
July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-1

Chapter 3: Foundational Results

• Overview
• Harrison-Ruzzo-Ullman result

– Corollaries
• Take-Grant Protection Model
• SPM and successors

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-2

Overview

• Safety Question
• HRU Model
• Take-Grant Protection Model
• SPM, ESPM

– Multiparent joint creation
• Expressive power
• Typed Access Matrix Model

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-3

What Is “Secure”?

• Adding a generic right r where there was
not one is “leaking”

• If a system S, beginning in initial state s0,
cannot leak right r, it is safe with respect to
the right r.

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-4

Safety Question

• Does there exist an algorithm for
determining whether a protection system S
with initial state s0 is safe with respect to a
generic right r?
– Here, “safe” = “secure” for an abstract model

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-5

Mono-Operational Commands

• Answer: yes
• Sketch of proof:

Consider minimal sequence of commands c1, …,
ck to leak the right.
– Can omit delete, destroy
– Can merge all creates into one
Worst case: insert every right into every entry;
with s subjects and o objects initially, and n
rights, upper bound is k ≤ n(s+1)(o+1)

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-6

General Case

• Answer: no
• Sketch of proof:

Reduce halting problem to safety problem
Turing Machine review:
– Infinite tape in one direction
– States K, symbols M; distinguished blank b
– Transition function δ(k, m) = (k′, m′, L) means in state

k, symbol m on tape location replaced by symbol m′,
head moves to left one square, and enters state k′

– Halting state is qf; TM halts when it enters this state

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-7

Mapping

A B C D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

ownCurrent state is k

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-8

Mapping

A B X D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After δ(k, C) = (k1, X, R)
where k is the current
state and k1 the next state

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-9

Command Mapping
δ(k, C) = (k1, X, R) at intermediate becomes
command ck,C(s3,s4)
if own in A[s3,s4] and k in A[s3,s3]

and C in A[s3,s3]
then
delete k from A[s3,s3];
delete C from A[s3,s3];
enter X into A[s3,s3];
enter k1 into A[s4,s4];

end

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-10

Mapping

A B X Y

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After δ(k1, D) = (k2, Y, R)
where k1 is the current
state and k2 the next state

s5

s5

own

b k2 end

5

b

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-11

Command Mapping
δ(k1, D) = (k2, Y, R) at end becomes
command crightmostk,C(s4,s5)
if end in A[s4,s4] and k1 in A[s4,s4]

and D in A[s4,s4]
then

delete end from A[s4,s4];
create subject s5;
enter own into A[s4,s5];
enter end into A[s5,s5];
delete k1 from A[s4,s4];
delete D from A[s4,s4];
enter Y into A[s4,s4];
enter k2 into A[s5,s5];

end

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-12

Rest of Proof

• Protection system exactly simulates a TM
– Exactly 1 end right in ACM
– 1 right in entries corresponds to state
– Thus, at most 1 applicable command

• If TM enters state qf, then right has leaked
• If safety question decidable, then represent TM as

above and determine if qf leaks
– Implies halting problem decidable

• Conclusion: safety question undecidable

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-13

Other Results
• Set of unsafe systems is recursively enumerable
• Delete create primitive; then safety question is complete

in P-SPACE
• Delete destroy, delete primitives; then safety question is

undecidable
– Systems are monotonic

• Safety question for monoconditional, monotonic
protection systems is decidable

• Safety question for monoconditional protection systems
with create, enter, delete (and no destroy) is decidable.

