Chapter 3: Foundational Results

- Overview
- Harrison-Ruzzo-Ullman result
 - Corollaries
- Take-Grant Protection Model
- SPM and successors

Overview

- Safety Question
- HRU Model
- Take-Grant Protection Model
- SPM, ESPM
 - Multiparent joint creation
- Expressive power
- Typed Access Matrix Model

What Is "Secure"?

- Adding a generic right r where there was not one is "leaking"
- If a system S, beginning in initial state s_0 , cannot leak right r, it is safe with respect to the right r.

Safety Question

- Does there exist an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?
 - Here, "safe" = "secure" for an abstract model

Mono-Operational Commands

- Answer: yes
- Sketch of proof:

Consider minimal sequence of commands $c_1, ..., c_k$ to leak the right.

- Can omit delete, destroy
- Can merge all creates into one

Worst case: insert every right into every entry; with s subjects and o objects initially, and n rights, upper bound is $k \le n(s+1)(o+1)$

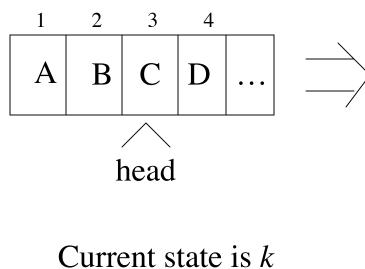
General Case

- Answer: no
- Sketch of proof:

Reduce halting problem to safety problem Turing Machine review:

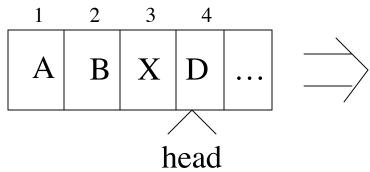
- Infinite tape in one direction
- States K, symbols M; distinguished blank b
- Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
- Halting state is q_f ; TM halts when it enters this state

Mapping



>		s_1	s_2	s_3	s_4	
	s_1	A	own			
	s_2		В	own		
	s_3			C k	own	
	S_4				D end	

Mapping



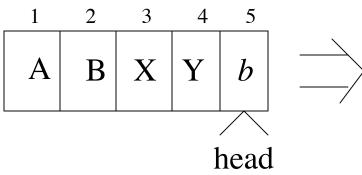
After $\delta(k, C) = (k_1, X, R)$ where k is the current state and k_1 the next state

. [s_1	s_2	s_3	S_4	
	s_1	A	own			
	s_2		В	own		
-	s_3			X	own	
	s_4				$D k_1$ end	

Command Mapping

```
\delta(k,C)=(k_1,X,R) at intermediate becomes command c_{k,C}(s_3,s_4) if own in A[s_3,s_4] and k in A[s_3,s_3] and C in A[s_3,s_3] then delete k from A[s_3,s_3]; delete C from A[s_3,s_3]; enter C into A[s_3,s_3]; enter C into C
```

Mapping



After $\delta(k_1, D) = (k_2, Y, R)$ where k_1 is the current state and k_2 the next state

>		s_1	s_2	s_3	S_4	<i>S</i> ₅
	s_1	A	own			
	s_2		В	own		
	s_3			X	own	
	S_4				Y	own
	S_5					$b k_2$ end

Command Mapping

```
\delta(k_1, D) = (k_2, Y, R) at end becomes command crightmost<sub>k,C</sub>(s_4, s_5) if end in A[s_4, s_4] and k_1 in A[s_4, s_4] and D in A[s_4, s_4] then delete end from A[s_4, s_4]; create subject s_5; enter own into A[s_4, s_5]; enter end into A[s_5, s_5]; delete k_1 from A[s_4, s_4]; enter Y into A[s_4, s_4]; enter k_2 into A[s_5, s_5]; end
```

Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 end right in ACM
 - 1 right in entries corresponds to state
 - Thus, at most 1 applicable command
- If TM enters state q_f , then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Implies halting problem decidable
- Conclusion: safety question undecidable

Other Results

- Set of unsafe systems is recursively enumerable
- Delete create primitive; then safety question is complete in P-SPACE
- Delete **destroy**, **delete** primitives; then safety question is undecidable
 - Systems are monotonic
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with **create**, **enter**, **delete** (and no **destroy**) is decidable.

