
Lecture for February 10, 2016

ECS 235A
UC Davis

Matt Bishop

February 10, 2016 ECS 235A, Matt Bishop Slide #1

Supporting Crypto

•  All parts of SSL use them
•  Initial phase: public key system exchanges

keys
– Messages enciphered using classical ciphers,

checksummed using cryptographic checksums
– Only certain combinations allowed

•  Depends on algorithm for interchange cipher
–  Interchange algorithms: RSA, Diffie-Hellman,

Fortezza
February 10, 2016 ECS 235A, Matt Bishop Slide #2

RSA: Cipher, MAC Algorithms in
SSL

Interchange cipher Classical cipher MAC Algorithm
RSA,
key ≤ 512 bits

 none MD5, SHA
RC4, 40-bit key MD5
RC2, 40-bit key, CBC mode MD5
DES, 40-bit key, CBC mode SHA

RSA None MD5, SHA
RC4, 128-bit key MD5, SHA
IDEA, CBC mode SHA
DES, CBC mode SHA
DES, EDE mode, CBC mode SHA

February 10, 2016 ECS 235A, Matt Bishop Slide #3

RSA: Cipher, MAC Algorithms �
in TLS

Interchange cipher Classical cipher MAC Algorithm
RSA None MD5, SHA,

SHA256
DES, EDE mode, CBC mode SHA
AES (128-bit key), CBC
mode

SHA, SHA256

AES (256-bit key), CBC
mode

SHA, SHA256

February 10, 2016 ECS 235A, Matt Bishop Slide #4

Diffie-Hellman: Types
•  Diffie-Hellman: certificate contains D-H

parameters, signed by a CA
–  DSS or RSA algorithms used to sign

•  Ephemeral Diffie-Hellman: DSS or RSA
certificate used to sign D-H parameters
–  Parameters not reused, so not in certificate

•  Anonymous Diffie-Hellman: D-H with neither
party authenticated
–  Use is “strongly discouraged” as it is vulnerable to

attacks
February 10, 2016 ECS 235A, Matt Bishop Slide #5

D-H: Cipher, MAC Algorithms in
SSL

Interchange cipher Classical cipher MAC Algorithm
Diffie-Hellman,
DSS or RSA
Certificate

DES, 40-bit key, CBC mode SHA
DES, CBC mode SHA
DES, EDE mode, CBC mode SHA

Diffie-Hellman,
key ≤ 512 bits
RSA Certificate

DES, 40-bit key, CBC mode SHA

February 10, 2016 ECS 235A, Matt Bishop Slide #6

D-H: Cipher, MAC Algorithms in
TLS

Interchange cipher Classical cipher MAC Algorithm
Diffie-Hellman,
DSS or RSA
Certificate

DES, EDE mode, CBC mode SHA
AES, 128-bit key, CBC mode SHA, SHA256
AES, 256-bit key, CBC mode SHA, SHA256

February 10, 2016 ECS 235A, Matt Bishop Slide #7

Ephemeral D-H: Cipher, MAC
Algorithms in SSL

Interchange cipher Classical cipher MAC Algorithm
Ephemeral Diffie-
Hellman,
DSS Certificate

DES, 40-bit key, CBC mode SHA
DES, CBC mode SHA
DES, EDE mode, CBC mode SHA

Ephemeral Diffie-
Hellman,
key ≤ 512 bits,
RSA Certificate

DES, 40-bit key, CBC mode SHA

February 10, 2016 ECS 235A, Matt Bishop Slide #8

Ephemeral D-H: Cipher, MAC
Algorithms in TLS

Interchange cipher Classical cipher MAC Algorithm
Ephemeral Diffie-
Hellman,
DSS or RSA
Certificate

DES, EDE mode, CBC mode SHA
AES, 128-bit key, CBC mode SHA, SHA256
AES, 256-bit key, CBC mode SHA, SHA256

