
Evalua&ng	Secure	Programming	
Knowledge	
Ma6	Bishop,	UC	Davis	

Jun	Dai,	Cal	State	Sacramento	
Melissa	Dark,	Purdue	University	
Ida	Ngambeki,	Purdue	University	

Phillip	Nico,	Cal	Poly	San	Luis	Obispo	
Minghua	Zhu,	UC	Davis	

	
Special	thanks	to:	Somdu6a	Bose,	UC	Davis;	Steven	Belcher,	NSA	

May	30,	2017	 WISE	10	 1	



“Secure”	Programming	

•  Proper	defini&on:	programming	designed	to	
sa&sfy	a	security	policy	
– But	it	is	rarely	used	to	mean	this	…	

•  Usual	usage:	programming	designed	to	
prevent	problems	that	might	cause	security	
breaches	
– Hence	“defensive	programming”	or	“robust	
programming”	

May	30,	2017	 WISE	10	 2	



The	Problem	

•  SoYware	quality	is	poor	…	very	poor	
•  Classroom	teaching:	
–  In	regular	classes,	will	crowd	out	exis&ng	content	
– Also,	many	faculty	don’t	know	(or	don’t	care)	
about	this;	they	focus	on	class	content	

–  In	a	class	focusing	on	this,	can’t	require	all	
students	to	take	it	as	schedules	full	

– Also	that	won’t	help	non-CS	students!	

May	30,	2017	 WISE	10	 3	



Hey,	how	do	I	get	to	Carnegie	Hall?	

Prac&ce,	Madam,	prac&ce!	

May	30,	2017	 WISE	10	 4	



Look	at	Humani&es,	Social	Sciences	

•  Think	of	a	wri&ng	clinic!	
– English	(and	other)	departments,	law	schools	
– Focus	on	grammar,	wri&ng	style,	organiza&on	
– And	not	content!	

•  Analogue	for	computer	science:	
– Focus	on	robust	programming	prac&ce,	coding	
style,	organiza&on	

– And	not	correctness	with	respect	to	the	
assignment!	

May	30,	2017	 WISE	10	 5	



Benefits	

•  Students	learn	robust	programming	
techniques	through	analysis	of	their	own	
programs	
– Tools	are	good;	students	learn	how	to	use	them,	
how	to	interpret	results	

•  Students	learn	robust	programming	
techniques	apply	to	all	programs,	not	only	to	a	
specific	class	or	assignment	

May	30,	2017	 WISE	10	 6	



How	We	Do	This	

•  Understand	how	students	think	about	robust	
programming	

•  Assess	whether	the	clinic	is	having	desired	
effect	on	student	understanding	of	robust	
programming	
– Pre-clinic	assessment	test	
– Post-clinic	assessment	test	

May	30,	2017	 WISE	10	 7	



Concept	Inventory	

	

	

	

	

	

	

	

	 	

	

	

	

	

	

	

	

	

	

	

Secure	
Programmer	

Code	Design	

Algorithms	SWA	Tools	Assumptions	 Programming	
Development	
Environment	

Inputs	 Bad	Code	

Memory	
Management	

Input	
Validation	

Authoritative	
Cryptography	

1	

2	3	 4	 5	 6	

7	 8	

9	 10	

11	

12	

A	B	

C	

D	

E	

F	

G	 H	

I	J	

K	

L	

M	N	 i	 ii	

iii	

iv	

v	

May	30,	2017	 WISE	10	 8	



Concept	Inventory	Key	
Very	Important	

1. Assume	whatever	can	go	wrong	will
2. Assume	any	input	is	going	to	be	malformed	or	not	what	you	expect
3. Do	not	make	a	security	decision	based	on	un-trusted	inputs
4. Check	that	all	arguments	are	of	the	correct	type	and	will	not	overflow	any	arrays	
5. Use	data	abstraction	to	enable	the	compiler	to	perform	rigorous	type	checking	and	to