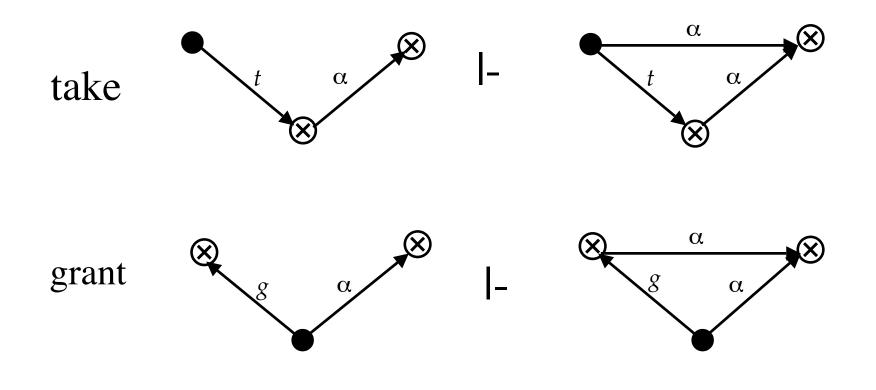
Take-Grant Protection Model

- A specific (not generic) system
 - Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system

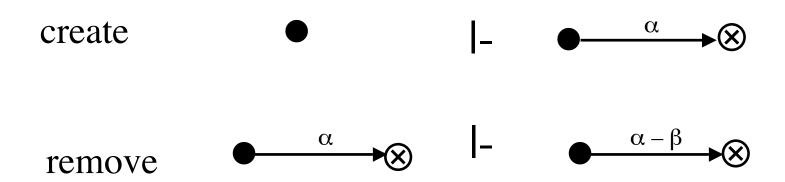
System

```
objects (files, ...)
subjects (users, processes, ...)
Ä don't care (either a subject or an object)
G | -x G' apply a rewriting rule x (witness) to G to get G'
G | -* G' apply a sequence of rewriting rules (witness) to G to get G'
R = { t, g, r, w, ... } set of rights
```

Rules

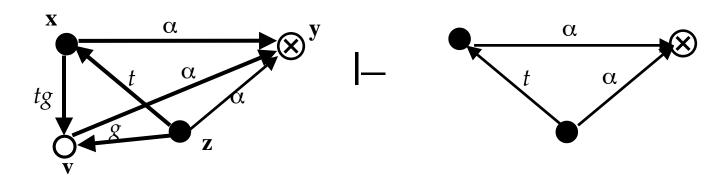


More Rules



These four rules are called the *de jure* rules

Symmetry



- 1. \mathbf{x} creates (tg to new) \mathbf{v}
- 2. \mathbf{z} takes $(g \text{ to } \mathbf{v})$ from \mathbf{x}
- 3. z grants (a to y) to v
- 4. x takes (a to y) from v

Similar result for grant

Islands

- *tg*-path: path of distinct vertices connected by edges labeled *t* or *g*
 - Call them "tg-connected"
- island: maximal *tg*-connected subject-only subgraph
 - Any right one vertex has can be shared with any other vertex

Initial, Terminal Spans

- *initial span* from **x** to **y**
 - x subject
 - tg-path between \mathbf{x} , \mathbf{y} with word in $\{\overrightarrow{t} * \overrightarrow{g}\} \cup \{\nu\}$
 - Means x can give rights it has to y
- terminal span from x to y
 - x subject
 - tg-path between \mathbf{x} , \mathbf{y} with word in $\{\vec{t}^*\} \cup \{\mathbf{v}\}$
 - Means x can acquire any rights y has

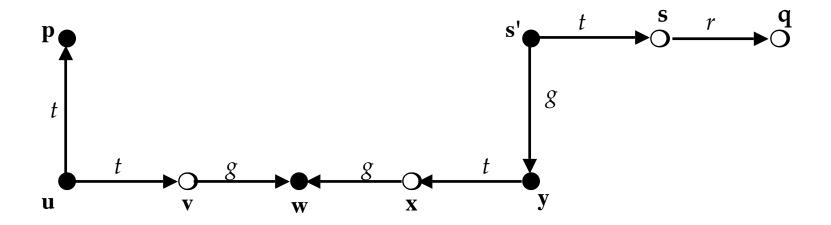
Bridges

• bridge: tg-path between subjects **x**, **y**, with associated word in

$$\{\vec{t}^*, \vec{t}^*, \vec{t}^* \notin \vec{t}^*, \vec{t}^* \notin \vec{t}^* \}$$

