
Lecture for February 5, 2016

ECS 235A
UC Davis

Matt Bishop

February 5, 2016 ECS 235A, Matt Bishop Slide #1

Needham-Schroeder

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || ks } kB } kA

Alice Bob
{ Alice || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

February 5, 2016 ECS 235A, Matt Bishop Slide #2

Argument: Alice talking to Bob

•  Second message
–  Enciphered using key only she, Cathy knows

•  So Cathy enciphered it
–  Response to first message

•  As r1 in it matches r1 in first message

•  Third message
–  Alice knows only Bob can read it

•  As only Bob can derive session key from message

–  Any messages enciphered with that key are from Bob

February 5, 2016 ECS 235A, Matt Bishop Slide #3

Argument: Bob talking to Alice

•  Third message
–  Enciphered using key only he, Cathy know

•  So Cathy enciphered it
–  Names Alice, session key

•  Cathy provided session key, says Alice is other party

•  Fourth message
–  Uses session key to determine if it is replay from Eve

•  If not, Alice will respond correctly in fifth message
•  If so, Eve can’t decipher r2 and so can’t respond, or responds

incorrectly

February 5, 2016 ECS 235A, Matt Bishop Slide #4

Denning-Sacco Modification

•  Assumption: all keys are secret
•  Question: suppose Eve can obtain session key.

How does that affect protocol?
–  In what follows, Eve knows ks

Eve Bob
{ Alice || ks } kB

Eve Bob
{ r2 } ks

Eve Bob
{ r2 – 1 } ks

February 5, 2016 ECS 235A, Matt Bishop Slide #11-5

Solution
•  In protocol above, Eve impersonates Alice
•  Problem: replay in third step

–  First in previous slide
•  Solution: use time stamp T to detect replay
•  Weakness: if clocks not synchronized, may either

reject valid messages or accept replays
–  Parties with either slow or fast clocks vulnerable to

replay
–  Resetting clock does not eliminate vulnerability

February 5, 2016 ECS 235A, Matt Bishop Slide #6

Needham-Schroeder with
Denning-Sacco Modification

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || T || ks } kB } kA

Alice Bob
{ Alice || T || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

February 5, 2016 ECS 235A, Matt Bishop Slide #7

Otway-Rees Protocol

•  Corrects problem
– That is, Eve replaying the third message in the

protocol
•  Does not use timestamps

– Not vulnerable to the problems that Denning-
Sacco modification has

•  Uses integer n to associate all messages
with particular exchange

February 5, 2016 ECS 235A, Matt Bishop Slide #8

The Protocol

Alice Bob
n || Alice || Bob || { r1 || n || Alice || Bob } kA

Cathy Bobn || Alice || Bob || { r1 || n || Alice || Bob } kA ||
{ r2 || n || Alice || Bob } kB

Cathy Bobn || { r1 || ks } kA || { r2 || ks } kB

Alice Bob
n || { r1 || ks } kA

February 5, 2016 ECS 235A, Matt Bishop Slide #9

Argument: Alice talking to Bob

•  Fourth message
–  If n matches first message, Alice knows it is

part of this protocol exchange
– Cathy generated ks because only she, Alice

know kA

– Enciphered part belongs to exchange as r1
matches r1 in encrypted part of first message

February 5, 2016 ECS 235A, Matt Bishop Slide #10

Argument: Bob talking to Alice

•  Third message
–  If n matches second message, Bob knows it is

part of this protocol exchange
– Cathy generated ks because only she, Bob know

kB

– Enciphered part belongs to exchange as r2
matches r2 in encrypted part of second message

February 5, 2016 ECS 235A, Matt Bishop Slide #11

Replay Attack
•  Eve acquires old ks, message in third step

–  n || { r1 || ks } kA || { r2 || ks } kB

•  Eve forwards appropriate part to Alice
–  Alice has no ongoing key exchange with Bob: n

matches nothing, so is rejected
–  Alice has ongoing key exchange with Bob: n does not

match, so is again rejected
•  If replay is for the current key exchange, and Eve sent the

relevant part before Bob did, Eve could simply listen to traffic;
no replay involved

February 5, 2016 ECS 235A, Matt Bishop Slide #12

Kerberos

•  Authentication system
–  Based on Needham-Schroeder with Denning-Sacco

modification
–  Central server plays role of trusted third party

(“Cathy”)
•  Ticket

–  Issuer vouches for identity of requester of service
•  Authenticator

–  Identifies sender

February 5, 2016 ECS 235A, Matt Bishop Slide #13

Idea

•  User u authenticates to Kerberos server
–  Obtains ticket Tu,TGS for ticket granting service (TGS)

•  User u wants to use service s:
–  User sends authenticator Au, ticket Tu,TGS to TGS asking

for ticket for service
–  TGS sends ticket Tu,s to user
–  User sends Au, Tu,s to server as request to use s

•  Details follow

February 5, 2016 ECS 235A, Matt Bishop Slide #14

Ticket

•  Credential saying issuer has identified ticket
requester

•  Example ticket issued to user u for service s
Tu,s = s || { u || u’s address || valid time || ku,s } ks

where:
–  ku,s is session key for user and service
–  Valid time is interval for which ticket valid
–  u’s address may be IP address or something else

