
Lecture for January 29, 2016

ECS 235A
UC Davis

Matt Bishop

January 29, 2016 Slide #1ECS 235A, Matt Bishop

January 29, 2016 ECS 235A, Matt Bishop Slide #9-2

Cæsar’s Problem

•  Key is too short
– Can be found by exhaustive search
– Statistical frequencies not concealed well

•  They look too much like regular English letters

•  So make it longer
– Multiple letters in key
–  Idea is to smooth the statistical frequencies to

make cryptanalysis harder

January 29, 2016 ECS 235A, Matt Bishop Slide #9-3

Vigènere Cipher

•  Like Cæsar cipher, but use a phrase
•  Example

– Message THE BOY HAS THE BALL
– Key VIG
– Encipher using Cæsar cipher for each letter:

key VIGVIGVIGVIGVIGV
plain THEBOYHASTHEBALL
cipher OPKWWECIYOPKWIRG

January 29, 2016 ECS 235A, Matt Bishop Slide #9-4

Relevant Parts of Tableau

 G I V
A G I V
B H J W
E L M Z
H N P C
L R T G
O U W J
S Y A N
T Z B O
Y E H T

•  Tableau shown has
relevant rows, columns
only

•  Example encipherments:
–  key V, letter T: follow V

column down to T row
(giving “O”)

–  Key I, letter H: follow I
column down to H row
(giving “P”)

January 29, 2016 ECS 235A, Matt Bishop Slide #9-5

Useful Terms

•  period: length of key
–  In earlier example, period is 3

•  tableau: table used to encipher and decipher
– Vigènere cipher has key letters on top, plaintext

letters on the left
•  polyalphabetic: the key has several different

letters
– Cæsar cipher is monoalphabetic

January 29, 2016 ECS 235A, Matt Bishop Slide #9-6

Attacking the Cipher

•  Approach
– Establish period; call it n
– Break message into n parts, each part being

enciphered using the same key letter
– Now you have n Caesar ciphers, so solve each

part
•  You can leverage one part from another

January 29, 2016 ECS 235A, Matt Bishop Slide #9-7

One-Time Pad

•  A Vigenère cipher with a random key at least as
long as the message
–  Provably unbreakable
–  Why? Look at ciphertext DXQR. Equally likely to

correspond to plaintext DOIT (key AJIY) and to
plaintext DONT (key AJDY) and any other 4 letters

–  Warning: keys must be random, or you can attack the
cipher by trying to regenerate the key

•  Approximations, such as using pseudorandom number
generators to generate keys, are not random

January 29, 2016 ECS 235A, Matt Bishop

Overview of the DES
•  A block cipher:

–  encrypts blocks of 64 bits using a 64 bit key
–  outputs 64 bits of ciphertext

•  A product cipher
–  basic unit is the bit
–  performs both substitution and transposition

(permutation) on the bits
•  Cipher consists of 16 rounds (iterations) each with

a round key generated from the user-supplied key

Slide #10-8

How It Works

•  Round keys: for each round key
– Permute bits in key
– Extract 48 bits for round key

•  Heart of each round is f function:
– Expand R (E table), xor with round key
– Substitute every 6 bits with 4 bits (S boxes)
– Permute remaining 32 bits (P table)

January 29, 2016 ECS 235A, Matt Bishop Slide #10-9

How It Works

•  Full DES
– Permute 64 bit input (IP table)
– Split into left L, right R (32 bits each)
– Do this 16 times:

•  Run f function on R
•  Xor result with L; this is new L
•  If not last round, swap new L and R

– Permute 64 bits (IP-1 table); result is output

January 29, 2016 ECS 235A, Matt Bishop Slide #10-10

January 29, 2016 ECS 235A, Matt Bishop

Controversy

•  Considered too weak
– Diffie, Hellman said in a few years technology

would allow DES to be broken in days
•  Design using 1999 technology published

– Design decisions not public
•  S-boxes may have backdoors

Slide #10-11

January 29, 2016 ECS 235A, Matt Bishop

Undesirable Properties
•  4 weak keys

–  They are their own inverses
•  12 semi-weak keys

–  Each has another semi-weak key as inverse
•  Complementation property

–  DESk(m) = c ⇒ DESkʹ(mʹ) = cʹ
•  S-boxes exhibit irregular properties

–  Distribution of odd, even numbers non-random
–  Outputs of fourth box depends on input to third box

