entity is trustworthy if there is sufficient 
credible evidence leading one to believe that the system will 
meet a set of given requirements. Trust is a measure of 
trustworthiness, relying on the evidence provided.

Definition 18-2. Security assurance, or simply assurance, is 
confidence that an entity meets its security requirements, 
based on specific evidence provided by the application of 
assurance techniques.

— Computer Security: Art and Science (p. 478)

6



August 17, 2006

What Is a Principle?

• A fundamental truth or proposition that 
serves as the foundation for a system of 
belief or behavior or for a chain of reasoning

•  A general scientific theorem or law that 
has numerous special applications across a 
wide field.

• A natural law forming the basis for the 
construction or working of a machine : 
these machines all operate on the same 
general principle.

7



August 17, 2006

Why Saltzer and 
Schroeder?

• Widely recognized as good principles

• Applicable to wide variety of situations, 
systems, and abstractions

• Not bound to any particular technology

8



August 17, 2006

The Principles

• Least Privilege

• Fail-Safe Defaults

• Economy of Mechanism

• Complete Mediation

• Open Design 

• Separation of Privilege

• Least Common Mechanism

• Psychological Acceptability

9



August 17, 2006

Least Privilege

• A subject should be given only those 
privileges necessary to complete its task

• Function, not identity, controls

• Rights added as needed, discarded after 
use

• Minimal protection domain

10



August 17, 2006

Fail-Safe Defaults

• Default action is to deny access

• If action fails, system as secure as when 
action began

11



August 17, 2006

Economy of Mechanism

• Keep it as simple as possible

• KISS Principle; easier to analyze 
(“analyzability”)

• Simpler means less can go wrong

• And when errors occur, they are easier to 
understand and fix

• Interfaces and interactions

12



August 17, 2006

Complete Mediation

• Check every access

• Usually done once, on first action

• UNIX: access checked on open, not 
checked thereafter

• If permissions change after, may get 
unauthorized access

13



August 17, 2006

Open Design

• Security should not depend on secrecy of 
design or implementation

• Popularly misunderstood to mean that 
source code should be public

• “Security through obscurity” 

• Does not apply to information such as 
passwords or cryptographic keys

14



August 17, 2006

Separation of Privilege

• Require multiple conditions to grant 
privilege

• Separation of duty

• Defense in depth

• Use standard functions; avoid writing your 
own!

15



August 17, 2006

Least Common 
Mechanism

• Mechanisms should not be shared

• Information can flow along shared 
channels

• Covert channels

• Isolation

• Virtual machines

• Sandboxes

16



August 17, 2006

Psychological 
Acceptability

• Security mechanisms should not add to 
difficulty of accessing resource

• Hide complexity introduced by security 
mechanisms

• Ease of installation, configuration, use

• Human factors critical here

17



August 17, 2006

Those are my principles, and if you don't like 
them... well, I have others.

      
— Groucho Marx

18



August 17, 2006

Applying These

• Example here!

• Use “Principle of Psychological Acceptability” 
to develop points for secure software 
construction (Section 7 of SwACBK)

• What follows is not rigorous, but this 
technique can be made more rigorous than 
shown here

19



August 17, 2006

Basic Implications

• Make interfaces easy to use, hard to misuse

• User interfaces

• APIs, other internal interfaces

• Build using existing libraries and services

• Assume users, programmers will make 
mistakes

20



August 17, 2006

User Interfaces

• Create “mental model” of users

• What does user expect, and how will she 
approach using the program/system?

• What would confuse user?

• Confusing or conflicting names …

• Common error: thinking the user is a 
computer programmer or sophisticated

• Example: electronic voting systems

21



August 17, 2006

Programmer Interfaces

• Look for confusing library, function 
interfaces

• Inconsistencies in several similar interfaces 
(for example, arguments in different 
orders) or in use of arguments

• Assume other programmers will modify 
code

• Confusing or conflicting (operator) names

22



August 17, 2006

These Lead To …

• Validate all inputs

• Assume  malevolence and error

• Validation depends on what is done with 
inputs

• Do not assume correct configurations!

23



August 17, 2006

Language Selection

• Use an appropriate programming language

• “Appropriate” means suitable for the 
problem

• Consider security as one aspect of the 
problem

• Some languages provide better security 
features than others

• Use appropriate libraries, too!