enforce	constraints	on	values	and	lengths
6. Understand	the	context	in	which	the	program	will	execute
7. Validate	your	input	stream	to	ensure	that	the	commands	invoked	are	expected	and	no

other	commands	are	injected
8. When	performing	input	validation	take	into	account	how	programs	invoked	with	those

arguments	could	interpret	them
9. Avoid	hard	coded	passwords	and	secrets	in	your	program
10. Use	well	known	and	accepted	cryptographic	algorithms	and.	Don't	use	obsolete	or

deprecated	cryptographic	algorithms	or	create	your	own	algorithms
11. Use	well	known	and	accepted	cryptographic	random	number	generation.	Don't	use

obsolete	or	deprecated	cryptographic	algorithms	or	create	your	own	algorithms	
12. Many	tools	help	you	create	a	secure	program,	please	take	advantage	of	them

Somewhat	Important	

i. Hide	details	that	users	don't	need	to	know	about
ii. Avoid	side	effects	in	arguments	to	unsafe	macros.	If	a	developer	is	using	a	macro	that

uses	its	arguments	more	than	once,	then	the	developer	must	avoid	passing	any
arguments	with	side	effects	to	that	macro

iii. Use	parentheses	around	macro	replacement	lists.	Otherwise	operator	precedence	may
cause	the	expression	to	be	computed	in	unexpected	ways

iv. Minimize	the	scope	of	variables	and	functions.	This	prevents	many	unexpected	changes
to	the	variables	due	to	programming	error

v. When	the	memory	a	pointer	points	to	is	freed,	set	the	pointer	to	NULL.	Otherwise,
these	dangling	pointers	could	cause	writing	to	freed	memory,	and	create	a	double	free
vulnerability.

Important	

A. If	you	have	no	reason	to	trust	it,	don't	trust	it.	Take	greater	care	with	any	input	you	have
not	generated

B. If	it	cannot	happen,	check	for	it.	Someone	may	modify	the	program	in	such	a	way	that	it
can	happen	...	or	you	may	be	wrong

C. Do	not	use	input	or	constructor	string	functions	that	do	not	perform	any	bound
checking

D. Do	not	use	input	or	constructor	functions	that	cannot	check	the	length	of	the	input	
E. C	and	C++	compilers	generally	do	not	check	types	rigorously.	A	developer	can	increase

this	level	of	checking	by	turning	on	compiler	warnings,	which	will	often	catch	more	type
errors	than	if	they	are	not	used

F. Avoid	calls	to	malloc()	with	the	parameter	(number	of	bytes	to	be	allocated)	set	to	0.
Either	the	function	returns	NULL,	or	it	returns	a	pointer	to	space	that	cannot	be	used
without	overwriting	unallocated	memory

G. Control	the	input	values	when	possible	by	limiting	them	to	a	finite	set
H. Calling	functions	with	null	parameters	for	input	should	be	checked	for	and	defended

against
I. Type	conversion	issues	especially	for	cases	that	may	result	in	integer	wraparound	and

overflows
J. Rules	for	pointer	arithmetic	as	vulnerabilities	can	arise	when	addition	or	size	checks

involve	two	pointer	types
K. When	performing	input	validation	make	sure	that	any	validated	path	does	not	allow

escaping	from	a	restricted	directory
L. Before	creating	a	directory	or	file,	make	sure	you	have	set	the	correct	default

permission	specification
M. Be	wary	of	off	by	one	errors
N. When	using	format	string	functions,	make	sure	that	the	format	string	can	be

authenticated/trusted

May	30,	2017	 WISE	10	 9	



Example	Ques&on:	
Handling	User	Input	

Concept:	“If	you	have	no	reason	to	trust	it,	don't	trust	it.	Take	greater	
care	with	any	input	you	have	not	generated.”	
Ques&on:	User	input	can	be	unpredictable.	Which	of	the	following	is	
the	best	way	to	avoid	problems	processing	that	input?	
a)  Elevate	privileges	when	processing	user-provided	input,	to	ensure	

the	computa&on	can	be	done.	
b)  Drop	unnecessary	privileges	when	processing	user-provided	input,	

to	limit	the	effects	of	bad	user	input.	
c)  Keep	privileges	constant	whenever	possible,	for	more	readable	

code	that	is	easier	to	maintain	without	introducing	error.	
d)  Assign	elevated	privileges	to	a	new	process	or	thread	that	reads	the	

input	and	does	the	computa&on,	so	that	any	malicious	side-effects	
do	not	affect	the	primary	process	or	thread.	

