
Lecture for January 20, 2016

ECS 235A
UC Davis

Matt Bishop

January 20, 2016 Slide #1ECS 235A, Matt Bishop

Overview

•  Access control lists
•  Capability lists
•  Rings-based access control
•  Policies
•  Trust
•  Nature of Security Mechanisms
•  Policy Expression Languages
January 20, 2016 Slide #2ECS 235A, Matt Bishop

Access Control Lists
•  Columns of access control matrix
 file1 file2 file3
Andy rx r rwo
Betty rwxo r
Charlie rx rwo w
ACLs:
•  file1: { (Andy, rx) (Betty, rwxo) (Charlie, rx) }
•  file2: { (Andy, r) (Betty, r) (Charlie, rwo) }
•  file3: { (Andy, rwo) (Charlie, w) }

January 20, 2016 Slide #3ECS 235A, Matt Bishop

Default Permissions

•  Normal: if not named, no rights over file
– Principle of Fail-Safe Defaults

•  If many subjects, may use groups or
wildcards in ACL
– UNICOS: entries are (user, group, rights)

•  If user is in group, has rights over file
•  ‘*’ is wildcard for user, group

–  (holly, *, r): holly can read file regardless of her group
–  (*, gleep, w): anyone in group gleep can write file

January 20, 2016 Slide #4ECS 235A, Matt Bishop

Abbreviations
•  ACLs can be long … so combine users

–  UNIX: 3 classes of users: owner, group, rest
–  rwx rwx rwx

 rest
 group
 owner

–  Ownership assigned based on creating process
•  Most UNIX-like systems: if directory has setgid permission, file

group owned by group of directory (Solaris, Linux)

January 20, 2016 Slide #5ECS 235A, Matt Bishop

ACLs + Abbreviations
•  Augment abbreviated lists with ACLs

–  Intent is to shorten ACL

•  ACLs override abbreviations
–  Exact method varies

•  Example: IBM AIX
–  Base permissions are abbreviations, extended permissions are

ACLs with user, group
–  ACL entries can add rights, but on deny, access is denied

January 20, 2016 Slide #6ECS 235A, Matt Bishop

Permissions in IBM AIX
attributes:
base permissions
owner(bishop): rw-
group(sys): r--
others: ---

extended permissions enabled
specify rw- u:holly
permit -w- u:heidi, g=sys
permit rw- u:matt
deny -w- u:holly, g=faculty

January 20, 2016 Slide #7ECS 235A, Matt Bishop

ACL Modification

•  Who can do this?
– Creator is given own right that allows this
– System R provides a grant modifier (like a

copy flag) allowing a right to be transferred, so
ownership not needed

•  Transferring right to another modifies ACL

January 20, 2016 Slide #8ECS 235A, Matt Bishop

Privileged Users

•  Do ACLs apply to privileged users (root)?
– Solaris: abbreviated lists do not, but full-blown

ACL entries do
– Other vendors: varies

January 20, 2016 Slide #9ECS 235A, Matt Bishop

Groups and Wildcards
•  Classic form: no; in practice, usually

–  UNICOS:
•  holly : gleep : r

–  user holly in group gleep can read file
•  holly : * : r

–  user holly in any group can read file
•  * : gleep : r

–  any user in group gleep can read file

–  AIX: base perms gave group sys read only
permit -w- u:heidi, g=sys

line adds write permission for heidi when in that group

January 20, 2016 Slide #10ECS 235A, Matt Bishop

AIX ACL Algorithm
1.  Determine what set S of permissions the user has from the base

permissions.
2.  If extended permissions are disabled, stop. The set S is the

user’s set of permissions.
3.  Get the next entry in the extended permissions. If there are no

more, stop. The set S is the user’s set of permissions.
4.  If the entry has the same user and group as the process

requesting access, determine if the entry denies access. If so,
stop. Access is denied.

5.  Modify S as dictated by the permissions in the entry.
6.  Go to 3.

January 20, 2016 Slide #11ECS 235A, Matt Bishop

Conflicts
•  Deny access if any entry would deny access

–  AIX: if any entry denies access, regardless or rights
given so far, access is denied

•  Apply first entry matching subject
–  Cisco routers: run packet through access control rules

(ACL entries) in order; on a match, stop, and forward
the packet; if no matches, deny

•  Note default is deny so honors principle of fail-safe defaults

January 20, 2016 Slide #12ECS 235A, Matt Bishop

Handling Default Permissions

•  Apply ACL entry, and if none use defaults
– Cisco router: apply matching access control

rule, if any; otherwise, use default rule (deny)
•  Augment defaults with those in the

appropriate ACL entry
– AIX: extended permissions augment base

permissions

January 20, 2016 Slide #13ECS 235A, Matt Bishop

Revocation Question

•  How do you remove subject’s rights to a
file?
– Owner deletes subject’s entries from ACL, or

rights from subject’s entry in ACL
•  What if ownership not involved?