Slide #10-12

January 29, 2016 ECS 235A, Matt Bishop

Differential Cryptanalysis
•  A chosen ciphertext attack

–  Requires 247 plaintext, ciphertext pairs
•  Revealed several properties

–  Small changes in S-boxes reduce the number of pairs
needed

–  Making every bit of the round keys independent does
not impede attack

•  Linear cryptanalysis improves result
–  Requires 243 plaintext, ciphertext pairs

Slide #10-13

January 29, 2016 ECS 235A, Matt Bishop

DES Modes
•  Electronic Code Book Mode (ECB)

–  Encipher each block independently
•  Cipher Block Chaining Mode (CBC)

–  Xor each block with previous ciphertext block
–  Requires an initialization vector for the first one

•  Encrypt-Decrypt-Encrypt Mode (2 keys: k, kʹ)
–  c = DESk(DESkʹ

–1(DESk(m)))
•  Encrypt-Encrypt-Encrypt Mode (3 keys: k, kʹ, kʹʹ)

–  c = DESk(DESkʹ (DESkʹʹ(m)))

Slide #10-14

January 29, 2016 ECS 235A, Matt Bishop

CBC Mode Encryption

⊕

init. vector m1

DES

c1

⊕

m2

DES

c2

sent sent

…

…

…

Slide #10-15

January 29, 2016 ECS 235A, Matt Bishop

CBC Mode Decryption

⊕

init. vector c1

DES

m1

…

…

…

⊕

c2

DES

m2

Slide #10-16

January 29, 2016 ECS 235A, Matt Bishop

Self-Healing Property
•  Initial message

–  3231343336353837 3231343336353837
3231343336353837 3231343336353837

•  Received as (underlined 4c should be 4b)
–  ef7c4cb2b4ce6f3b f6266e3a97af0e2c
746ab9a6308f4256 33e60b451b09603d

•  Which decrypts to
–  efca61e19f4836f1 3231333336353837
3231343336353837 3231343336353837

–  Incorrect bytes underlined
–  Plaintext “heals” after 2 blocks

Slide #10-17

January 29, 2016 ECS 235A, Matt Bishop

Current Status of DES

•  Design for computer system, associated software
that could break any DES-enciphered message in a
few days published in 1998

•  Several challenges to break DES messages solved
using distributed computing

•  NIST selected Rijndael as Advanced Encryption
Standard, successor to DES
–  Designed to withstand attacks that were successful on

DES

Slide #10-18

January 29, 2016 ECS 235A, Matt Bishop

Overview of the AES
•  A block cipher

–  encrypts plaintext blocks of 128 bits
–  outputs 128 bits of ciphertext

•  A product cipher
•  3 key lengths: 128, 192, 256 bits
•  Cipher consists of rounds each with a round key

generated from the user-supplied key
–  Number of rounds depends on length of key
–  Numbers are 10, 12, 14 respectively

Slide #10-19

Basic Transformations

•  View input as a 4×4 array (the “state array”)
–  Input loaded down, going to next column when

each column is finished
–  Input and output of each round is in this

•  RotWord: rotate word by 1 byte
•  SubWord: apply an S-box to the byte
•  ShiftRows: cyclically shift rows
•  MixColumns: alter columns independently
January 29, 2016 ECS 235A, Matt Bishop Slide #10-20

How It Works

•  Round keys: 1 per round
– Divide key into 4-byte words

•  Key is 4, 6, 8 words depending on on length of key
– RotWord, SubWord, xor with bit string
– Xor result with corresponding word of previous

round (or initial key)

January 29, 2016 ECS 235A, Matt Bishop Slide #10-21

How It Works

•  Encryption
– AddRoundKey combines round key, state array

•  Now the rounds
–  SubBytes substitutes new byte values
–  ShiftRows cyclically shifts rows
– MixColumns alters each column independently
– AddRoundKey xors state array with round key