e)  Keep	privileges	the	same	but	constrain	the	process	execu&on	in	a	
sandbox	so	that	any	malicious	side-effects	are	contained.	

	
May	30,	2017	 WISE	10	 10	



Example	Ques&on:	
Handling	User	Input	

Ques&on:	User	input	can	be	unpredictable.	Which	of	the	following	is	
the	best	way	to	avoid	problems	processing	that	input?	
a)  Elevate	privileges	when	processing	user-provided	input,	to	ensure	

the	computa&on	can	be	done.	5%	chose	this	
b)  Drop	unnecessary	privileges	when	processing	user-provided	input,	

to	limit	the	effects	of	bad	user	input.	18%	chose	this	
c)  Keep	privileges	constant	whenever	possible,	for	more	readable	

code	that	is	easier	to	maintain	without	introducing	error.	9%	chose	
this	

d)  Assign	elevated	privileges	to	a	new	process	or	thread	that	reads	the	
input	and	does	the	computa&on,	so	that	any	malicious	side-effects	
do	not	affect	the	primary	process	or	thread.		43%	chose	this	

e)  Keep	privileges	the	same	but	constrain	the	process	execu&on	in	a	
sandbox	so	that	any	malicious	side-effects	are	contained.	25%	
chose	this	

May	30,	2017	 WISE	10	 11	



Example	Ques&on:	
Indexing	Into	an	Array	

Concept:	“Check	parameters	to	ensure	that	all	arguments	are	of	the	
correct	type	and	will	not	overflow	any	arrays.”	
Ques&on:		Your	program	accepts	parameters	x,	y,	and	z	to	calculate	
the	posi&on	of	an	item	in	an	array	rela&ve	to	the	current	item	indexed	
by	ptr.	
101 newOffset = (x*colSize)+(y*rowSize)–z;
102 ptr = ptr + newOffset;
103 newObject = objectArray[ptr];
Which	of	the	following	is	true?	
a)  I	should	check	that	the	result	in	line	101	is	not	nega&ve.	
b)  I	should	check	that	the	result	in	line	101	is	not	null.	
c)  I	should	check	that	the	result	in	line	102	is	not	nega&ve.	
d)  I	should	check	that	the	result	in	line	102	is	not	null.	
	

May	30,	2017	 WISE	10	 12	



Example	Ques&on:	
Indexing	Into	an	Array	

Ques&on:		Your	program	accepts	parameters	x,	y,	and	z	to	calculate	
the	posi&on	of	an	item	in	an	array	rela&ve	to	the	current	item	indexed	
by	ptr.	
101 newOffset = (x*colSize)+(y*rowSize)–z;
102 ptr = ptr + newOffset;
103 newObject = objectArray[ptr];
Which	of	the	following	is	true?	
a)  I	should	check	that	the	result	in	line	101	is	not	nega&ve.	28%	chose	

this	
b)  I	should	check	that	the	result	in	line	101	is	not	null.	17%	chose	this	
c)  I	should	check	that	the	result	in	line	102	is	not	nega&ve.	38%	chose	

this	
d)  I	should	check	that	the	result	in	line	102	is	not	null.	17%	chose	this	

May	30,	2017	 WISE	10	 13	



Example	Ques&on:	
Handling	Missing	Data	

Concept:	“If	you	have	no	reason	to	trust	it,	don't	trust	it.	Take	greater	
care	with	any	input	you	have	not	generated.”	
Ques&on:		You	must	read	a	list	of	user	names	and	star&ng	date:	day,	
month,	year.	Then	your	program	must	sort	them	in	ascending	order	to	
create	a	list	of	users	by	seniority.	Some	start	dates	are	missing	the	day	
or	month	of	the	start	date.	This	list-sor&ng	func&on	may	be	used	
elsewhere,	or	tweaked	in	the	future.	Which	statement	below	is	the	
most	robust	way	to	handle	the	missing	data?	
a)  Ini&alize	the	variables	for	missing	informa&on	with	a	random	

