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Chapter 3: Foundational Results

• Overview
• Harrison-Ruzzo-Ullman result

– Corollaries
• Take-Grant Protection Model
• SPM and successors
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Overview

• Safety Question
• HRU Model
• Take-Grant Protection Model
• SPM, ESPM

– Multiparent joint creation
• Expressive power
• Typed Access Matrix Model
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What Is “Secure”?

• Adding a generic right r where there was
not one is “leaking”

• If a system S, beginning in initial state s0,
cannot leak right r, it is safe with respect to
the right r.
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Safety Question

• Does there exist an algorithm for
determining whether a protection system S
with initial state s0 is safe with respect to a
generic right r?
– Here, “safe” = “secure” for an abstract model
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Mono-Operational Commands

• Answer: yes
• Sketch of proof:

Consider minimal sequence of commands c1, …,
ck to leak the right.
– Can omit delete, destroy
– Can merge all creates into one
Worst case: insert every right into every entry;
with s subjects and o objects initially, and n
rights, upper bound is k ≤ n(s+1)(o+1)
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General Case

• Answer: no
• Sketch of proof:

Reduce halting problem to safety problem
Turing Machine review:
– Infinite tape in one direction
– States K, symbols M; distinguished blank b
– Transition function δ(k, m) = (k′, m′, L) means in state

k, symbol m on tape location replaced by symbol m′,
head moves to left one square, and enters state k′

– Halting state is qf; TM halts when it enters this state
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Mapping

A B C D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

ownCurrent state is k
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Mapping

A B X D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After δ(k, C) = (k1, X, R)
where k is the current
state and k1 the next state
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Command Mapping
δ(k, C) = (k1, X, R) at intermediate becomes
command ck,C(s3,s4)
if own in A[s3,s4] and k in A[s3,s3]

and C in A[s3,s3]
then
delete k from A[s3,s3];
delete C from A[s3,s3];
enter X into A[s3,s3];
enter k1 into A[s4,s4];

end
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Mapping

A B X Y

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After δ(k1, D) = (k2, Y, R)
where k1 is the current
state and k2 the next state

s5

s5

own

b k2 end

5

b
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Command Mapping
δ(k1, D) = (k2, Y, R) at end becomes
command crightmostk,C(s4,s5)
if end in A[s4,s4] and k1 in A[s4,s4]

and D in A[s4,s4]
then

delete end from A[s4,s4];
create subject s5;
enter own into A[s4,s5];
enter end into A[s5,s5];
delete k1 from A[s4,s4];
delete D from A[s4,s4];
enter Y into A[s4,s4];
enter k2 into A[s5,s5];

end
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Rest of Proof

• Protection system exactly simulates a TM
– Exactly 1 end right in ACM
– 1 right in entries corresponds to state
– Thus, at most 1 applicable command

• If TM enters state qf, then right has leaked
• If safety question decidable, then represent TM as

above and determine if qf leaks
– Implies halting problem decidable

• Conclusion: safety question undecidable
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Other Results
• Set of unsafe systems is recursively enumerable
• Delete create primitive; then safety question is complete

in P-SPACE
• Delete destroy, delete primitives; then safety question is

undecidable
– Systems are monotonic

• Safety question for monoconditional, monotonic
protection systems is decidable

• Safety question for monoconditional protection systems
with create, enter, delete (and no destroy) is decidable.
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Take-Grant Protection Model

• A specific (not generic) system
– Set of rules for state transitions

• Safety decidable, and in time linear with
the size of the system

• Goal: find conditions under which rights
can be transferred from one entity to
another in the system
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System

 objects (files, …)
 subjects (users, processes, …)
Ä don't care (either a subject or an object)
G |–x G' apply a rewriting rule x (witness) to

 G to get G'
G |–* G' apply a sequence of rewriting rules 

(witness) to G to get G'
R = { t, g, r, w, … }   set of rights
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Rules

⊗

t α t α

α

take

g α α

α

grant
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More Rules

create

α

α

remove
α – β

 

  ⊗⊗

⊗|-

|- �

These four rules are called the de jure rules
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Symmetry

t
α

t α

α
⊗ ⊗



|–�

1.  x creates (tg to new) v
2.  z takes (g to v) from x
3.  z grants (a to y) to v
4.  x takes (a to y) from v

 z
v

tg

x

g

y

α

α

Similar result for grant
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Islands

• tg-path: path of distinct vertices connected
by edges labeled t or g
– Call them “tg-connected”

• island: maximal tg-connected subject-only
subgraph
– Any right one vertex has can be shared with

any other vertex
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Initial, Terminal Spans

• initial span from x to y
– x subject
– tg-path between x, y with word in { t*g } ∪ { ν }
– Means x can give rights it has to y

• terminal span from x to y
– x subject
– tg-path between x, y with word in { t* } ∪ { ν }
– Means x can acquire any rights y has

