
Lecture for February 3, 2016

ECS 235A
UC Davis

Matt Bishop

February 3, 2016 ECS 235A, Matt Bishop Slide #1

Public Key Cryptography

•  Two keys
– Private key known only to individual
– Public key available to anyone

•  Public key, private key inverses

•  Idea
– Confidentiality: encipher using public key,

decipher using private key
–  Integrity/authentication: encipher using private

key, decipher using public one
February 3, 2016 ECS 235A, Matt Bishop Slide #2

Requirements

1.  It must be computationally easy to
encipher or decipher a message given the
appropriate key

2.  It must be computationally infeasible to
derive the private key from the public key

3.  It must be computationally infeasible to
determine the private key from a chosen
plaintext attack

February 3, 2016 ECS 235A, Matt Bishop Slide #3

RSA

•  Exponentiation cipher
•  Relies on the difficulty of determining the

number of numbers relatively prime to a
large integer n

February 3, 2016 ECS 235A, Matt Bishop Slide #4

Background

•  Totient function φ(n)
–  Number of positive integers less than n and relatively

prime to n
•  Relatively prime means with no factors in common with n

•  Example: φ(10) = 4
–  1, 3, 7, 9 are relatively prime to 10

•  Example: φ(21) = 12
–  1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 are relatively

prime to 21

February 3, 2016 ECS 235A, Matt Bishop Slide #5

Algorithm

•  Choose two large prime numbers p, q
– Let n = pq; then φ(n) = (p–1)(q–1)
– Choose e < n such that e is relatively prime to
φ(n).

– Compute d such that ed mod φ(n) = 1
•  Public key: (e, n); private key: d
•  Encipher: c = me mod n
•  Decipher: m = cd mod n
February 3, 2016 ECS 235A, Matt Bishop Slide #6

Example: Confidentiality
•  Take p = 7, q = 11, so n = 77 and φ(n) = 60
•  Alice chooses e = 17, making d = 53
•  Bob wants to send Alice secret message HELLO

(07 04 11 11 14)
–  0717 mod 77 = 28
–  0417 mod 77 = 16
–  1117 mod 77 = 44
–  1117 mod 77 = 44
–  1417 mod 77 = 42

•  Bob sends 28 16 44 44 42
February 3, 2016 ECS 235A, Matt Bishop Slide #7

Example
•  Alice receives 28 16 44 44 42
•  Alice uses private key, d = 53, to decrypt message:

–  2853 mod 77 = 07
–  1653 mod 77 = 04
–  4453 mod 77 = 11
–  4453 mod 77 = 11
–  4253 mod 77 = 14

•  Alice translates message to letters to read HELLO
–  No one else could read it, as only Alice knows her

private key and that is needed for decryption
February 3, 2016 ECS 235A, Matt Bishop Slide #8

Example: Integrity/
Authentication

•  Take p = 7, q = 11, so n = 77 and φ(n) = 60
•  Alice chooses e = 17, making d = 53
•  Alice wants to send Bob message HELLO (07 04 11 11

14) so Bob knows it is what Alice sent (no changes in
transit, and authenticated)
–  0753 mod 77 = 35
–  0453 mod 77 = 09
–  1153 mod 77 = 44
–  1153 mod 77 = 44
–  1453 mod 77 = 49

•  Alice sends 35 09 44 44 49

February 3, 2016 ECS 235A, Matt Bishop Slide #9

Example
•  Bob receives 35 09 44 44 49
•  Bob uses Alice’s public key, e = 17, n = 77, to decrypt message:

–  3517 mod 77 = 07
–  0917 mod 77 = 04
–  4417 mod 77 = 11
–  4417 mod 77 = 11
–  4917 mod 77 = 14

•  Bob translates message to letters to read HELLO
–  Alice sent it as only she knows her private key, so no one else could have

enciphered it
–  If (enciphered) message’s blocks (letters) altered in transit, would not

decrypt properly

February 3, 2016 ECS 235A, Matt Bishop Slide #10

Example: Both
•  Alice wants to send Bob message HELLO both enciphered

and authenticated (integrity-checked)
–  Alice’s keys: public (17, 77); private: 53
–  Bob’s keys: public: (37, 77); private: 13

•  Alice enciphers HELLO (07 04 11 11 14):
–  (0753 mod 77)37 mod 77 = 07
–  (0453 mod 77)37 mod 77 = 37
–  (1153 mod 77)37 mod 77 = 44
–  (1153 mod 77)37 mod 77 = 44
–  (1453 mod 77)37 mod 77 = 14

•  Alice sends 07 37 44 44 14

February 3, 2016 ECS 235A, Matt Bishop Slide #11

Security Services

•  Confidentiality
– Only the owner of the private key knows it, so

text enciphered with public key cannot be read
by anyone except the owner of the private key

