- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.

- 1. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 2. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B×M×F×H where: B set of current accesses (*i.e.*, access modes each subject has currently to each object); M access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject H hierarchy of system objects, functions h: O->P(O) with two properties: If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø There is no set { o₁, ..., o_k } ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is *R*
 - d. Set of decisions is *D*
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.