•  Last round omits MixColumns
January 29, 2016 ECS 235A, Matt Bishop Slide #10-22

How It Works

•  Decryption: similar to encryption but:
– Round key schedule reversed
–  InvShiftRows replaces ShiftRows

•  Inverts ShiftRows shifting
–  InvSubBytes replaces SubBytes

•  Inverts SubBytes substitution
–  InvMixColumns replaces MixColumns

•  Inverts MixColumns transformation

January 29, 2016 ECS 235A, Matt Bishop Slide #10-23

Properties

•  S-box design critical
–  Non-linear, output not linear function of input
–  Algebraic complexity: inverse of each byte

remapped with affine transformation
–  Result: no input ever mapped to itself or its bitwise

complement
•  Round keys non-linear with respect to original

keys
•  No weak or semiweak keys

January 29, 2016 ECS 235A, Matt Bishop Slide #10-24

Properties

•  Diffuses input bits rapidly
– After every 2 successive rounds, every bit in

state array depends on every bit in state array 2
rounds earlier

•  Designed to withstand the attacks that DES
showed weakness to
– Not vulnerable to differential, linear

cryptanalysis

January 29, 2016 ECS 235A, Matt Bishop Slide #10-25

Modes

•  All DES modes work with AES
– With obvious modifications about block size,

etc.
•  EDE, “Triple AES” modes not used

– Extended block, key size makes them
unnecessary

January 29, 2016 ECS 235A, Matt Bishop Slide #10-26

January 29, 2016 ECS 235A, Matt Bishop

Public Key Cryptography

•  Two keys
– Private key known only to individual
– Public key available to anyone

•  Public key, private key inverses

•  Idea
– Confidentiality: encipher using public key,

decipher using private key
–  Integrity/authentication: encipher using private

key, decipher using public one
Slide #10-27

January 29, 2016 ECS 235A, Matt Bishop

Requirements

1.  It must be computationally easy to
encipher or decipher a message given the
appropriate key

2.  It must be computationally infeasible to
derive the private key from the public key

3.  It must be computationally infeasible to
determine the private key from a chosen
plaintext attack

Slide #10-28

January 29, 2016 ECS 235A, Matt Bishop

Diffie-Hellman

•  Compute a common, shared key
– Called a symmetric key exchange protocol

•  Based on discrete logarithm problem
– Given integers n and g and prime number p,

compute k such that n = gk mod p
– Solutions known for small p
– Solutions computationally infeasible as p grows

large
Slide #10-29

January 29, 2016 ECS 235A, Matt Bishop

Algorithm
•  Constants: prime p, integer g ≠ 0, 1, p–1

–  Known to all participants
•  Anne chooses private key kAnne, computes public

key KAnne = gkAnne mod p
•  To communicate with Bob, Anne computes

Kshared = KBob
kAnne mod p

•  To communicate with Anne, Bob computes
Kshared = KAnne

kBob mod p
–  It can be shown these keys are equal

Slide #10-30

January 29, 2016 ECS 235A, Matt Bishop

Example

•  Assume p = 53 and g = 17
•  Alice chooses kAlice = 5

– Then KAlice = 175 mod 53 = 40
•  Bob chooses kBob = 7

– Then KBob = 177 mod 53 = 6
•  Shared key:

– KBob
kAlice mod p = 65 mod 53 = 38

– KAlice
kBob mod p = 407 mod 53 = 38

Slide #10-31

January 29, 2016 ECS 235A, Matt Bishop

RSA

•  Exponentiation cipher
•  Relies on the difficulty of determining the

number of numbers relatively prime to a
large integer n

Slide #10-32

January 29, 2016 ECS 235A, Matt Bishop

Background

•  Totient function φ(n)
–  Number of positive integers less than n and relatively

prime to n
•  Relatively prime means with no factors in common with n

•  Example: φ(10) = 4
–  1, 3, 7, 9 are relatively prime to 10

•  Example: φ(21) = 12
–  1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 are relatively

prime to 21

Slide #10-33