- rights can be transferred between the two endpoints
- not an island as intermediate vertices are objects

Example



- islands
- bridges
- initial span
- terminal span

- $\{p,u\} \{w\} \{y,s'\}$
- u, v, w; w, x, y
- p (associated word ν)
- s's (associated word \vec{t})

can•share Predicate

Definition:

• can• $share(r, \mathbf{x}, \mathbf{y}, \mathbf{G}_0)$ if, and only if, there is a sequence of protection graphs \mathbf{G}_0 , ..., \mathbf{G}_n such that $\mathbf{G}_0 \vdash \mathbf{G}_n$ using only de jure rules and in \mathbf{G}_n there is an edge from \mathbf{x} to \mathbf{y} labeled r.

can•share Theorem

- can• $share(r, \mathbf{x}, \mathbf{y}, \mathbf{G}_0)$ if, and only if, there is an edge from \mathbf{x} to \mathbf{y} labeled r in \mathbf{G}_0 , or the following hold simultaneously:
 - There is an s in G_0 with an s-to-y edge labeled r
 - There is a subject $\mathbf{x}' = \mathbf{x}$ or initially spans to \mathbf{x}
 - There is a subject s' = s or terminally spans to s
 - There are islands $I_1, ..., I_k$ connected by bridges, and $\mathbf{x'}$ in I_1 and $\mathbf{s'}$ in I_k

Outline of Proof

- s has r rights over y
- s' acquires r rights over y from s
 - Definition of terminal span
- $\mathbf{x'}$ acquires r rights over \mathbf{y} from $\mathbf{s'}$
 - Repeated application of sharing among vertices in islands, passing rights along bridges
- \mathbf{x}' gives r rights over \mathbf{y} to \mathbf{x}
 - Definition of initial span

Key Question

- Characterize class of models for which safety is decidable
 - Existence: Take-Grant Protection Model is a member of such a class
 - Universality: In general, question undecidable,
 so for some models it is not decidable
- What is the dividing line?

Schematic Protection Model

- Type-based model
 - Protection type: entity label determining how control rights affect the entity
 - Set at creation and cannot be changed
 - Ticket: description of a single right over an entity
 - Entity has sets of tickets (called a *domain*)
 - Ticket is \mathbf{X}/r , where \mathbf{X} is entity and r right
 - Functions determine rights transfer
 - Link: are source, target "connected"?
 - Filter: is transfer of ticket authorized?

Link Predicate

- Idea: $link_i(\mathbf{X}, \mathbf{Y})$ if \mathbf{X} can assert some control right over \mathbf{Y}
- Conjunction of disjunction of:
 - $-\mathbf{X}/z \in dom(\mathbf{X})$
 - $-\mathbf{X}/z \in dom(\mathbf{Y})$
 - $-\mathbf{Y}/z \in dom(\mathbf{X})$
 - $-\mathbf{Y}/z \in dom(\mathbf{Y})$
 - true

Examples

• Take-Grant:

$$link(\mathbf{X}, \mathbf{Y}) = \mathbf{Y}/g \in dom(\mathbf{X}) \vee \mathbf{X}/t \in dom(\mathbf{Y})$$

• Broadcast:

$$link(\mathbf{X}, \mathbf{Y}) = \mathbf{X}/b \in dom(\mathbf{X})$$

• Pull:

$$link(\mathbf{X}, \mathbf{Y}) = \mathbf{Y}/p \in dom(\mathbf{Y})$$

Filter Function

- Range is set of copyable tickets
 - Entity type, right
- Domain is subject pairs
- Copy a ticket \mathbf{X}/r :c from $dom(\mathbf{Y})$ to $dom(\mathbf{Z})$
 - $-\mathbf{X}/rc \in dom(\mathbf{Y})$
 - $-link_i(\mathbf{Y}, \mathbf{Z})$
 - $-\tau(\mathbf{Y})/r:c \in f_i(\tau(\mathbf{Y}), \tau(\mathbf{Z}))$
- One filter function per link function