February 10, 2016 ECS 235A, Matt Bishop Slide #9

Anonymous D-H: Cipher, MAC
Algorithms in SSL

Interchange cipher Classical cipher MAC Algorithm
Anonymous D-H,
DSS Certificate

RC4, 40-bit key MD5
RC4, 128-bit key MD5
DES, 40-bit key, CBC mode SHA
DES, CBC mode SHA
DES, EDE mode, CBC mode SHA

AnonymousDiffie-
Hellman,
key ≤ 512 bits,
RSA Certificate

RC4, 40-bit key MD5

DES, 40-bit key, CBC mode SHA

February 10, 2016 ECS 235A, Matt Bishop Slide #10

Anonymous D-H: Cipher, MAC
Algorithms in TLS

Interchange cipher Classical cipher MAC Algorithm
Anonymous D-H,
DSS Certificate

DES, EDE mode, CBC mode SHA
AES, 128-bit key, CBC mode SHA, SHA256
AES, 256-bit key, CBC mode SHA, SHA256

February 10, 2016 ECS 235A, Matt Bishop Slide #11

Fortezza: Cipher, MAC
Algorithms

Interchange cipher Classical cipher MAC Algorithm
Fortezza key
exchange

none SHA
RC4, 128-bit key MD5
Fortezza, CBC mode SHA

February 10, 2016 ECS 235A, Matt Bishop Slide #12

Digital Signatures

•  RSA
– Concatenate MD5 and SHA hashes
– Sign with public key

•  Diffie-Hellman, Fortezza
– Compute SHA hash
– Sign appropriately

February 10, 2016 ECS 235A, Matt Bishop Slide #13

SSL Record Layer

Message

Compressed
blocks

Compressed
blocks,

enciphered,
with MAC

MAC

February 10, 2016 ECS 235A, Matt Bishop Slide #14

Record Protocol Overview
•  Lowest layer, taking messages from higher

–  Max block size 16,384 bytes
–  Bigger messages split into multiple blocks

•  Construction
–  Block b compressed; call it bc
–  MAC computed for bc

•  If MAC key not selected, no MAC computed
–  bc, MAC enciphered

•  If enciphering key not selected, no enciphering done
–  SSL record header prepended

February 10, 2016 ECS 235A, Matt Bishop Slide #15

SSL MAC Computation
•  Symbols

–  h hash function (MD5 or SHA)
–  kw write MAC key of entity
–  ipad = 0x36, opad = 0x5C

•  Repeated to block length (from HMAC)
–  seq sequence number
–  SSL_comp message type
–  SSL_len block length

•  MAC
h(kw || opad || h(kw || ipad || seq || SSL_comp || SSL_len || block))

February 10, 2016 ECS 235A, Matt Bishop Slide #16

TLS MAC Computation
•  Symbols

–  h hash function (SHA256)
–  kw MAC write key of entity
–  seq sequence number
–  TLS_comp message type
–  TLS_vers version of TLS
–  TLS_len block length

•  MAC
h(kw || seq || TLS_comp || TLS_vers || TLS_len || block)

February 10, 2016 ECS 235A, Matt Bishop Slide #17

SSL Handshake Protocol

•  Used to initiate connection
– Sets up parameters for record protocol
–  4 rounds

•  Upper layer protocol
–  Invokes Record Protocol

•  Note: what follows assumes client, server
using RSA as interchange cryptosystem

February 10, 2016 ECS 235A, Matt Bishop Slide #18

Overview of Rounds

1.  Create SSL connection between client,
server

2.  Server authenticates itself
3.  Client validates server, begins key

exchange
4.  Acknowledgments all around

February 10, 2016 ECS 235A, Matt Bishop Slide #19

Handshake Round 1

Client Server
{ vC || r1 || sid || ciphers || comps }

Client Server
{v || r2 || sid || cipher || comp }

vC Client’s version of SSL
v Highest version of SSL that Client, Server both understand
r1, r2 nonces (timestamp and 28 random bytes)
s1 Current session id (0 if new session)
s2 Current session id (if s1 = 0, new session id)
ciphers Ciphers that client understands
comps Compression algorithms that client understand
cipher Cipher to be used
comp Compression algorithm to be used