•  Note: more fields, but not relevant here

February 5, 2016 ECS 235A, Matt Bishop Slide #15

Authenticator
•  Credential containing identity of sender of ticket

–  Used to confirm sender is entity to which ticket was
issued

•  Example: authenticator user u generates for
service s

Au,s = { u || generation time || kt } ku,s
where:
–  kt is alternate session key
–  Generation time is when authenticator generated

•  Note: more fields, not relevant here

February 5, 2016 ECS 235A, Matt Bishop Slide #16

Protocol

user Cathyuser || TGS

Cathy user{ ku,TGS } ku || Tu,TGS

user TGS
service || Au,TGS || Tu,TGS

user TGS
user || { ku,s } ku,TGS || Tu,s

user service
Au,s || Tu,s

user service
{ t + 1 } ku,s

February 5, 2016 ECS 235A, Matt Bishop Slide #17

Analysis

•  First two steps get user ticket to use TGS
– User u can obtain session key only if u knows

key shared with Cathy
•  Next four steps show how u gets and uses

ticket for service s
– Service s validates request by checking sender

(using Au,s) is same as entity ticket issued to
– Step 6 optional; used when u requests

confirmation
February 5, 2016 ECS 235A, Matt Bishop Slide #18

Problems

•  Relies on synchronized clocks
–  If not synchronized and old tickets,

authenticators not cached, replay is possible
•  Tickets have some fixed fields

– Dictionary attacks possible
– Kerberos 4 session keys weak (had much less

than 56 bits of randomness); researchers at
Purdue found them from tickets in minutes

February 5, 2016 ECS 235A, Matt Bishop Slide #19

Public Key Key Exchange

•  Here interchange keys known
–  eA, eB Alice and Bob’s public keys known to all
–  dA, dB Alice and Bob’s private keys known only to

owner
•  Simple protocol

–  ks is desired session key

Alice Bob
{ ks } eB

February 5, 2016 ECS 235A, Matt Bishop Slide #11-20

Problem and Solution

•  Vulnerable to forgery or replay
–  Because eB known to anyone, Bob has no assurance that

Alice sent message
•  Simple fix uses Alice’s private key

–  ks is desired session key

Alice Bob
{ { ks } dA } eB

February 5, 2016 ECS 235A, Matt Bishop Slide #11-21

Notes

•  Can include message enciphered with ks

•  Assumes Bob has Alice’s public key, and vice
versa
–  If not, each must get it from public server
–  If keys not bound to identity of owner, attacker Eve can

launch a man-in-the-middle attack (next slide; Cathy is
public server providing public keys)

•  Solution to this (binding identity to keys) discussed later as
public key infrastructure (PKI)

February 5, 2016 ECS 235A, Matt Bishop Slide #22

Man-in-the-Middle Attack

Alice Cathysend Bob’s public key

Eve Cathysend Bob’s public key

Eve Cathy
eB

Alice
eE Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts request

Eve intercepts message

February 5, 2016 ECS 235A, Matt Bishop Slide #23

Key Generation

•  Goal: generate keys that are difficult to guess
•  Problem statement: given a set of K potential keys,

choose one randomly
–  Equivalent to selecting a random number between 0

and K–1 inclusive
•  Why is this hard: generating random numbers

–  Actually, numbers are usually pseudo-random, that is,
generated by an algorithm

February 5, 2016 ECS 235A, Matt Bishop Slide #24

What is “Random”?

•  Sequence of cryptographically random numbers: a
sequence of numbers n1, n2, … such that for any
integer k > 0, an observer cannot predict nk even if
all of n1, …, nk–1 are known
–  Best: physical source of randomness

•  Random pulses
•  Electromagnetic phenomena
•  Characteristics of computing environment such as disk latency
•  Ambient background noise

February 5, 2016 ECS 235A, Matt Bishop Slide #25

What is “Pseudorandom”?

•  Sequence of cryptographically pseudorandom
numbers: sequence of numbers intended to
simulate a sequence of cryptographically random
numbers but generated by an algorithm
–  Very difficult to do this well

•  Linear congruential generators [nk = (ank–1 + b) mod n] broken
•  Polynomial congruential generators [nk = (ajnk–1

j + … + a1nk–1
a0) mod n] broken too

•  Here, “broken” means next number in sequence can be
determined

February 5, 2016 ECS 235A, Matt Bishop Slide #26

Best Pseudorandom Numbers

•  Strong mixing function: function of 2 or
more inputs with each bit of output
depending on some nonlinear function of all
input bits
– Examples: DES, MD5, SHA-1
– Use on UNIX-based systems:

(date; ps gaux) | md5
where “ps gaux” lists all information about all
processes on system

February 5, 2016 ECS 235A, Matt Bishop Slide #27

Cryptographic Key Infrastructure

•  Goal: bind identity to key
•  Classical: not possible as all keys are shared

–  Use protocols to agree on a shared key (see earlier)
•  Public key: bind identity to public key

–  Crucial as people will use key to communicate with
principal whose identity is bound to key

–  Erroneous binding means no secrecy between
principals

–  Assume principal identified by an acceptable name

February 5, 2016 ECS 235A, Matt Bishop Slide #28