Example

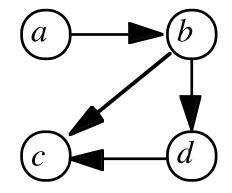
- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times R$
 - Any ticket can be transferred (if other conditions met)
- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times RI$
 - Only tickets with inert rights can be transferred (if other conditions met)
- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = \emptyset$
 - No tickets can be transferred

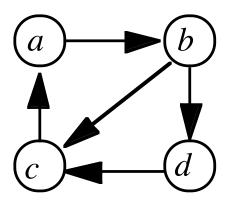
Example

- Take-Grant Protection Model
 - $-TS = \{ \text{ subjects } \}, TO = \{ \text{ objects } \}$
 - $-RC = \{ tc, gc \}, RI = \{ rc, wc \}$
 - $-link(\mathbf{p}, \mathbf{q}) = \mathbf{p}/t \in dom(\mathbf{q}) \vee \mathbf{q}/t \in dom(\mathbf{p})$
 - $-f(subject, subject) = \{ subject, object \} \times \{ tc, gc, rc, wc \}$

Create Operation

- Must handle type, tickets of new entity
- Relation can•create(a, b)
 - Subject of type a can create entity of type b
- Rule of acyclic creates:





Types

- cr(a, b): tickets introduced when subject of type a creates entity of type b
- **B** object: $cr(a, b) \subseteq \{ b/r: c \in RI \}$
- **B** subject: cr(a, b) has two parts
 - $-cr_P(a, b)$ added to **A**, $cr_C(a, b)$ added to **B**
 - A gets B/r:c if b/r:c in $cr_P(a, b)$
 - **B** gets \mathbf{A}/r :c if a/r:c in $cr_C(a, b)$

Non-Distinct Types

cr(a, a): who gets what?

- *self/r:c* are tickets for creator
- a/r:c tickets for created

$$cr(a, a) = \{ a/r:c, self/r:c \mid r:c \in R \}$$

Attenuating Create Rule

cr(a, b) attenuating if:

- 1. $cr_C(a, b) \subseteq cr_P(a, b)$ and
- 2. $a/r:c \in cr_P(a,b) \Rightarrow self/r:c \in cr_P(a,b)$

Safety Result

• If the scheme is acyclic and attenuating, the safety question is decidable

Expressive Power

- How do the sets of systems that models can describe compare?
 - If HRU equivalent to SPM, SPM provides more specific answer to safety question
 - If HRU describes more systems, SPM applies only to the systems it can describe

HRU vs. SPM

- SPM more abstract
 - Analyses focus on limits of model, not details of representation
- HRU allows revocation
 - SMP has no equivalent to delete, destroy
- HRU allows multiparent creates
 - SMP cannot express multiparent creates easily, and not at all if the parents are of different types because can•create allows for only one type of creator

Multiparent Create

- Solves mutual suspicion problem
 - Create proxy jointly, each gives it needed rights
- In HRU:

```
command multicreate(s_0, s_1, o)
if r in a[s_0, s1] and r in a[s_1, s_0]
then
create object o;
enter r into a[s_0, o];
enter r into a[s_1, o];
end
```

SPM and Multiparent Create

- can•create extended in obvious way
 - $-cc \subseteq TS \times ... \times TS \times T$
- Symbols
 - $-\mathbf{X}_{1},...,\mathbf{X}_{n}$ parents, Y created
 - $-R_{1,i}, R_{2,i}, R_3, R_{4,i} \subseteq R$
- Rules
 - $cr_{P,i}(\tau(\mathbf{X}_1), ..., \tau(\mathbf{X}_n)) = \mathbf{Y}/R_{1,1} \cup \mathbf{X}_i/R_{2,i}$
 - $-cr_{\mathbf{C}}(\tau(\mathbf{X}_{1}), ..., \tau(\mathbf{X}_{n})) = \mathbf{Y}/R_{3} \cup \mathbf{X}_{1}/R_{4,1} \cup ... \cup \mathbf{X}_{n}/R_{4,n}$