24



August 17, 2006

Document

• Comments must match code

• Comments should be intelligible for the 
audience

• For programmers, document interfaces 
and choice of algorithms

• For administrators, document 
configuration parameters

25



August 17, 2006

Elements of Best 
Practices (§7.4)

• Minimize code size and complexity, and increase traceability: this will make the code easy to 
analyze

• Code with reuse and sustainability in mind: this will make code easy to understand by others
• Use a consistent coding style throughout the system: this is the objective of the coding 

standards described in subsection 7.2.4. 
• Make security a criterion when selecting programming languages to be used
• ... use input validation, compiler checks to verify correct language usage and flag “dangerous” 

constructs, ... absence of “dangerous” constructs and characters
• Use consistent naming and correct encapsulation
• Implement error and exception handling safely
• Program defensively: Use techniques such as information hiding and anomaly awareness
• Always assume that the seemingly impossible is possible: the history of increased 

sophistication, technical capability, and motivation of attackers shows that events, attacks, 
and faults that seem extremely unlikely when the software is written can become quite likely 
after it has been in operation for a while. Error and exception handling should be programmed 
explicitly to deal with as many “impossible” events as the programmer can imagine

• ... this includes never trusting parameters passed by the environment ...  always presuming 
client/user hostility (thus always validating all input from the client/user)

26



August 17, 2006

General Rules

• Paranoia

• They are out to get you!

• Stupidity

• If something can be misinterpreted, it will 
be

• Can’t happen

• Someone makes a change … now it can

27



August 17, 2006

Using This For Curricula

• Develop commonly agreed-upon principles

• From those, develop several types of 
curricula

• Training

• Undergraduate education

• Graduate education

28



August 17, 2006

Training

• Focus on particular systems, situations, or 
both

• Typically intensive, hands-on

• What you learn immediately applicable to 
particular systems, situations

• May not generalize beyond that

29



August 17, 2006

For This Domain

• Develop guidelines, “best practices” for 
particular environments from the principles

• Map principles into these and verify:

• Guidelines come from principles

• Principles that are not reflected in the 
guidelines don’t apply

• Very specific to environment, systems, etc.

30



August 17, 2006

Undergraduate 
Education

• Learn broad principles and their application

• Does not focus on particular system, 
environment

• Use case studies to illustrate, guide students 
to understanding principles and how to 
apply them in other, new environments

• And learn what questions to ask …

31



August 17, 2006

Master’s Education

• Expands on principles taught in 
undergraduate education

• Learn how to analyze problems and 
proposed solutions in depth 

• Learn how to identify, balance competing 
interests and how to apply different 
technologies to achieve balance

32



August 17, 2006

Doctoral Education

• Also builds on undergraduate education

• Analyze principles and extend, change, or 
improve them

• Or derive new ones

• Emphasizes fundamental research pushing 
boundaries of knowledge

• Results may not be immediately applicable

33



August 17, 2006

Applying Principles

• Do not tie teaching principles into any 
particular problem domain

• Curricula must be developed from principles 
to provide a coherent, organized foundation 
to the subject

• One curriculum will fail to meet the 
disparate needs of students, employee roles, 
and employers

34



August 17, 2006

Questions About the 
SwACBK

• How do you decide what “security” means?

• Are your mom’s security needs the same as 
mine?

• In general, separate discussions of functionality from 
assurance

• Organize chapters around principles

• Leads to good classifications

• Expand discussion of principles, concepts

• Much more on reference monitors, etc.

• Choose original reference sources

• Say why each reference is there
35



August 17, 2006

Conclusion

• Curricula in academia are best when based 
on principles

• Not tied to a specific domain area

• Instantiated to domain area as needed

• SwACBK is not structured to drive curricula 
development in academia, nor can it be in its 
current form

36



August 17, 2006

How To Do This

• Workshop to develop principles

• Need broad community acceptance to 
have an effect

• Work with academics who teach in the 
different educational environments to 
develop several model curricula for different 
types of education and institutions

37



August 17, 2006

Accept that increasing strength in software 
development will require a long-term effort and 

not have an immediate pay-off and require 
focusing on principles, not mechanics!

38

The mechanics will change with changes in
environment and technology

We need people who will be able to adapt
to these changes, and develop guidelines

that reflect the changes; this includes re-education



August 17, 2006

Changing a college curriculum is like moving a 
graveyard—you never know how many friends 
the dead have until you try to move them!

—  Woodrow Wilson

39