February 10, 2016 ECS 235A, Matt Bishop Slide #20

Handshake Round 2

Client Server
{certificate}

Note: if Server not to authenticate itself, only last message sent; third
step omitted if Server does not need Client certificate
kS Server’s private key
ctype Certificate type requested (by cryptosystem)
gca Acceptable certification authorities
er2 End round 2 message

Client Server
{mod || exp || { h(r1 || r2 || mod || exp) } kS }

Client Server
{ctype || gca }

Client Server
{er2 }

February 10, 2016 ECS 235A, Matt Bishop Slide #21

Handshake Round 3

•  Both parties compute a master secret from a
given premaster
– Used to generate keys for reading and writing

February 10, 2016 ECS 235A, Matt Bishop Slide #22

Handshake Round 3, SSL master
master = MD5(pre || SHA(‘A’ || pre || r1 || r2) ||

MD5(pre || SHA(‘BB’ || pre || r1 || r2) ||
MD5(pre || SHA(‘CCC’ || pre || r1 || r2)

key_block = MD5(master || SHA(‘A’ || master || r1 || r2)) ||
MD5(master || SHA(‘BB’ || master || r1 || r2)) ||
MD5(master || SHA(‘CCC’ || master || r1 || r2)) ||
…

February 10, 2016 ECS 235A, Matt Bishop Slide #23

Handshake Round 3, TLS master
A(i) = HMAC_hash(secret, A(i–1)); A(0) = seed
P_hash(x, seed) = HMAC_hash(secret, A(1) || seed) ||

HMAC_hash(secret, A(2) || seed) ||
HMAC_hash(secret, A(3) || seed) || …

PRF(secret, label, seed) = P_hash(secret, label || seed)
master = PRF(pre, “master secret”, r1 || r2)
key_block = PRF(master, “key expansion”, r1 || r2)

February 10, 2016 ECS 235A, Matt Bishop Slide #24

Handshake Round 3

Client Server
{ pre }Kserver

msgs Concatenation of previous messages sent/received this handshake
opad, ipad As above

Client Server
{ h(master || opad || h(msgs || master || ipad)) }

Both Client, Server compute master secret master as in
the previous slides

February 10, 2016 ECS 235A, Matt Bishop Slide #25

Handshake Round 4

Client Server
{ h(master || opad || h(msgs || 0x434C4E54 || master || ipad)) }

msgs Concatenation of messages sent/received this handshake in
previous rounds (does notinclude these messages)

opad, ipad, master As above

Client Server
{ h(master || opad || h(msgs || master || ipad)) }

Server sends “change cipher spec” message using that protocol

Client Server

Client sends “change cipher spec” message using that protocol

Client Server

February 10, 2016 ECS 235A, Matt Bishop Slide #26

SSL Change Cipher Spec
Protocol

•  Send single byte
•  In handshake, new parameters considered
“pending” until this byte received
– Old parameters in use, so cannot just switch to

new ones

February 10, 2016 ECS 235A, Matt Bishop Slide #27

SSL Alert Protocol

•  Closure alert
– Sender will send no more messages
– Pending data delivered; new messages ignored

•  Error alerts
– Warning: connection remains open
– Fatal error: connection torn down as soon as

sent or received

February 10, 2016 ECS 235A, Matt Bishop Slide #28

SSL Alert Protocol Errors

•  Always fatal errors:
–  unexpected_message, bad_record_mac,

decompression_failure, handshake_failure,
illegal_parameter

•  May be warnings or fatal errors:
–  no_certificate, bad_certificate,

unsupported_certificate, certificate_revoked,
certificate_expired, certificate_unknown

February 10, 2016 ECS 235A, Matt Bishop Slide #29

SSL Application Data Protocol

•  Passes data from application to SSL Record
Protocol layer

February 10, 2016 ECS 235A, Matt Bishop Slide #30

SSL Issues

•  Heartbleed
–  Implementation bug

•  FREAK
– Exploits a crypto protocol with 40-bit keys

•  POODLE
– Exploits random padding

February 10, 2016 ECS 235A, Matt Bishop Slide #31

Heartbleed

•  SSL clients, servers may send a message
asking “are you alive”?
– Called a heartbeat

