
July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-1

Chapter 2: Access Control Matrix

• Overview
• Access Control Matrix Model

– Boolean Expression Evaluation
– History

• Protection State Transitions
– Commands
– Conditional Commands

• Special Rights
– Principle of Attenuation of Privilege

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-2

Overview

• Protection state of system
– Describes current settings, values of system

relevant to protection
• Access control matrix

– Describes protection state precisely
– Matrix describing rights of subjects
– State transitions change elements of matrix

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-3

Description

objects (entities)

su
bj

ec
ts

s1
s2

…

sn

o1 … om s1 … sn • Subjects S = { s1,…,sn }
• Objects O = { o1,…,om }
• Rights R = { r1,…,rk }
• Entries A[si, oj] ⊆ R
• A[si, oj] = { rx, …, ry }

means subject si has rights
rx, …, ry over object oj

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-4

Example 1

• Processes p, q
• Files f, g
• Rights r, w, x, a, o

f g p q
p rwo r rwxo w
q a ro r rwxo

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-5

Example 2

• Procedures inc_ctr, dec_ctr, manage
• Variable counter
• Rights +, –, call

counter inc_ctr dec_ctr manage
inc_ctr +
dec_ctr –
manage call call call

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-6

Boolean Expression Evaluation

• ACM controls access to database fields
– Subjects have attributes
– Verbs define type of access
– Rules associated with objects, verb pair

• Subject attempts to access object
– Rule for object, verb evaluated, grants or

denies access

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-7

Example

• Subject annie
– Attributes role (artist), groups (creative)

• Verb paint
– Default 0 (deny unless explicitly granted)

• Object picture
– Rule:

paint: ‘artist’ in subject.role and
‘creative’ in subject.groups and
time.hour ≥ 0 and time.hour < 5

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-8

ACM at 3AM and 10AM

… picture …

…
 a

nn
ie

 …

paint

At 3AM, time condition
met; ACM is:

… picture …

…
 a

nn
ie

 …

At 10AM, time condition
not met; ACM is:

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-9

History

Database:
name position age salary
Alice teacher 45 $40,000
Bob aide 20 $20,000
Cathy principal 37 $60,000
Dilbert teacher 50 $50,000
Eve teacher 33 $50,000

Queries:
1.sum(salary, “position = teacher”) = 140,000
2.sum(salary, “age > 40 & position = teacher”)
should not be answered (deduce Eve’s salary)

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-10

ACM of Database Queries
Oi = { objects referenced in query i }
f(oi) = { read } for oj ∈ Oi, if |∪j = 1,…,i Oj| < 2
f(oi) = ∅ for oj ∈ Oi, otherwise
1. O1 = { Alice, Dilbert, Eve } and no previous query set,

so:
 A[asker, Alice] = f(Alice) = { read }
 A[asker, Dilbert] = f(Dilbert) = { read }
 A[asker, Eve] = f(Eve) = { read }
and query can be answered

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-11

But Query 2

From last slide:
f(oi) = { read } for oj in Oi, if |∪j = 1,…,i Oj| > 1
f(oi) = ∅ for oj in Oi, otherwise
2. O2 = { Alice, Dilbert } but | O2 ∪ O1 | = 2 so

A[asker, Alice] = f(Alice) = ∅
A[asker, Dilbert] = f(Dilbert) = ∅
and query cannot be answered

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-12

State Transitions

• Change the protection state of system
• |– represents transition

– Xi |– τ Xi+1: command τ moves system from
state Xi to Xi+1

– Xi |– * Xi+1: a sequence of commands moves
system from state Xi to Xi+1

• Commands often called transformation
procedures

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-13

Primitive Operations
• create subject s; create object o

– Creates new row, column in ACM; creates new column in ACM
• destroy subject s; destroy object o

– Deletes row, column from ACM; deletes column from ACM
• enter r into A[s, o]

– Adds r rights for subject s over object o
• delete r from A[s, o]

– Removes r rights from subject s over object o

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-14

Create Subject

• Precondition: s ∉ S
• Primitive command: create subject s
• Postconditions:

– S′ = S ∪{ s }, O′ = O ∪{ s }
– (∀y ∈ O′)[a′[s, y] = ∅], (∀x ∈ S′)[a′[x, s] = ∅]
– (∀x ∈ S)(∀y ∈ O)[a′[x, y] = a[x, y]]

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-15

Create Object

• Precondition: o ∉ O
• Primitive command: create object o
• Postconditions:

– S′ = S, O′ = O ∪ { o }
– (∀x ∈ S′)[a′[x, o] = ∅]
– (∀x ∈ S)(∀y ∈ O)[a′[x, y] = a[x, y]]

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-16

Add Right

• Precondition: s ∈ S, o ∈ O
• Primitive command: enter r into a[s, o]
• Postconditions:

– S′ = S, O′ = O
– a′[s, o] = a[s, o] ∪ { r }
– (∀x ∈ S′)(∀y ∈ O′ – { o }) [a′[x, y] = a[x, y]]
– (∀x ∈ S′ – { s })(∀y ∈ O′) [a′[x, y] = a[x, y]]

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-17

Delete Right

• Precondition: s ∈ S, o ∈ O
• Primitive command: delete r from a[s, o]
• Postconditions:

– S′ = S, O′ = O
– a′[s, o] = a[s, o] – { r }
– (∀x ∈ S′)(∀y ∈ O′ – { o }) [a′[x, y] = a[x, y]]
– (∀x ∈ S′ – { s })(∀y ∈ O′) [a′[x, y] = a[x, y]]

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-18

Destroy Subject

• Precondition: s ∈ S
• Primitive command: destroy subject s
• Postconditions:

– S′ = S – { s }, O′ = O – { s }
– (∀y ∈ O′)[a′[s, y] = ∅], (∀x ∈ S′)[a´[x, s] = ∅]
– (∀x ∈ S′)(∀y ∈ O′) [a′[x, y] = a[x, y]]

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-19

Destroy Object

• Precondition: o ∈ O
• Primitive command: destroy object o
• Postconditions:

– S′ = S, O′ = O – { o }
– (∀x ∈ S′)[a′[x, o] = ∅]
– (∀x ∈ S′)(∀y ∈ O′) [a′[x, y] = a[x, y]]

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-20

Creating File

• Process p creates file f with r and w
permission
command create•file(p, f)

create object f;
enter own into A[p, f];
enter r into A[p, f];
enter w into A[p, f];

end

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-21

Mono-Operational Commands

• Make process p the owner of file g
command make•owner(p, g)

enter own into A[p, g];
end

• Mono-operational command
– Single primitive operation in this command

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-22

Conditional Commands

• Let p give q r rights over f, if p owns f
command grant•read•file•1(p, f, q)

if own in A[p, f]
then

enter r into A[q, f];
end

• Mono-conditional command
– Single condition in this command

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-23

Multiple Conditions

• Let p give q r and w rights over f, if p owns
f and p has c rights over q
command grant•read•file•2(p, f, q)

if own in A[p, f] and c in A[p, q]
then

enter r into A[q, f];
enter w into A[q, f];

end

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-24

Copy Right

• Allows possessor to give rights to another
• Often attached to a right, so only applies to

that right
– r is read right that cannot be copied
– rc is read right that can be copied

• Is copy flag copied when giving r rights?
– Depends on model, instantiation of model

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-25

Own Right

• Usually allows possessor to change entries
in ACM column
– So owner of object can add, delete rights for

others
– May depend on what system allows

• Can’t give rights to specific (set of) users
• Can’t pass copy flag to specific (set of) users

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-26

Attenuation of Privilege

• Principle says you can’t give rights you do
not possess
– Restricts addition of rights within a system
– Usually ignored for owner

• Why? Owner gives herself rights, gives them to
others, deletes her rights.

July 1, 2004 Computer Security: Art and Science
© 2002-2004 Matt Bishop

Slide #2-27

Key Points

• Access control matrix simplest abstraction
mechanism for representing protection state

• Transitions alter protection state
• 6 primitive operations alter matrix

– Transitions can be expressed as commands
composed of these operations and, possibly,
conditions