→

→→
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Bridges

• bridge: tg-path between subjects x, y, with
associated word in

{ t*, t*, t*g t*, t*g t* }
– rights can be transferred between the two

endpoints
– not an island as intermediate vertices are

objects

→ → →←← →→ ←
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Example

●p

●
u

❍
v

●
w

❍
x

●y

●s' ❍
s

❍
q

t

t t

t r

gg

g

• islands { p, u }  { w }  { y, s' }
• bridges u, v, w; w, x, y
• initial span p (associated word ν)
• terminal span s's (associated word t)→
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can•share Predicate

Definition:
• can•share(r, x, y, G0) if, and only if, there

is a sequence of protection graphs G0, …,
Gn such that G0 |–* Gn using only de jure
rules and in Gn there is an edge from x to y
labeled r.
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can•share Theorem

• can•share(r, x, y, G0) if, and only if, there
is an edge from x to y labeled r in G0, or
the following hold simultaneously:
– There is an s in G0 with an s-to-y edge labeled r
– There is a subject x′ = x or initially spans to x
– There is a subject s′ = s or terminally spans to s
– There are islands I1,…, Ik connected by

bridges, and x′ in I1 and s′ in Ik
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Outline of Proof

• s has r rights over y
• s′ acquires r rights over y from s

– Definition of terminal span
• x′ acquires r rights over y from s′

– Repeated application of sharing among
vertices in islands, passing rights along bridges

• x′ gives r rights over y to x
– Definition of initial span
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Key Question

• Characterize class of models for which
safety is decidable
– Existence: Take-Grant Protection Model is a

member of such a class
– Universality: In general, question undecidable,

so for some models it is not decidable
• What is the dividing line?
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Schematic Protection Model

• Type-based model
– Protection type: entity label determining how control

rights affect the entity
• Set at creation and cannot be changed

– Ticket: description of a single right over an entity
• Entity has sets of tickets (called a domain)
• Ticket is X/r, where X is entity and r right

– Functions determine rights transfer
• Link: are source, target “connected”?
• Filter: is transfer of ticket authorized?
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Link Predicate

• Idea: linki(X, Y) if X can assert some
control right over Y

• Conjunction of disjunction of:
– X/z ∈ dom(X)
– X/z ∈ dom(Y)
– Y/z ∈ dom(X)
– Y/z ∈ dom(Y)
– true
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Examples

• Take-Grant:
link(X, Y) = Y/g ∈ dom(X) v X/t ∈ dom(Y)

• Broadcast:
link(X, Y) = X/b ∈ dom(X)

• Pull:
link(X, Y) = Y/p ∈ dom(Y)
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Filter Function

• Range is set of copyable tickets
– Entity type, right

• Domain is subject pairs
• Copy a ticket X/r:c from dom(Y) to dom(Z)

– X/rc ∈ dom(Y)
– linki(Y, Z)
– τ(Y)/r:c ∈ fi(τ(Y), τ(Z))

• One filter function per link function
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Example

• f(τ(Y), τ(Z)) = T × R
– Any ticket can be transferred (if other

conditions met)
• f(τ(Y), τ(Z)) = T × RI

– Only tickets with inert rights can be transferred
(if other conditions met)

• f(τ(Y), τ(Z)) = ∅
– No tickets can be transferred
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Example

• Take-Grant Protection Model
– TS = { subjects }, TO = { objects }
– RC = { tc, gc }, RI = { rc, wc }
– link(p, q) = p/t ∈ dom(q) ∨ q/t ∈ dom(p)
– f(subject, subject) = { subject, object } × { tc,

gc, rc, wc }
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Create Operation

• Must handle type, tickets of new entity
• Relation can•create(a, b)

– Subject of type a can create entity of type b
• Rule of acyclic creates:

a b

c d

a b

c d
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Types

• cr(a, b): tickets introduced when subject of
type a creates entity of type b

• B object: cr(a, b) ⊆ { b/r:c ∈ RI }
• B subject: cr(a, b) has two parts

– crP(a, b) added to A, crC(a, b) added to B
– A gets B/r:c if b/r:c in crP(a, b)
– B gets A/r:c if a/r:c in crC(a, b)
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Non-Distinct Types

cr(a, a): who gets what?
• self/r:c are tickets for creator
• a/r:c tickets for created
cr(a, a) = { a/r:c, self/r:c | r:c ∈ R}
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Attenuating Create Rule

cr(a, b) attenuating if:
1.  crC(a, b) ⊆ crP(a, b) and
2.  a/r:c ∈ crP(a, b) ⇒ self/r:c ∈ crP(a, b)
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Safety Result

• If the scheme is acyclic and attenuating, the
safety question is decidable
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Expressive Power

• How do the sets of systems that models can
describe compare?
– If HRU equivalent to SPM, SPM provides

more specific answer to safety question
– If HRU describes more systems, SPM applies

only to the systems it can describe
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HRU vs. SPM

• SPM more abstract
– Analyses focus on limits of model, not details of

representation
• HRU allows revocation

– SMP has no equivalent to delete, destroy
• HRU allows multiparent creates

– SMP cannot express multiparent creates easily, and not
at all if the parents are of different types because
can•create allows for only one type of creator
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Multiparent Create

• Solves mutual suspicion problem
– Create proxy jointly, each gives it needed rights