•  Packet body is:
–  length of data || data

•  Recipient sends back the data in the packet

February 10, 2016 ECS 235A, Matt Bishop Slide #32

The Attack

•  Send a heartbeat packet with length of data
set to a large number and the actual data
much smaller

packet length

packet header payload

length of data
data

February 10, 2016 ECS 235A, Matt Bishop Slide #33

What Happens

•  Recipient loads packet into buffer
–  Key: the buffer is not cleared!

•  Recipient reads length of data from the payload
field
–  Not the packet header!

•  Recipient returns that much data from the
buffer
–  Typically contains cookies, passwords, other good

stuff

February 10, 2016 ECS 235A, Matt Bishop Slide #34

FREAK

•  Goal: force client to use export-approved
encryption
– This means an RSA key under 512 bits and a

classical cryptosystem with a key length of 40
bits

– The RSA key can be factored in hours

February 10, 2016 ECS 235A, Matt Bishop Slide #35

Background

•  Some SSL cipher suites designed for use
when crypto was export-controlled
– Maximum key length allowed: 40 bits for

classical, 512 bits for RSA
•  Modern clients don’t offer it

– Export controls don’t apply here
•  But many accept it if it’s the only one the

server offers

February 10, 2016 ECS 235A, Matt Bishop Slide #36

Man-In-The-Middle Attack

Client Server
{certificate}

Client Server
{mod || exp || { h(r1 || r2 || mod || exp) } kS }

Client Server
{ctype || gca }

Client Server
{er2 }

February 10, 2016 ECS 235A, Matt Bishop Slide #37

Man-In-The-Middle Attack

Client

Server

{ vC || r1 || sid || ciphers || comps }

Client Server
{v || r2 || sid || export-grade || comp }

Attacker
{ vC || r1 || sid || export-grade || comps }

Client Server
{ pre }export-gradeserver

February 10, 2016 ECS 235A, Matt Bishop Slide #38

The Attack

•  In step 2, client accepts export-grade key
– Attacker then factors the modulus, computes

private key
•  In step 3, attacker deciphers message to get

pre; can then compute master, key_block,
and hence all keys

February 10, 2016 ECS 235A, Matt Bishop Slide #39

A Helpful Error

•  It can take hours to factor the modulus!
•  But … many servers generate export key

only when they start
– So compute that, and the results are good until

the server stops and restarts
– Apache was one of these

February 10, 2016 ECS 235A, Matt Bishop Slide #40

POODLE

•  This one finished off SSL 3.0
– Fixing it requires change to protocol and

implementation!
•  Goal: grab “secure” HTTPS cookies, other

interesting tokens (HTTP Authorization
header contents)

February 10, 2016 ECS 235A, Matt Bishop Slide #41

Assumptions

•  Using CBC encryption
•  Cipher block padding is not deterministic

– Nor is the padding included in the MAC
– Meaning: cannot verify integrity of padding

•  Padding is 1 block of L bytes
– Last byte contains L–1
– This assumption is for exposition only!

•  Size of cookie known
February 10, 2016 ECS 235A, Matt Bishop Slide #42

On Receiving Message …

•  Receives ciphertext is C1…Cn, with IV C0

•  Deciphers it as Pi = dk(Ci) ⊕ Ci–1

•  Get length of padding from last block of Pn
– Discard padding

•  Check MAC
–  If it matches, accept ciphertext
– Otherwise, reject ciphertext

February 10, 2016 ECS 235A, Matt Bishop Slide #43

The Attack

•  Replace Cn by Ci, where Ci is beginning of
interesting data
– Like a cookie

•  Ciphertext accepted if dk(Ci) ⊕ Cn–1 has L–1
as its value
– On average, happens 1 out of 28 = 256 times

February 10, 2016 ECS 235A, Matt Bishop Slide #44

How To Do This

•  Attacker injects JavaScript program into
victim’s browser
–  Or somehow gets a cookie-bearing HTTPS request