Example

- Anna, Bill must do something cooperatively
 - But they don't trust each other
- Jointly create a proxy
 - Each gives proxy only necessary rights
- In ESPM:
 - Anna, Bill type a; proxy type p; right $x \in R$
 - -cc(a, a) = p
 - $-cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
 - $cr_{\text{proxy}}(a, a, p) = \{ \text{Anna/}x, \text{Bilł/}x \}$

2-Parent Joint Create Suffices

- Goal: emulate 3-parent joint create with 2-parent joint create
- Definition of 3-parent joint create (subjects P₁, P₂, P₃; child C):
 - $-cc(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = Z \subseteq T$
 - $-cr_{\mathbf{P}_1}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = \mathbf{C}/R_{1,1} \cup \mathbf{P}_1/R_{2,1}$
 - $-cr_{\mathbf{P}2}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = \mathbf{C}/R_{2,1} \cup \mathbf{P}_2/R_{2,2}$
 - $-cr_{\mathbf{P}3}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = \mathbf{C}/R_{3,1} \cup \mathbf{P}_3/R_{2,3}$

General Approach

- Define agents for parents and child
 - Agents act as surrogates for parents
 - If create fails, parents have no extra rights
 - If create succeeds, parents, child have exactly same rights as in 3-parent creates
 - Only extra rights are to agents (which are never used again, and so these rights are irrelevant)

Entities and Types

- Parents P_1 , P_2 , P_3 have types p_1 , p_2 , p_3
- Child C of type c
- Parent agents A_1 , A_2 , A_3 of types a_1 , a_2 , a_3
- Child agent **S** of type s
- Type *t* is parentage
 - $\text{ if } \mathbf{X}/t \in dom(\mathbf{Y}), \mathbf{X} \text{ is } \mathbf{Y}\text{'s parent}$
- Types t, a_1 , a_2 , a_3 , s are new types

Can•Create

- Following added to can create:
 - $-\operatorname{cc}(p_1) = a_1$
 - $-\operatorname{cc}(p_2, a_1) = a_2$
 - $-\operatorname{cc}(p_3, a_2) = a_3$
 - Parents creating their agents; note agents have maximum of 2 parents
 - $-\operatorname{cc}(a_3) = s$
 - Agent of all parents creates agent of child
 - cc(s) = c
 - Agent of child creates child

Creation Rules

- Following added to create rule:
 - $-cr_P(p_1, a_1) = \emptyset$
 - $cr_C(p_1, a_1) = p_1/Rtc$
 - Agent's parent set to creating parent; agent has all rights over parent
 - $cr_{Pfirst}(p_2, a_1, a_2) = \emptyset$
 - $cr_{Psecond}(p_2, a_1, a_2) = \emptyset$
 - $cr_C(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc$
 - Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)

Creation Rules

- $cr_{Pfirst}(p_3, a_2, a_3) = \emptyset$
- $-cr_{Psecond}(p_3, a_2, a_3) = \emptyset$
- $cr_C(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc$
 - Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- $-cr_P(a_3, s) = \emptyset$
- $cr_C(a_3, s) = a_3/tc$
 - Child's agent has third agent as parent $cr_P(a_3, s) = \emptyset$
- $-cr_P(s, c) = \mathbb{C}/Rtc$
- $cr_C(s, c) = c/R_3 t$
 - Child's agent gets full rights over child; child gets R_3 rights over agent

Link Predicates

- Idea: no tickets to parents until child created
 - Done by requiring each agent to have its own parent rights
 - $link_1(\mathbf{A}_1, \mathbf{A}_2) = \mathbf{A}_1/t \in dom(\mathbf{A}_2) \land \mathbf{A}_2/t \in dom(\mathbf{A}_2)$
 - $link_1(\mathbf{A}_2, \mathbf{A}_3) = \mathbf{A}_2/t \in dom(\mathbf{A}_3) \land \mathbf{A}_3/t \in dom(\mathbf{A}_3)$
 - $link_2(\mathbf{S}, \mathbf{A}_3) = \mathbf{A}_3/t \in dom(\mathbf{S}) \land \mathbf{C}/t \in dom(\mathbf{C})$
 - $link_3(\mathbf{A}_1, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_1)$
 - $link_3(\mathbf{A}_2, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_2)$
 - $link_3(\mathbf{A}_3, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_3)$
 - $link_4(\mathbf{A}_1, \mathbf{P}_1) = \mathbf{P}_1/t \in dom(\mathbf{A}_1) \land \mathbf{A}_1/t \in dom(\mathbf{A}_1)$
 - $link_4(\mathbf{A}_2, \mathbf{P}_2) = \mathbf{P}_2/t \in dom(\mathbf{A}_2) \land \mathbf{A}_2/t \in dom(\mathbf{A}_2)$
 - $link_4(\mathbf{A}_3, \mathbf{P}_3) = \mathbf{P}_3/t \in dom(\mathbf{A}_3) \land \mathbf{A}_3/t \in dom(\mathbf{A}_3)$