•  Authentication
– Only the owner of the private key knows it, so

text enciphered with private key must have
been generated by the owner

February 3, 2016 ECS 235A, Matt Bishop Slide #12

More Security Services

•  Integrity
– Enciphered letters cannot be changed

undetectably without knowing private key
•  Non-Repudiation

– Message enciphered with private key came
from someone who knew it

February 3, 2016 ECS 235A, Matt Bishop Slide #13

Warnings

•  Encipher message in blocks considerably
larger than the examples here
–  If 1 character per block, RSA can be broken

using statistical attacks (just like classical
cryptosystems)

– Attacker cannot alter letters, but can rearrange
them and alter message meaning

•  Example: reverse enciphered message of text ON to
get NO

February 3, 2016 ECS 235A, Matt Bishop Slide #14

Elliptic Curve Ciphers

•  y2 = x3 + ax + b
•  Curve for
 y2 = x3 + 4x + 10

February 3, 2016 ECS 235A, Matt Bishop Slide #15

Addition on the Curve

•  P1, P2 points on curve; draw line through
them
–  If P1 = P2, use tangent

•  Line intersects curve at P3 = (x3, y3)
– Define P4 = (x3, –y3) as sum of P1, P2

•  Line doesn’t intersect curve
– Take P1 = (x, y); treat ∞ as point of intersection
– Third point is P2 = (x, –y)

February 3, 2016 ECS 235A, Matt Bishop Slide #16

Mathematically

•  P1 = (x1, y1); P2 = (x2, y2)
–  If P1 ≠ P2, m = (y2 – y1)/(x2 – x1)
–  If P1 = P2, m = (3x1

2 + a)/2y1

•  Define P3 = (x3, y3) = P1 +E P2, where
–  x3 = m2 – x1 – x2

–  y3 = m(x1 – x3) – y1

•  Define P4 = –P3 = (x3, –y3)

February 3, 2016 ECS 235A, Matt Bishop Slide #17

A Hard Problem

•  Use modular arithmetic, mod p prime
y2 = x3 + ax + b mod p

where 4a3 + 27b2 ≠ 0
•  Let Q = nP = P +E … +E P, n large

– Generally computationally infeasible to find n
given P and Q

•  A version of the discrete log problem
– Given b (mod p) and bn (mod p), find n

February 3, 2016 ECS 235A, Matt Bishop Slide #18

Elliptic Curve Cryptosystem

•  Parameters (a, b, p, P)
•  Private key: randomly chosen integer k < p

–  In practice, this is less than the number of
integer points on the curve

•  Public key K = kP

February 3, 2016 ECS 235A, Matt Bishop Slide #19

ECC Version of Diffie-Hellman

•  Curve is y2 = x3 + 4x + 14 mod 2503
– Curve has 2477 integer points on it

•  P = (1002, 493)
•  kAlice = 1379

– Public key KAlice = kAliceP mod p = (1041, 1659)
•  kBob = 2011

– Public key KBob = kBobP mod p = (629, 548)

February 3, 2016 ECS 235A, Matt Bishop Slide #20

Communication

•  Alice, Bob want to derive common key
•  Bob computes:

–  kBobKAlice mod p = 2011(1041, 1659) mod 2503
= (2075, 2458)

•  Alice computes:
–  kAliceKBob mod p = 1379(629, 548) mod 2503

= (2075, 2458)

February 3, 2016 ECS 235A, Matt Bishop Slide #21

About the Curves

•  Parameters must be chosen carefully
– Example: if b = 0, p mod 4 = 3, underlying

(discrete log) problem much easier to solve
•  Keys much shorter than non-ECC versions

of cryptosystems
– Computation times shorter
– Example: ECC with key length of 246–383 bits

gives same level of security as RSA with
modulus 3072 bits

February 3, 2016 ECS 235A, Matt Bishop Slide #22

Cryptographic Checksums

•  Mathematical function to generate a set of k
bits from a set of n bits (where k ≤ n).
–  k is smaller then n except in unusual

circumstances
•  Example: ASCII parity bit

– ASCII has 7 bits; 8th bit is “parity”
– Even parity: even number of 1 bits
– Odd parity: odd number of 1 bits

February 3, 2016 ECS 235A, Matt Bishop Slide #23

Example Use

•  Bob receives “10111101” as bits.
– Sender is using even parity; 6 1 bits, so

character was received correctly
•  Note: could be garbled, but 2 bits would need to

have been changed to preserve parity
– Sender is using odd parity; even number of 1

bits, so character was not received correctly

February 3, 2016 ECS 235A, Matt Bishop Slide #24

Definition

•  Cryptographic checksum h: A→B:
1.  For any x ∈ A, h(x) is easy to compute
2.  For any y ∈ B, it is computationally infeasible to

find x ∈ A such that h(x) = y
3.  It is computationally infeasible to find two inputs x,

xʹ ∈ A such that x ≠ xʹ and h(x) = h(xʹ)
–  Alternate form (stronger): Given any x ∈ A, it is

computationally infeasible to find a different xʹ ∈ A
such that h(x) = h(xʹ).