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-14

Take-Grant Protection Model

• A specific (not generic) system
– Set of rules for state transitions

• Safety decidable, and in time linear with
the size of the system

• Goal: find conditions under which rights
can be transferred from one entity to
another in the system

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-15

System

 objects (files, …)
 subjects (users, processes, …)
Ä don't care (either a subject or an object)
G |–x G' apply a rewriting rule x (witness) to

 G to get G'
G |–* G' apply a sequence of rewriting rules

(witness) to G to get G'
R = { t, g, r, w, … } set of rights

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-16

Rules

⊗

t α t α

α

take

g α α

α

grant

g

⊗

⊗

⊗

⊗ ⊗ ⊗ ⊗

 |-

|-

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-17

More Rules

create

α

α

remove
α – β

 ⊗⊗

⊗|-

|- �

These four rules are called the de jure rules

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-18

Symmetry

t
α

t α

α
⊗ ⊗

|–�

1. x creates (tg to new) v
2. z takes (g to v) from x
3. z grants (a to y) to v
4. x takes (a to y) from v

 z
v

tg

x

g

y

α

α

Similar result for grant

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-19

Islands

• tg-path: path of distinct vertices connected
by edges labeled t or g
– Call them “tg-connected”

• island: maximal tg-connected subject-only
subgraph
– Any right one vertex has can be shared with

any other vertex

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-20

Initial, Terminal Spans

• initial span from x to y
– x subject
– tg-path between x, y with word in { t*g } ∪ { ν }
– Means x can give rights it has to y

• terminal span from x to y
– x subject
– tg-path between x, y with word in { t* } ∪ { ν }
– Means x can acquire any rights y has

→

→→

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-21

Bridges

• bridge: tg-path between subjects x, y, with
associated word in

{ t*, t*, t*g t*, t*g t* }
– rights can be transferred between the two

endpoints
– not an island as intermediate vertices are

objects

→ → →←← →→ ←

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-22

Example

●p

●
u

❍
v

●
w

❍
x

●y

●s' ❍
s

❍
q

t

t t

t r

gg

g

• islands { p, u } { w } { y, s' }
• bridges u, v, w; w, x, y
• initial span p (associated word ν)
• terminal span s's (associated word t)→

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-23

can•share Predicate

Definition:
• can•share(r, x, y, G0) if, and only if, there

is a sequence of protection graphs G0, …,
Gn such that G0 |–* Gn using only de jure
rules and in Gn there is an edge from x to y
labeled r.

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-24

can•share Theorem

• can•share(r, x, y, G0) if, and only if, there
is an edge from x to y labeled r in G0, or
the following hold simultaneously:
– There is an s in G0 with an s-to-y edge labeled r
– There is a subject x′ = x or initially spans to x
– There is a subject s′ = s or terminally spans to s
– There are islands I1,…, Ik connected by

bridges, and x′ in I1 and s′ in Ik

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-25

Outline of Proof

• s has r rights over y
• s′ acquires r rights over y from s

– Definition of terminal span
• x′ acquires r rights over y from s′

– Repeated application of sharing among
vertices in islands, passing rights along bridges

• x′ gives r rights over y to x
– Definition of initial span

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-26

Key Question

• Characterize class of models for which
safety is decidable
– Existence: Take-Grant Protection Model is a

member of such a class
– Universality: In general, question undecidable,

so for some models it is not decidable
• What is the dividing line?

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-27

Schematic Protection Model

• Type-based model
– Protection type: entity label determining how control

rights affect the entity
• Set at creation and cannot be changed

– Ticket: description of a single right over an entity
• Entity has sets of tickets (called a domain)
• Ticket is X/r, where X is entity and r right

– Functions determine rights transfer
• Link: are source, target “connected”?
• Filter: is transfer of ticket authorized?

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-28

Link Predicate

• Idea: linki(X, Y) if X can assert some
control right over Y

• Conjunction of disjunction of:
– X/z ∈ dom(X)
– X/z ∈ dom(Y)
– Y/z ∈ dom(X)
– Y/z ∈ dom(Y)
– true

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-29

Examples

• Take-Grant:
link(X, Y) = Y/g ∈ dom(X) v X/t ∈ dom(Y)

• Broadcast:
link(X, Y) = X/b ∈ dom(X)

• Pull:
link(X, Y) = Y/p ∈ dom(Y)