Filter Functions

- $f_1(a_2, a_1) = a_1/t \cup c/Rtc$
- $f_1(a_3, a_2) = a_2/t \cup c/Rtc$
- $f_2(s, a_3) = a_3/t \cup c/Rtc$
- $f_3(a_1, c) = p_1/R_{4,1}$
- $f_3(a_2, c) = p_2/R_{4,2}$
- $f_3(a_3, c) = p_3/R_{4,3}$
- $f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1}$
- $f_4(a_2, p_2) = c/R_{1,2} \cup p_2/R_{2,2}$
- $f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3}$

Construction

Create A_1 , A_2 , A_3 , S, C; then

- P_1 has no relevant tickets
- P_2 has no relevant tickets
- P_3 has no relevant tickets
- \mathbf{A}_1 has \mathbf{P}_1/Rtc
- \mathbf{A}_2 has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc$
- \mathbf{A}_3 has $\mathbf{P}_3/Rtc \cup \mathbf{A}_2/tc$
- S has $A_3/tc \cup C/Rtc$
- C has \mathbb{C}/R_3

Construction

- Only $link_2(\mathbf{S}, \mathbf{A}_3)$ true \Rightarrow apply f_2
 - $\mathbf{A}_3 \text{ has } \mathbf{P}_3/Rtc \cup \mathbf{A}_2/t \cup \mathbf{A}_3/t \cup \mathbf{C}/Rtc$
- Now $link_1(\mathbf{A}_3, \mathbf{A}_2)$ true \Rightarrow apply f_1
 - $\mathbf{A}_2 \text{ has } \mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc \cup \mathbf{A}_2/t \cup \mathbf{C}/Rtc$
- Now $link_1(\mathbf{A}_2, \mathbf{A}_1)$ true \Rightarrow apply f_1
 - $\mathbf{A}_1 \text{ has } \mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc \cup \mathbf{A}_1/t \cup \mathbf{C}/Rtc$
- Now all $link_3$ s true \Rightarrow apply f_3
 - C has $C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3}$

Finish Construction

- Now $link_4$ s true \Rightarrow apply f_4
 - $\mathbf{P}_1 \text{ has } \mathbf{C}/R_{1,1} \cup \mathbf{P}_1/R_{2,1}$
 - $P_2 \text{ has } C/R_{1,2} \cup P2/R_{2,2}$
 - $P_3 \text{ has } C/R_{1,3} \cup P_3/R_{2,3}$
- 3-parent joint create gives same rights to
 P₁, P₂, P₃, C
- If create of **C** fails, *link*₂ fails, so construction fails

Theorem

- The two-parent joint creation operation can implement an *n*-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.
- **Proof**: by construction, as above
 - Difference is that the two systems need not start at the same initial state

Theorems

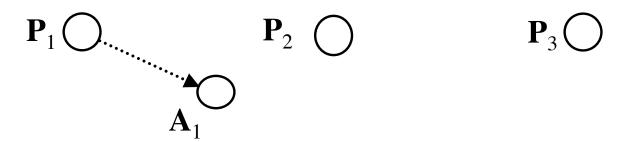
- Monotonic ESPM and the monotonic HRU model are equivalent.
- Safety question in ESPM also decidable if acyclic attenuating scheme

Expressiveness

- Graph-based representation to compare models
- Graph
 - Vertex: represents entity, has static type
 - Edge: represents right, has static type
- Graph rewriting rules:
 - Initial state operations create graph in a particular state
 - Node creation operations add nodes, incoming edges
 - Edge adding operations add new edges between existing vertices