plausible	value.	
b)  Leave	the	variables	for	missing	informa&on	unini&alized.	
c)  Ini&alize	the	variables	for	missing	informa&on	with	0.	
d)  Ini&alize	the	variables	for	missing	informa&on	with	the	maximum	

plausible	value.	

May	30,	2017	 WISE	10	 14	



Example	Ques&on:	
Handling	Missing	Data	

Concept:	“If	you	have	no	reason	to	trust	it,	don't	trust	it.	Take	greater	care	
with	any	input	you	have	not	generated.”	
Ques&on:		You	must	read	a	list	of	user	names	and	star&ng	date:	day,	month,	
year.	Then	your	program	must	sort	them	in	ascending	order	to	create	a	list	of	
users	by	seniority.	Some	start	dates	are	missing	the	day	or	month	of	the	start	
date.	This	list-sor&ng	func&on	may	be	used	elsewhere,	or	tweaked	in	the	
future.	Which	statement	below	is	the	most	robust	way	to	handle	the	missing	
data?	
a)  Ini&alize	the	variables	for	missing	informa&on	with	a	random	plausible	

value.	7%	chose	this	
b)  Leave	the	variables	for	missing	informa&on	unini&alized.	13%	chose	this	
c)  Ini&alize	the	variables	for	missing	informa&on	with	0.	57%	chose	this	
d)  Ini&alize	the	variables	for	missing	informa&on	with	the	maximum	plausible	

value.	22%	chose	this	

May	30,	2017	 WISE	10	 15	



Example	Ques&on:	
Pointer	Valida&on	

Concepts:	“Follow	the	rules	for	pointer	arithme&c	as	vulnerabili&es	
can	arise	when	addi&on	or	size	checks	involve	two	pointer	types”	
and	“Be	wary	of	off	by	one	errors.”	
Ques&on:	For	a	C	program	you	must	create	an	array	of	size	
integers.	You	write:		
1 unsigned long ∗start, ∗end; 
2 start = malloc(size∗sizeof (unsigned long)); 
Assuming	malloc	succeeds,	the	correct	value	for	end	can	be	
computed	by:		
a) end = start + size * sizeof(unsigned long);
b) end = start + size * (sizeof(unsigned long) - 1);
c) end = start + (size - 1) * sizeof(unsigned long);
d) end = start + size – 1;
e) end = start + sizeof(unsigned long) – 1;

May	30,	2017	 WISE	10	 16	



Example	Ques&on:	
Pointer	Valida&on	

Concepts:	“Follow	the	rules	for	pointer	arithme&c	as	vulnerabili&es	can	arise	
when	addi&on	or	size	checks	involve	two	pointer	types”	and	“Be	wary	of	off	
by	one	errors.”	
Ques&on:	For	a	C	program	you	must	create	an	array	of	size	integers.	You	
write:		
1 unsigned long ∗start, ∗end; 
2 start = malloc(size∗sizeof (unsigned long)); 
Assuming	malloc	succeeds,	the	correct	value	for	end	can	be	computed	by:		
a) end = start + size * sizeof(unsigned long); 10% chose this
b) end = start + size * (sizeof(unsigned long) - 1); 16% 

chose this
c) end = start + (size - 1) * sizeof(unsigned long); 31% 

chose this
d) end = start + size – 1; 20% chose this
e) end = start + sizeof(unsigned long) – 1; 16% chose this