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-30

Filter Function

• Range is set of copyable tickets
– Entity type, right

• Domain is subject pairs
• Copy a ticket X/r:c from dom(Y) to dom(Z)

– X/rc ∈ dom(Y)
– linki(Y, Z)
– τ(Y)/r:c ∈ fi(τ(Y), τ(Z))

• One filter function per link function

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-31

Example

• f(τ(Y), τ(Z)) = T × R
– Any ticket can be transferred (if other

conditions met)
• f(τ(Y), τ(Z)) = T × RI

– Only tickets with inert rights can be transferred
(if other conditions met)

• f(τ(Y), τ(Z)) = ∅
– No tickets can be transferred

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-32

Example

• Take-Grant Protection Model
– TS = { subjects }, TO = { objects }
– RC = { tc, gc }, RI = { rc, wc }
– link(p, q) = p/t ∈ dom(q) ∨ q/t ∈ dom(p)
– f(subject, subject) = { subject, object } × { tc,

gc, rc, wc }

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-33

Create Operation

• Must handle type, tickets of new entity
• Relation can•create(a, b)

– Subject of type a can create entity of type b
• Rule of acyclic creates:

a b

c d

a b

c d

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-34

Types

• cr(a, b): tickets introduced when subject of
type a creates entity of type b

• B object: cr(a, b) ⊆ { b/r:c ∈ RI }
• B subject: cr(a, b) has two parts

– crP(a, b) added to A, crC(a, b) added to B
– A gets B/r:c if b/r:c in crP(a, b)
– B gets A/r:c if a/r:c in crC(a, b)

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-35

Non-Distinct Types

cr(a, a): who gets what?
• self/r:c are tickets for creator
• a/r:c tickets for created
cr(a, a) = { a/r:c, self/r:c | r:c ∈ R}

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-36

Attenuating Create Rule

cr(a, b) attenuating if:
1. crC(a, b) ⊆ crP(a, b) and
2. a/r:c ∈ crP(a, b) ⇒ self/r:c ∈ crP(a, b)

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-37

Safety Result

• If the scheme is acyclic and attenuating, the
safety question is decidable

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-38

Expressive Power

• How do the sets of systems that models can
describe compare?
– If HRU equivalent to SPM, SPM provides

more specific answer to safety question
– If HRU describes more systems, SPM applies

only to the systems it can describe

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-39

HRU vs. SPM

• SPM more abstract
– Analyses focus on limits of model, not details of

representation
• HRU allows revocation

– SMP has no equivalent to delete, destroy
• HRU allows multiparent creates

– SMP cannot express multiparent creates easily, and not
at all if the parents are of different types because
can•create allows for only one type of creator

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-40

Multiparent Create

• Solves mutual suspicion problem
– Create proxy jointly, each gives it needed rights

• In HRU:
command multicreate(s0, s1, o)
if r in a[s0, s1] and r in a[s1, s0]
then
create object o;
enter r into a[s0, o];
enter r into a[s1, o];

end

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-41

SPM and Multiparent Create

• can•create extended in obvious way
– cc ⊆ TS × … × TS × T

• Symbols
– X1, …, Xn parents, Y created
– R1,i, R2,i, R3, R4,i ⊆ R

• Rules
– crP,i(τ(X1), …, τ(Xn)) = Y/R1,1 ∪ Xi/R2,i

– crC(τ(X1), …, τ(Xn)) = Y/R3 ∪ X1/R4,1 ∪ … ∪ Xn/R4,n

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-42

Example

• Anna, Bill must do something cooperatively
– But they don’t trust each other

• Jointly create a proxy
– Each gives proxy only necessary rights

• In ESPM:
– Anna, Bill type a; proxy type p; right x ∈ R
– cc(a, a) = p
– crAnna(a, a, p) = crBill(a, a, p) = ∅
– crproxy(a, a, p) = { Anna/x, Bilł/x }