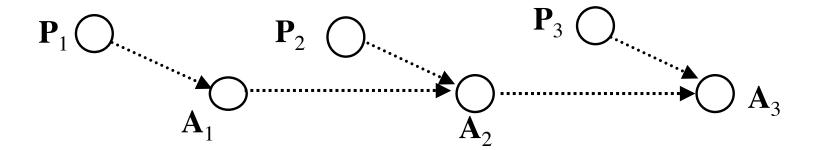
Example: 3-Parent Joint Creation

- Simulate with 2-parent
 - Nodes P_1 , P_2 , P_3 parents
 - Create node C with type c with edges of type e
 - Add node A_1 of type a and edge from P_1 to A_1 of type e'



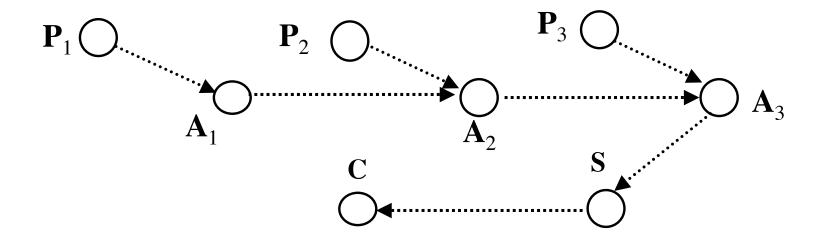
Next Step

- A_1 , P_2 create A_2 ; A_2 , P_3 create A_3
- Type of nodes, edges are a and e'



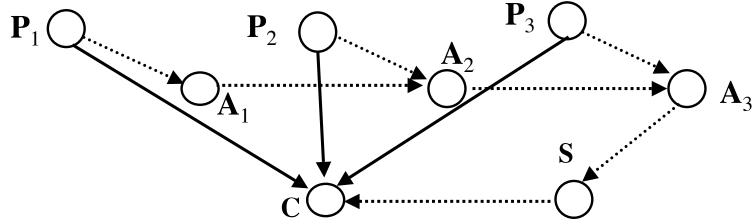
Next Step

- A_3 creates S, of type a
- S creates \mathbf{C} , of type c



Last Step

- Edge adding operations:
 - $-\mathbf{P}_1 \rightarrow \mathbf{A}_1 \rightarrow \mathbf{A}_2 \rightarrow \mathbf{A}_3 \rightarrow \mathbf{S} \rightarrow \mathbf{C}$: \mathbf{P}_1 to \mathbf{C} edge type e
 - $-\mathbf{P}_2 \rightarrow \mathbf{A}_2 \rightarrow \mathbf{A}_3 \rightarrow \mathbf{S} \rightarrow \mathbf{C}$: \mathbf{P}_2 to \mathbf{C} edge type e
 - $-\mathbf{P}_3 \rightarrow \mathbf{A}_3 \rightarrow \mathbf{S} \rightarrow \mathbf{C}$: \mathbf{P}_3 to \mathbf{C} edge type e



July 1, 2004

Computer Security: Art and Science ©2002-2004 Matt Bishop

Slide #3-60

Definitions

- Scheme: graph representation as above
- *Model*: set of schemes
- Schemes *A*, *B correspond* if graph for both is identical when all nodes with types not in *A* and edges with types in *A* are deleted

Example

- Above 2-parent joint creation simulation in scheme *TWO*
- Equivalent to 3-parent joint creation scheme THREE in which P₁, P₂, P₃, C are of same type as in TWO, and edges from P₁, P₂, P₃ to C are of type e, and no types a and e' exist in TWO

Simulation

Scheme A simulates scheme B iff

- every state *B* can reach has a corresponding state in *A* that *A* can reach; and
- every state that A can reach either corresponds to a state B can reach, or has a successor state that corresponds to a state B can reach
 - The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of THREE

Expressive Power

- If scheme in MA no scheme in MB can simulate, MB less expressive than MA
- If every scheme in MA can be simulated by a scheme in MB, MB as expressive as MA
- If MA as expressive as MB and vice versa, MA and MB equivalent

Example

- Scheme A in model M
 - Nodes \mathbf{X}_1 , \mathbf{X}_2 , \mathbf{X}_3
 - 2-parent joint create
 - 1 node type, 1 edge type
 - No edge adding operations
 - Initial state: X_1 , X_2 , X_3 , no edges
- Scheme *B* in model *N*
 - All same as A except no 2-parent joint create
 - 1-parent create
- Which is more expressive?