•  SSL records for message modified so that:
–  Padding fills an entire block Cn
–  Cookie’s first byte appears as final byte in earlier

block Ci

•  Replace Cn by Ci and forward message
•  If rejected, try with a new request
February 10, 2016 ECS 235A, Matt Bishop Slide #45

Why It Works

•  Assume each block Ci has 16 bytes Ci[0] …
Ci[15]

•  If server accepts modified ciphertext, last
block will be 15
– As padding is 15 bytes + last one

•  So dk(Ci[15]) ⊕ Cn–1[15] = 15
•  So Pi[15] = 15 ⊕ Cn–1[15] ⊕ Ci[15]

– And this is first byte of cookie!

February 10, 2016 ECS 235A, Matt Bishop Slide #46

Take It From There

•  As request path, request body under control
of attacker, change message so size is the
same but position of headers shifts
appropriately

February 10, 2016 ECS 235A, Matt Bishop Slide #47

Results

•  RFC 7568:
–  “SSLv3 MUST NOT be used. Negotiation of

SSLv3 from any version of TLS MUST NOT
be permitted.”

•  TLS not vulnerable as padding is not
random
– Each byte contains length of padding
– Recipient must check these values

February 10, 2016 ECS 235A, Matt Bishop Slide #48

Background: Entropy

•  Random variables
•  Joint probability
•  Conditional probability
•  Entropy (or uncertainty in bits)
•  Joint entropy
•  Conditional entropy
•  Applying it to secrecy of ciphers
February 10, 2016 ECS 235A, Matt Bishop Slide #49

Random Variable

•  Variable that represents outcome of an event
–  X represents value from roll of a fair die; probability for

rolling n: p(X = n) = 1/6
–  If die is loaded so 2 appears twice as often as other

numbers, p(X = 2) = 2/7 and, for n ≠ 2, p(X = n) = 1/7
•  Note: p(X) means specific value for X doesn’t

matter
–  Example: all values of X are equiprobable

February 10, 2016 ECS 235A, Matt Bishop Slide #50

Joint Probability

•  Joint probability of X and Y, p(X, Y), is
probability that X and Y simultaneously
assume particular values
–  If X, Y independent, p(X, Y) = p(X)p(Y)

•  Roll die, toss coin
–  p(X = 3, Y = heads) = p(X = 3)p(Y = heads) =

1/6 × 1/2 = 1/12

February 10, 2016 ECS 235A, Matt Bishop Slide #51

Two Dependent Events

•  X = roll of red die, Y = sum of red, blue die
rolls

•  Formula:
–  p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) =

1/108

p(Y=2) = 1/36 p(Y=3) = 2/36 p(Y=4) = 3/36 p(Y=5) = 4/36

p(Y=6) = 5/36 p(Y=7) = 6/36 p(Y=8) = 5/36 p(Y=9) = 4/36

p(Y=10) = 3/36 p(Y=11) = 2/36 p(Y=12) = 1/36

February 10, 2016 ECS 235A, Matt Bishop Slide #52

Conditional Probability

•  Conditional probability of X given Y, p(X|
Y), is probability that X takes on a particular
value given Y has a particular value

•  Continuing example …
–  p(Y=7|X=1) = 1/6
–  p(Y=7|X=3) = 1/6

February 10, 2016 ECS 235A, Matt Bishop Slide #53

Relationship

•  p(X, Y) = p(X | Y) p(Y) = p(X) p(Y | X)
•  Example:

–  p(X=3,Y =8) = p(X=3|Y =8) p(Y =8) = (1/5)
(5/36) = 1/36

•  Note: if X, Y independent:
–  p(X|Y) = p(X)

February 10, 2016 ECS 235A, Matt Bishop Slide #54

Entropy

•  Uncertainty of a value, as measured in bits
•  Example: X value of fair coin toss; X could

be heads or tails, so 1 bit of uncertainty
– Therefore entropy of X is H(X) = 1

•  Formal definition: random variable X,
values x1, …, xn; so Σi p(X = xi) = 1
H(X) = –Σi p(X = xi) lg p(X = xi)

February 10, 2016 ECS 235A, Matt Bishop Slide #55

Heads or Tails?