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-43

2-Parent Joint Create Suffices

• Goal: emulate 3-parent joint create with 2-
parent joint create

• Definition of 3-parent joint create (subjects
P1, P2, P3; child C):
– cc(τ(P1), τ(P2), τ(P3)) = Z ⊆ T
– crP1(τ(P1), τ(P2), τ(P3)) = C/R1,1 ∪ P1/R2,1
– crP2(τ(P1), τ(P2), τ(P3)) = C/R2,1 ∪ P2/R2,2
– crP3(τ(P1), τ(P2), τ(P3)) = C/R3,1 ∪ P3/R2,3

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-44

General Approach

• Define agents for parents and child
– Agents act as surrogates for parents
– If create fails, parents have no extra rights
– If create succeeds, parents, child have exactly

same rights as in 3-parent creates
• Only extra rights are to agents (which are never

used again, and so these rights are irrelevant)

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-45

Entities and Types

• Parents P1, P2, P3 have types p1, p2, p3

• Child C of type c
• Parent agents A1, A2, A3 of types a1, a2, a3

• Child agent S of type s
• Type t is parentage

– if X/t ∈ dom(Y), X is Y’s parent
• Types t, a1, a2, a3, s are new types

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-46

Can•Create

• Following added to can•create:
– cc(p1) = a1

– cc(p2, a1) = a2

– cc(p3, a2) = a3
• Parents creating their agents; note agents have maximum of 2

parents
– cc(a3) = s

• Agent of all parents creates agent of child
– cc(s) = c

• Agent of child creates child

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-47

Creation Rules

• Following added to create rule:
– crP(p1, a1) = ∅
– crC(p1, a1) = p1/Rtc

• Agent’s parent set to creating parent; agent has all rights over
parent

– crPfirst(p2, a1, a2) = ∅
– crPsecond(p2, a1, a2) = ∅
– crC(p2, a1, a2) = p2/Rtc ∪ a1/tc

• Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-48

Creation Rules
– crPfirst(p3, a2, a3) = ∅
– crPsecond(p3, a2, a3) = ∅
– crC(p3, a2, a3) = p3/Rtc ∪ a2/tc

• Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)

– crP(a3, s) = ∅
– crC(a3, s) = a3/tc

• Child’s agent has third agent as parent crP(a3, s) = ∅
– crP(s, c) = C/Rtc
– crC(s, c) = c/R3t

• Child’s agent gets full rights over child; child gets R3 rights
over agent

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-49

Link Predicates

• Idea: no tickets to parents until child created
– Done by requiring each agent to have its own parent

rights
– link1(A1, A2) = A1/t ∈ dom(A2) ∧ A2/t ∈ dom(A2)
– link1(A2, A3) = A2/t ∈ dom(A3) ∧ A3/t ∈ dom(A3)
– link2(S, A3) = A3/t ∈ dom(S) ∧ C/t ∈ dom(C)
– link3(A1, C) = C/t ∈ dom(A1)
– link3(A2, C) = C/t ∈ dom(A2)
– link3(A3, C) = C/t ∈ dom(A3)
– link4(A1, P1) = P1/t ∈ dom(A1) ∧ A1/t ∈ dom(A1)
– link4(A2, P2) = P2/t ∈ dom(A2) ∧ A2/t ∈ dom(A2)
– link4(A3, P3) = P3/t ∈ dom(A3) ∧ A3/t ∈ dom(A3)

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-50

Filter Functions
• f1(a2, a1) = a1/t ∪ c/Rtc
• f1(a3, a2) = a2/t ∪ c/Rtc
• f2(s, a3) = a3/t ∪ c/Rtc
• f3(a1, c) = p1/R4,1
• f3(a2, c) = p2/R4,2
• f3(a3, c) = p3/R4,3
• f4(a1, p1) = c/R1,1 ∪ p1/R2,1
• f4(a2, p2) = c/R1,2 ∪ p2/R2,2
• f4(a3, p3) = c/R1,3 ∪ p3/R2,3