Can A Simulate B?

- Scheme A simulates 1-parent create: have both parents be same node
 - Model M as expressive as model N

Can B Simulate A?

- Suppose X_1 , X_2 jointly create Y in A
 - Edges from \mathbf{X}_1 , \mathbf{X}_2 to \mathbf{Y} , no edge from \mathbf{X}_3 to \mathbf{Y}
- Can B simulate this?
 - Without loss of generality, X_1 creates Y
 - Must have edge adding operation to add edge from X₂ to Y
 - One type of node, one type of edge, so
 operation can add edge between any 2 nodes

No

- All nodes in A have even number of incoming edges
 - 2-parent create adds 2 incoming edges
- Edge adding operation in B that can edge from X_2 to C can add one from X_3 to C
 - A cannot enter this state
 - -B cannot transition to a state in which \mathbf{Y} has even number of incoming edges
 - No remove rule
- So B cannot simulate A; N less expressive than M

Theorem

- Monotonic single-parent models are less expressive than monotonic multiparent models
- ESPM more expressive than SPM
 - ESPM multiparent and monotonic
 - SPM monotonic but single parent

Typed Access Matrix Model

- Like ACM, but with set of types T
 - All subjects, objects have types
 - Set of types for subjects TS
- Protection state is (S, O, τ, A)
 - $-\tau:O \rightarrow T$ specifies type of each object
 - If **X** subject, $\tau(\mathbf{X})$ in TS
 - If **X** object, $\tau(\mathbf{X})$ in T TS

Create Rules

- Subject creation
 - create subject s of type ts
 - s must not exist as subject or object when operation executed
 - $ts \in TS$
- Object creation
 - create object o of type to
 - o must not exist as subject or object when operation executed
 - $to \in T TS$

Create Subject

- Precondition: $s \notin S$
- Primitive command: create subject s of type t
- Postconditions:

$$-S' = S \cup \{ s \}, O' = O \cup \{ s \}$$

$$-(\forall y \in O)[\tau'(y) = \tau(y)], \ \tau'(s) = t$$

$$-(\forall y \in O')[a'[s, y] = \varnothing], (\forall x \in S')[a'[x, s] = \varnothing]$$

$$-(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$$

Create Object

- Precondition: $o \notin O$
- Primitive command: create object o of type t
- Postconditions:

$$-S' = S, O' = O \cup \{ o \}$$

$$-(\forall y \in O)[\tau'(y) = \tau(y)], \tau'(o) = t$$

$$-(\forall x \in S')[a'[x, o] = \varnothing]$$

$$-(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$$

Definitions

- MTAM Model: TAM model without delete, destroy
 - MTAM is Monotonic TAM
- $\alpha(x_1:t_1,...,x_n:t_n)$ create command
 - t_i child type in α if any of **create subject** x_i **of type** t_i or **create object** x_i **of type** t_i occur in α
 - $-t_i$ parent type otherwise

Cyclic Creates

```
command havoc(s_1:u,s_2:u,o_1:v,o_2:v,o_3:w,o_4:_w)

create subject s_1 of type u;

create object o_1 of type v;

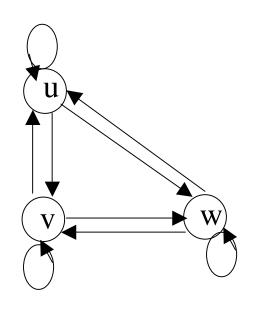
create object o_3 of type w;

enter r into a[s_2,s_1];

enter r into a[s_2,o_2];

enter r into a[s_2,o_4]
```

Creation Graph



- *u*, *v*, *w* child types
- *u*, *v*, *w* also parent types
- Graph: lines from parent types to child types
- This one has cycles

Theorems

- Safety decidable for systems with acyclic MTAM schemes
- Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 - "ternary" means commands have no more than3 parameters
 - Equivalent in expressive power to MTAM

Key Points

- Safety problem undecidable
- Limiting scope of systems can make problem decidable
- Types critical to safety problem's analysis