•  H(X) = – p(X=heads) lg p(X=heads)
– p(X=tails) lg p(X=tails)

 = – (1/2) lg (1/2) – (1/2) lg (1/2)
 = – (1/2) (–1) – (1/2) (–1) = 1

•  Confirms previous intuitive result

February 10, 2016 ECS 235A, Matt Bishop Slide #56

n-Sided Fair Die

H(X) = –Σi p(X = xi) lg p(X = xi)
As p(X = xi) = 1/n, this becomes
H(X) = –Σi (1/n) lg (1/ n) = –n(1/n) (–lg n)
so
H(X) = lg n
which is the number of bits in n, as expected

February 10, 2016 ECS 235A, Matt Bishop Slide #57

Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul
W represents the winner. What is its entropy?

–  w1 = Ann, w2 = Pam, w3 = Paul
–  p(W= w1) = p(W= w2) = 2/5, p(W= w3) = 1/5

•  So H(W) = –Σi p(W = wi) lg p(W = wi)
= – (2/5) lg (2/5) – (2/5) lg (2/5) – (1/5) lg (1/5)
= – (4/5) + lg 5 ≈ –1.52

•  If all equally likely to win, H(W) = lg 3 = 1.58

February 10, 2016 ECS 235A, Matt Bishop Slide #58

Joint Entropy

•  X takes values from { x1, …, xn }
– Σi p(X=xi) = 1

•  Y takes values from { y1, …, ym }
– Σi p(Y=yi) = 1

•  Joint entropy of X, Y is:
– H(X, Y) = –Σj Σi p(X=xi, Y=yj) lg p(X=xi, Y=yj)

February 10, 2016 ECS 235A, Matt Bishop Slide #59

Example

X: roll of fair die, Y: flip of coin
p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12

– As X and Y are independent
H(X, Y) = –Σj Σi p(X=xi, Y=yj) lg p(X=xi, Y=yj)
 = –2 [6 [(1/12) lg (1/12)]] = lg 12

February 10, 2016 ECS 235A, Matt Bishop Slide #60

Conditional Entropy

•  X takes values from { x1, …, xn }
–  Σi p(X=xi) = 1

•  Y takes values from { y1, …, ym }
–  Σi p(Y=yi) = 1

•  Conditional entropy of X given Y=yj is:
–  H(X | Y=yj) = –Σi p(X=xi | Y=yj) lg p(X=xi | Y=yj)

•  Conditional entropy of X given Y is:
–  H(X | Y) = –Σj p(Y=yj) Σi p(X=xi | Y=yj) lg p(X=xi | Y=yj)

February 10, 2016 ECS 235A, Matt Bishop Slide #61

Example
•  X roll of red die, Y sum of red, blue roll
•  Note p(X=1|Y=2) = 1, p(X=i|Y=2) = 0 for i ≠ 1

–  If the sum of the rolls is 2, both dice were 1
•  H(X|Y=2) = –Σi p(X=xi|Y=2) lg p(X=xi|Y=2) = 0
•  Note p(X=i,Y=7) = 1/6

–  If the sum of the rolls is 7, the red die can be any of 1,
…, 6 and the blue die must be 7–roll of red die

•  H(X|Y=7) = –Σi p(X=xi|Y=7) lg p(X=xi|Y=7)
 = –6 (1/6) lg (1/6) = lg 6

February 10, 2016 ECS 235A, Matt Bishop Slide #62

Perfect Secrecy

•  Cryptography: knowing the ciphertext does
not decrease the uncertainty of the plaintext

•  M = { m1, …, mn } set of messages
•  C = { c1, …, cn } set of messages
•  Cipher ci = E(mi) achieves perfect secrecy if

H(M | C) = H(M)

February 10, 2016 ECS 235A, Matt Bishop Slide #63