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-51

Construction

Create A1, A2, A3, S, C; then
• P1 has no relevant tickets
• P2 has no relevant tickets
• P3 has no relevant tickets
• A1 has P1/Rtc
• A2 has P2/Rtc ∪ A1/tc
• A3 has P3/Rtc ∪ A2/tc
• S has A3/tc ∪ C/Rtc
• C has C/R3

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-52

Construction
• Only link2(S, A3) true ⇒ apply f2

– A3 has P3/Rtc ∪ A2/t ∪ A3/t ∪ C/Rtc
• Now link1(A3, A2) true ⇒ apply f1

– A2 has P2/Rtc ∪ A1/tc ∪ A2/t ∪ C/Rtc
• Now link1(A2, A1) true ⇒ apply f1

– A1 has P2/Rtc ∪ A1/tc ∪ A1/t ∪ C/Rtc
• Now all link3s true ⇒ apply f3

– C has C/R3 ∪ P1/R4,1 ∪ P2/R4,2 ∪ P3/R4,3

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-53

Finish Construction

• Now link4s true ⇒ apply f4
– P1 has C/R1,1 ∪ P1/R2,1
– P2 has C/R1,2 ∪ P2/R2,2
– P3 has C/R1,3 ∪ P3/R2,3

• 3-parent joint create gives same rights to
P1, P2, P3, C

• If create of C fails, link2 fails, so
construction fails

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-54

Theorem

• The two-parent joint creation operation can
implement an n-parent joint creation
operation with a fixed number of additional
types and rights, and augmentations to the
link predicates and filter functions.

• Proof: by construction, as above
– Difference is that the two systems need not

start at the same initial state

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-55

Theorems

• Monotonic ESPM and the monotonic HRU
model are equivalent.

• Safety question in ESPM also decidable if
acyclic attenuating scheme

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-56

Expressiveness

• Graph-based representation to compare models
• Graph

– Vertex: represents entity, has static type
– Edge: represents right, has static type

• Graph rewriting rules:
– Initial state operations create graph in a particular state
– Node creation operations add nodes, incoming edges
– Edge adding operations add new edges between

existing vertices

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-57

Example: 3-Parent Joint Creation

• Simulate with 2-parent
– Nodes P1, P2, P3 parents
– Create node C with type c with edges of type e
– Add node A1 of type a and edge from P1 to A1

of type e´
P2 P3P1

A1

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-58

Next Step

• A1, P2 create A2; A2, P3 create A3

• Type of nodes, edges are a and e´

P2
P3P1

A1 A2

A3

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-59

Next Step

• A3 creates S, of type a
• S creates C, of type c

SC

P2
P3P1

A1 A2

A3

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-60

Last Step

• Edge adding operations:
– P1→A1→A2→A3→S→C: P1 to C edge type e
– P2→A2→A3→S→C: P2 to C edge type e
– P3→A3→S→C: P3 to C edge type e

S

C

P2
P3P1

A1

A2
A3

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-61

Definitions

• Scheme: graph representation as above
• Model: set of schemes
• Schemes A, B correspond if graph for both

is identical when all nodes with types not in
A and edges with types in A are deleted

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-62

Example

• Above 2-parent joint creation simulation in
scheme TWO

• Equivalent to 3-parent joint creation
scheme THREE in which P1, P2, P3, C are
of same type as in TWO, and edges from
P1, P2, P3 to C are of type e, and no types a
and e´ exist in TWO

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-63

Simulation

Scheme A simulates scheme B iff
• every state B can reach has a corresponding state

in A that A can reach; and
• every state that A can reach either corresponds to

a state B can reach, or has a successor state that
corresponds to a state B can reach
– The last means that A can have intermediate states not

corresponding to states in B, like the intermediate ones
in TWO in the simulation of THREE

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-64

Expressive Power

• If scheme in MA no scheme in MB can
simulate, MB less expressive than MA

• If every scheme in MA can be simulated by
a scheme in MB, MB as expressive as MA

• If MA as expressive as MB and vice versa,
MA and MB equivalent

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-65

Example

• Scheme A in model M
– Nodes X1, X2, X3
– 2-parent joint create
– 1 node type, 1 edge type
– No edge adding operations
– Initial state: X1, X2, X3, no edges

• Scheme B in model N
– All same as A except no 2-parent joint create
– 1-parent create

• Which is more expressive?