– Depends on system
– System R: restore protection state to what it

was before right was given
•  May mean deleting descendent rights too …

January 20, 2016 Slide #14ECS 235A, Matt Bishop

Windows 7 NTFS ACLs
•  Different sets of rights

–  Basic: read, write, execute, delete, change permission, take
ownership

–  Generic: no access, read (read/execute), change (read/write/
execute/delete), full control (all), special access (assign any of the
basics)

–  Directory: no access, read (read/execute files in directory), list,
add, add and read, change (create, add, read, execute, write files;
delete subdirectories), full control, special access

January 20, 2016 Slide #15ECS 235A, Matt Bishop

Accessing Files

•  User not in file’s ACL nor in any group
named in file’s ACL: deny access

•  ACL entry denies user access: deny access
•  Take union of rights of all ACL entries

giving user access: user has this set of rights
over file

January 20, 2016 Slide #16ECS 235A, Matt Bishop

Example
•  Paul, Quentin in group students
•  Quentin, Regina in group staff
•  ACL entries for e:\stuff

1.  staff, create files/write data, allow
2.  Quentin, delete subfolders and files, allow
3.  students, delete subfolders and files, deny

•  Regina can create files or subfolders (1)
•  Quentin cannot delete subfolders and files

–  Even with 2; Quentin in students, and explicit deny in 3
overrides allow in 2

January 20, 2016 Slide #17ECS 235A, Matt Bishop

More Example

•  Regina wants to create folder e:\stuff\plugh
and set it up so:
– Paul doesn’t have delete subfolders and files

access
– Quentin has delete subfolders and files access

•  How does she do this?

January 20, 2016 Slide #18ECS 235A, Matt Bishop

How She Does It

staff, create files/write data, allow
Quentin, delete subfolder and files, allow
students, delete subfolder and files, deny

Inherited from e:\stuff:

Paul, delete subfolders and files, deny

January 20, 2016 Slide #19ECS 235A, Matt Bishop

Capability Lists
•  Rows of access control matrix
 file1 file2 file3
Andy rx r rwo
Betty rwxo r
Charlie rx rwo w
C-Lists:
•  Andy: { (file1, rx) (file2, r) (file3, rwo) }
•  Betty: { (file1, rwxo) (file2, r) }
•  Charlie: { (file1, rx) (file2, rwo) (file3, w) }

January 20, 2016 Slide #20ECS 235A, Matt Bishop

Semantics

•  Like a bus ticket
–  Mere possession indicates rights that subject has over

object
–  Object identified by capability (as part of the token)

•  Name may be a reference, location, or something else
–  Architectural construct in capability-based addressing;

this just focuses on protection aspects
•  Must prevent process from altering capabilities

–  Otherwise subject could change rights encoded in
capability or object to which they refer

January 20, 2016 Slide #21ECS 235A, Matt Bishop

Implementation

•  Tagged architecture
–  Bits protect individual words

•  B5700: tag was 3 bits and indicated how word was to be
treated (pointer, type, descriptor, etc.)

•  Paging/segmentation protections
–  Like tags, but put capabilities in a read-only segment or

page
•  EROS does this

–  Programs must refer to them by pointers
•  Otherwise, program could use a copy of the capability—which

it could modify

January 20, 2016 Slide #22ECS 235A, Matt Bishop

Implementation (con’t)

•  Cryptography
–  Associate with each capability a cryptographic checksum

enciphered using a key known to OS
–  When process presents capability, OS validates checksum
–  Example: Amoeba, a distributed capability-based system

•  Capability is (name, creating_server, rights, check_field) and is given
to owner of object

•  check_field is 48-bit random number; also stored in table
corresponding to creating_server

•  To validate, system compares check_field of capability with that
stored in creating_server table

•  Vulnerable if capability disclosed to another process

January 20, 2016 Slide #23ECS 235A, Matt Bishop

Amplifying

•  Allows temporary increase of privileges
•  Needed for modular programming

–  Module pushes, pops data onto stack
module stack … endmodule.

–  Variable x declared of type stack
var x: module;

–  Only stack module can alter, read x
•  So process doesn’t get capability, but needs it when x is referenced —

a problem!
–  Solution: give process the required capabilities while it is in

module

January 20, 2016 Slide #24ECS 235A, Matt Bishop

Examples

•  HYDRA: templates
–  Associated with each procedure, function in module
–  Adds rights to process capability while the procedure or function is

being executed
–  Rights deleted on exit

•  Intel iAPX 432: access descriptors for objects
–  These are really capabilities
–  1 bit in this controls amplification
–  When ADT constructed, permission bits of type control object set

to what procedure needs
–  On call, if amplification bit in this permission is set, the above bits

or’ed with rights in access descriptor of object being passed

January 20, 2016 Slide #25ECS 235A, Matt Bishop

Revocation

•  Scan all C-lists, remove relevant capabilities
–  Far too expensive!