February 3, 2016 ECS 235A, Matt Bishop Slide #25

Collisions

•  If x ≠ xʹ and h(x) = h(xʹ), x and xʹ are a
collision
– Pigeonhole principle: if there are n containers

for n+1 objects, then at least one container will
have 2 objects in it.

– Application: if there are 32 files and 8 possible
cryptographic checksum values, at least one
value corresponds to at least 4 files

February 3, 2016 ECS 235A, Matt Bishop Slide #26

Keys

•  Keyless cryptographic checksum: requires
no cryptographic key
– SHA family (-2, -3, -256, -512, etc.) is best

known; others include MD4, MD5 (both
broken), HAVAL (-128 broken), SHA-0
(broken), SHA-1 (simplified version broken)

•  Keyed cryptographic checksum: requires
cryptographic key
– HMAC version of keyless hash function

February 3, 2016 ECS 235A, Matt Bishop Slide #27

HMAC
•  Make keyed cryptographic checksums from

keyless cryptographic checksums
•  h keyless cryptographic checksum function that

takes data in blocks of b bytes and outputs blocks
of l bytes. kʹ is cryptographic key of length b bytes
–  If short, pad with 0 bytes; if long, hash to length b

•  ipad is 00110110 repeated b times
•  opad is 01011100 repeated b times
•  HMAC-h(k, m) = h(kʹ ⊕ opad || h(kʹ ⊕ ipad || m))

–  ⊕ exclusive or, || concatenation
February 3, 2016 ECS 235A, Matt Bishop Slide #28

Handling Keys
•  Key exchange

–  Session vs. interchange keys
–  Classical, public key methods
–  Key generation

•  Cryptographic key infrastructure
–  Certificates

•  Key revocation
•  Digital signatures

February 3, 2016 ECS 235A, Matt Bishop Slide #29

Notation

•  X → Y : { Z || W } kX,Y
–  X sends Y the message produced by concatenating Z

and W enciphered by key kX,Y, which is shared by users
X and Y

•  A → T : { Z } kA || { W } kA,T
–  A sends T a message consisting of the concatenation of

Z enciphered using kA, A’s key, and W enciphered
using kA,T, the key shared by A and T

•  r1, r2 nonces (nonrepeating random numbers)

February 3, 2016 ECS 235A, Matt Bishop Slide #30

Session, Interchange Keys
•  Alice wants to send a message m to Bob

–  Assume public key encryption
–  Alice generates a random cryptographic key ks and uses

it to encipher m
•  To be used for this message only
•  Called a session key

–  She enciphers ks with Bob;s public key kB
•  kB enciphers all session keys Alice uses to communicate with

Bob
•  Called an interchange key

–  Alice sends { m } ks { ks } kB

February 3, 2016 ECS 235A, Matt Bishop Slide #31

Benefits
•  Limits amount of traffic enciphered with single

key
–  Standard practice, to decrease the amount of traffic an

attacker can obtain
•  Prevents some attacks

–  Example: Alice will send Bob message that is either
“BUY” or “SELL”. Eve computes possible ciphertexts
{ “BUY” } kB and { “SELL” } kB. Eve intercepts
enciphered message, compares, and gets plaintext at
once

February 3, 2016 ECS 235A, Matt Bishop Slide #32

Key Exchange Algorithms

•  Goal: Alice, Bob get shared key
–  Key cannot be sent in clear

•  Attacker can listen in
•  Key can be sent enciphered, or derived from exchanged data

plus data not known to an eavesdropper
–  Alice, Bob may trust third party
–  All cryptosystems, protocols publicly known

•  Only secret data is the keys, ancillary information known only
to Alice and Bob needed to derive keys

•  Anything transmitted is assumed known to attacker

February 3, 2016 ECS 235A, Matt Bishop Slide #33

Classical Key Exchange

•  Bootstrap problem: how do Alice, Bob
begin?
– Alice can’t send it to Bob in the clear!

•  Assume trusted third party, Cathy
– Alice and Cathy share secret key kA

– Bob and Cathy share secret key kB

•  Use this to exchange shared key ks

February 3, 2016 ECS 235A, Matt Bishop Slide #34

Simple Protocol

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks } kA || { ks } kB

Alice Bob
{ ks } kB

February 3, 2016 ECS 235A, Matt Bishop Slide #35

Problems

•  How does Bob know he is talking to Alice?
– Replay attack: Eve records message from Alice

to Bob, later replays it; Bob may think he’s
talking to Alice, but he isn’t

– Session key reuse: Eve replays message from
Alice to Bob, so Bob re-uses session key

•  Protocols must provide authentication and
defense against replay

February 3, 2016 ECS 235A, Matt Bishop Slide #36