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-66

Can A Simulate B?

• Scheme A simulates 1-parent create: have
both parents be same node
– Model M as expressive as model N

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-67

Can B Simulate A?

• Suppose X1, X2 jointly create Y in A
– Edges from X1, X2 to Y, no edge from X3 to Y

• Can B simulate this?
– Without loss of generality, X1 creates Y
– Must have edge adding operation to add edge

from X2 to Y
– One type of node, one type of edge, so

operation can add edge between any 2 nodes

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-68

No

• All nodes in A have even number of incoming
edges
– 2-parent create adds 2 incoming edges

• Edge adding operation in B that can edge from X2
to C can add one from X3 to C
– A cannot enter this state
– B cannot transition to a state in which Y has even

number of incoming edges
• No remove rule

• So B cannot simulate A; N less expressive than M

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-69

Theorem

• Monotonic single-parent models are less
expressive than monotonic multiparent
models

• ESPM more expressive than SPM
– ESPM multiparent and monotonic
– SPM monotonic but single parent

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-70

Typed Access Matrix Model

• Like ACM, but with set of types T
– All subjects, objects have types
– Set of types for subjects TS

• Protection state is (S, O, τ, A)
– τ:O→T specifies type of each object
– If X subject, τ(X) in TS
– If X object, τ(X) in T – TS

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-71

Create Rules

• Subject creation
– create subject s of type ts
– s must not exist as subject or object when operation

executed
– ts ∈ TS

• Object creation
– create object o of type to
– o must not exist as subject or object when operation

executed
– to ∈ T – TS

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-72

Create Subject

• Precondition: s ∉ S
• Primitive command: create subject s of

type t
• Postconditions:

– S´ = S ∪{ s }, O´ = O ∪{ s }
– (∀y ∈ O)[τ´(y) = τ (y)], τ´(s) = t
– (∀y ∈ O´)[a´[s, y] = ∅], (∀x ∈ S´)[a´[x, s] = ∅]
– (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-73

Create Object

• Precondition: o ∉ O
• Primitive command: create object o of

type t
• Postconditions:

– S´ = S, O´ = O ∪ { o }
– (∀y ∈ O)[τ´(y) = τ (y)], τ´(o) = t
– (∀x ∈ S´)[a´[x, o] = ∅]
– (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-74

Definitions

• MTAM Model: TAM model without
delete, destroy
– MTAM is Monotonic TAM

• α(x1:t1, ..., xn:tn) create command
– ti child type in α if any of create subject xi of

type ti or create object xi of type ti occur in α
– ti parent type otherwise

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-75

Cyclic Creates

command havoc(s1 : u, s2 : u, o1 : v, o2 : v, o3 : w, o4 : w)
create subject s1 of type u;
create object o1 of type v;
create object o3 of type w;
enter r into a[s2, s1];
enter r into a[s2, o2];
enter r into a[s2, o4]

end

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-76

Creation Graph

• u, v, w child types
• u, v, w also parent

types
• Graph: lines from

parent types to child
types

• This one has cycles

u

v w

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-77

Theorems

• Safety decidable for systems with acyclic
MTAM schemes

• Safety for acyclic ternary MATM decidable
in time polynomial in the size of initial
ACM
– “ternary” means commands have no more than

3 parameters
– Equivalent in expressive power to MTAM

July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-78

Key Points

• Safety problem undecidable
• Limiting scope of systems can make

problem decidable
• Types critical to safety problem’s analysis