May	30,	2017	 WISE	10	 17	



Example	Ques&on:	
Input	Valida&on	

Concepts:	“Assume	any	input	is	going	to	be	malformed	or	not	what	
you	expect.”	
Ques&on:		You	must	write	a	func&on	that	stores	an	integer	in	the	
des&na&on	pointed	to	by	value,	and	returns	an	integer	indica&ng	
success	or	failure.	You	start	with	this	func&on	prototype:		

 int getSeconds (int * secondsParameter ) 
Which	of	the	following	must	you	do	before	or	instead	of	any	of	the	
others?		
a)  I	must	dereference	the	pointer	to	get	the	memory	loca&on.	
b)  I	must	find	the	value	that	the	pointer	refers	to.	
c)  I	must	check	that	the	pointer	passed	in	does	not	already	have	a	

value.	
d)  I	must	check	that	the	pointer	passed	in	is	not	NULL.	

May	30,	2017	 WISE	10	 18	



Example	Ques&on:	
Input	Valida&on	

Concepts:	“Assume	any	input	is	going	to	be	malformed	or	not	what	you	
expect.”	
Ques&on:		You	must	write	a	func&on	that	stores	an	integer	in	the	des&na&on	
pointed	to	by	value,	and	returns	an	integer	indica&ng	success	or	failure.	You	
start	with	this	func&on	prototype:		

 int getSeconds (int * secondsParameter ) 
Which	of	the	following	must	you	do	before	or	instead	of	any	of	the	others?		
a)  I	must	dereference	the	pointer	to	get	the	memory	loca&on.	10%	chose	this	
b)  I	must	find	the	value	that	the	pointer	refers	to.	8%	chose	this	
c)  I	must	check	that	the	pointer	passed	in	does	not	already	have	a	value.	13%	

chose	this	
d)  I	must	check	that	the	pointer	passed	in	is	not	NULL.	69%	chose	this	

May	30,	2017	 WISE	10	 19	



Analysis	

•  Analyze	test	ques&on,	distractors	
–  Item	effect:	which	students	with	a	high	overall	
score	got	a	par&cular	ques&on	correct	
•  –1.00	to	1.00	

–  Iden&fies	ques&ons	that	are	not	func&oning,	ie.	
low	or	nega&ve	correla&on	with	overall	score	

– This	implies	distractors	confuse	students	who	
know	the	material	

May	30,	2017	 WISE	10	 20	



Analysis	

May	30,	2017	 WISE	10	 21	



Conclusion	

•  Evalua&on	of	distractors	important	to	be	able	
to	measure	effec&veness	of	secure	
programming	clinic	

•  So	far,	3	schools	involved	in	the	clinic,	and	it	
has	been	run	for	3	different	classes	

•  Thus	far,	clinic	seems	to	be	effec&ve	
– But	we’re	s&ll	gathering	data	…	

May	30,	2017	 WISE	10	 22	



Weinberg’s	Second	Law	

If	builders	built	buildings	the	way	
programmers	wrote	programs	...	

the	first	woodpecker	to	come	along	
would	destroy	civiliza&on	

May	30,	2017	 WISE	10	 23	



Thanks	To	

Funded	by	NSF	under	Grant	No.	DGE-1303048	to	
Purdue	 University	 and	 Grant	 No.	 DGE-1303211	
to	the	University	of	California	at	Davis	
Any	 opinions,	 findings,	 and	 conclusions	 or	
recommenda&ons	expressed	in	this	material	are	
those	 of	 the	 author(s)	 and	 do	 not	 necessarily	
reflect	 the	 views	 of	 the	 Na&onal	 Science	
Founda&on,	 the	universi&es	 involved,	or	any	of	
our	pets	

May	30,	2017	 WISE	10	 24	



Presenter	
Ma6	Bishop	

Department	of	Computer	Science	
University	of	California	at	Davis	

1	Shields	Ave.	
Davis,	CA	95616-8562	

USA	
	

email:	mabishop@ucdavis.edu	
phone	+1	(530)	752-8060	
web:	h6p://seclab.cs.ucdavis.edu/~bishop	

May	30,	2017	 WISE	10	 25	