•  Use indirection
–  Each object has entry in a global object table
–  Names in capabilities name the entry, not the object

•  To revoke, zap the entry in the table
•  Can have multiple entries for a single object to allow control of

different sets of rights and/or groups of users for each object
–  Example: Amoeba: owner requests server change random number

in server table
•  All capabilities for that object now invalid

January 20, 2016 Slide #26ECS 235A, Matt Bishop

Heidi (High)

Lou (Low)

Lough (Low)

rw*lough

rw*lough

C-List

r*lough
C-List

Heidi (High)

Lou (Low)

Lough (Low)

rw*lough

rw*lough

C-List

r*lough
C-List

rw*lough

•  Problems if you don’t control copying of capabilities

The capability to write file lough is Low, and Heidi is High
so she reads (copies) the capability; now she can write to a
Low file, violating the *-property!

Limits

January 20, 2016 Slide #27ECS 235A, Matt Bishop

Remedies
•  Label capability itself

–  Rights in capability depends on relation between its
compartment and that of object to which it refers

•  In example, as as capability copied to High, and High
dominates object compartment (Low), write right removed

•  Check to see if passing capability violates security
properties
–  In example, it does, so copying refused

•  Distinguish between “read” and “copy capability”
–  Take-Grant Protection Model does this (“read” and

“take”)

January 20, 2016 Slide #28ECS 235A, Matt Bishop

ACLs vs. Capabilities
•  Both theoretically equivalent; consider 2 questions

1.  Given a subject, what objects can it access, and how?
2.  Given an object, what subjects can access it, and how?
–  ACLs answer second easily; C-Lists, first

•  Suggested that the second question, which in the
past has been of most interest, is the reason ACL-
based systems more common than capability-based
systems
–  As first question becomes more important (in incident

response, for example), this may change

January 20, 2016 Slide #29ECS 235A, Matt Bishop

Privileges

•  In Linux, used to override or add access
restrictions by adding, masking rights
–  Not capabilities as no particular object associated

with the (added or deleted) rights
•  3 sets of privileges

–  Bounding set (all privileges process may assert)
–  Effective set (current privileges process may assert)
–  Saved set (rights saved for future purpose)

•  Example: UNIX effective, saved UID
January 20, 2016 Slide #30ECS 235A, Matt Bishop

Trusted Solaris

•  Associated with each executable:
– Allowed set (AS) are privileges assigned to

process created by executing file
– Forced set (FS) are privileges process must

have when it begins execution
– FS ⊆AS

January 20, 2016 Slide #31ECS 235A, Matt Bishop

Trusted Solaris Privileges
Four sets:
•  Inheritable set (IS): privileges inherited from parent

process
•  Permitted set (PS): all privileges process may assert;

defined as (FS ∪ IS) ∩ AS
–  Corresponds to bounding set

•  Effective set (ES): privileges program requires for
current task; initially, PS

•  Saved set (SS): privileges inherited from parent
process and allowed for use; that is, IS ∩ AS

January 20, 2016 Slide #32ECS 235A, Matt Bishop

Bracketing Effective Privileges

•  Process needs to read file at particular point
•  file_mac_read, file_dac_read ∈ PS, ES
•  Initially, program deletes these from ES

–  So they can’t be used
•  Just before reading file, add them back to ES

–  Allowed as these are in PS
•  When file is read, delete from ES

–  And if no more reading, can delete from PS

January 20, 2016 Slide #33ECS 235A, Matt Bishop

Ring-Based Access Control

…Privileges
increase 0 1 n

•  Process (segment) accesses
another segment

•  Read
•  Execute

•  Gate is an entry point for
calling segment

•  Rights:
•  r read
•  w write
•  a append
•  e execute

January 20, 2016 Slide #34ECS 235A, Matt Bishop

Reading/Writing/Appending

•  Procedure executing in ring r
•  Data segment with access bracket (a1, a2)
•  Mandatory access rule

–  r ≤ a1 allow access
–  a1 < r ≤ a2 allow r access; not w, a access
–  a2 < r deny all access

January 20, 2016 Slide #35ECS 235A, Matt Bishop

Executing
•  Procedure executing in ring r
•  Call procedure in segment with access bracket (a1,

a2) and call bracket (a2, a3)
–  Often written (a1, a2 , a3)

•  Mandatory access rule
–  r < a1 allow access; ring-crossing fault
–  a1 ≤ r ≤ a2 allow access; no ring-crossing fault
–  a2 < r ≤ a3 allow access if through valid gate
–  a3 < r deny all access

January 20, 2016 Slide #36ECS 235A, Matt Bishop

Versions

•  Multics
–  8 rings (from 0 to 7)

•  Intel’s Itanium chip
–  4 levels of privilege: 0 the highest, 3 the lowest

•  Older systems
–  2 levels of privilege: user, supervisor

January 20, 2016 Slide #37ECS 235A, Matt Bishop

