Outline for February 21, 2003

Reading: text, §9.2.3–9.3

Discussion Problem

Analyzing a cipher requires being able to spot patterns. See how good you are. What is the pattern in the following?

Outline for the Day

- 1. DES
- 2. Public-Key Cryptography
 - a. Basic idea: 2 keys, one private, one public
 - b. Cryptosystem must satisfy:
 - i. given public key, CI to get private key;
 - ii. cipher withstands chosen plaintext attack;
 - iii. encryption, decryption computationally feasible [note: commutativity not required]
 - c. Benefits: can give confidentiality or authentication or both

3. RSA

- a. Provides both authenticity and confidentiality
- b. Go through algorithm:

Idea: $C = M^e \mod n$, $M = C^d \mod n$, with $ed \mod \phi(n) = 1$.

Proof: $M^{\phi(n)} \mod n = 1$ [by Fermat's theorem as generalized by Euler]; follows immediately from *ed* mod $\phi(n) = 1$.

Public key is (e, n); private key is d. Choose n = pq; then $\phi(n) = (p-1)(q-1)$.

c. Example:

 $p = 5, q = 7; n = 35, \phi(n) = (5-1)(7-1) = 24$. Pick d = 11. Then $de \mod \phi(n) = 1$, so choose e = 11. To encipher 2, $C = M^e \mod n = 2^{11} \mod 35 = 2048 \mod 35 = 18$, and $M = C^d \mod n = 18^{11} \mod 35 = 2$.

d. Example: p = 53, q = 61, n = 3233, φ(n) = (53-1)(61-1) = 3120. Take d = 791; then e = 71. Encipher M = RENAISSANCE: A = 00, B = 01, ..., Z = 25, blank = 26. Then: M = RE NA IS SA NC Eblank = 1704 1300 0818 1800 1302 0426

 $C = (1704)^{71} \mod 3233 = 3106; etc. = 3106\ 0100\ 0931\ 2691\ 1984\ 2927$