• In HRU:
command multicreate(s0, s1, o)
if r in a[s0, s1] and r in a[s1, s0]
then
create object o;
enter r into a[s0, o];
enter r into a[s1, o];

end
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SPM and Multiparent Create

• can•create extended in obvious way
– cc ⊆ TS × … × TS × T

• Symbols
– X1, …, Xn parents, Y created
– R1,i, R2,i, R3, R4,i ⊆ R

• Rules
– crP,i(τ(X1), …, τ(Xn)) = Y/R1,1 ∪ Xi/R2,i

– crC(τ(X1), …, τ(Xn)) = Y/R3 ∪ X1/R4,1 ∪ … ∪ Xn/R4,n
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Example

• Anna, Bill must do something cooperatively
– But they don’t trust each other

• Jointly create a proxy
– Each gives proxy only necessary rights

• In ESPM:
– Anna, Bill type a; proxy type p; right x ∈ R
– cc(a, a) = p
– crAnna(a, a, p) = crBill(a, a, p) = ∅
– crproxy(a, a, p) = { Anna/x, Bilł/x }
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2-Parent Joint Create Suffices

• Goal: emulate 3-parent joint create with 2-
parent joint create

• Definition of 3-parent joint create (subjects
P1, P2, P3; child C):
– cc(τ(P1), τ(P2), τ(P3)) = Z ⊆ T
– crP1(τ(P1), τ(P2), τ(P3)) = C/R1,1 ∪ P1/R2,1
– crP2(τ(P1), τ(P2), τ(P3)) = C/R2,1 ∪ P2/R2,2
– crP3(τ(P1), τ(P2), τ(P3)) = C/R3,1 ∪ P3/R2,3
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General Approach

• Define agents for parents and child
– Agents act as surrogates for parents
– If create fails, parents have no extra rights
– If create succeeds, parents, child have exactly

same rights as in 3-parent creates
• Only extra rights are to agents (which are never

used again, and so these rights are irrelevant)
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Entities and Types

• Parents P1, P2, P3 have types p1, p2, p3

• Child C of type c
• Parent agents A1, A2, A3 of types a1, a2, a3

• Child agent S of type s
• Type t is parentage

– if X/t ∈ dom(Y), X is Y’s parent
• Types t, a1, a2, a3, s are new types
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Can•Create

• Following added to can•create:
– cc(p1) = a1

– cc(p2, a1) = a2

– cc(p3, a2) = a3
• Parents creating their agents; note agents have maximum of 2

parents
– cc(a3) = s

• Agent of all parents creates agent of child
– cc(s) = c

• Agent of child creates child
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Creation Rules

• Following added to create rule:
– crP(p1, a1) = ∅
– crC(p1, a1) = p1/Rtc

• Agent’s parent set to creating parent; agent has all rights over
parent

– crPfirst(p2, a1, a2) = ∅
– crPsecond(p2, a1, a2) = ∅
– crC(p2, a1, a2) = p2/Rtc ∪ a1/tc

• Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)
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Creation Rules
– crPfirst(p3, a2, a3) = ∅
– crPsecond(p3, a2, a3) = ∅
– crC(p3, a2, a3) = p3/Rtc ∪ a2/tc

• Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)

– crP(a3, s) = ∅
– crC(a3, s) = a3/tc

• Child’s agent has third agent as parent crP(a3, s) = ∅
– crP(s, c) = C/Rtc
– crC(s, c) = c/R3t

• Child’s agent gets full rights over child; child gets R3 rights
over agent
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Link Predicates

• Idea: no tickets to parents until child created
– Done by requiring each agent to have its own parent

rights
– link1(A1, A2) = A1/t ∈ dom(A2) ∧ A2/t ∈ dom(A2)
– link1(A2, A3) = A2/t ∈ dom(A3) ∧ A3/t ∈ dom(A3)
– link2(S, A3) = A3/t ∈ dom(S) ∧ C/t ∈ dom(C)
– link3(A1, C) = C/t ∈ dom(A1)
– link3(A2, C) = C/t ∈ dom(A2)
– link3(A3, C) = C/t ∈ dom(A3)
– link4(A1, P1) = P1/t ∈ dom(A1) ∧ A1/t ∈ dom(A1)
– link4(A2, P2) = P2/t ∈ dom(A2) ∧ A2/t ∈ dom(A2)
– link4(A3, P3) = P3/t ∈ dom(A3) ∧ A3/t ∈ dom(A3)
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Filter Functions
• f1(a2, a1) = a1/t ∪ c/Rtc
• f1(a3, a2) = a2/t ∪ c/Rtc
• f2(s, a3) = a3/t ∪ c/Rtc
• f3(a1, c) = p1/R4,1
• f3(a2, c) = p2/R4,2
• f3(a3, c) = p3/R4,3
• f4(a1, p1) = c/R1,1 ∪ p1/R2,1
• f4(a2, p2) = c/R1,2 ∪ p2/R2,2
• f4(a3, p3) = c/R1,3 ∪ p3/R2,3
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Construction

Create A1, A2, A3, S, C; then
• P1 has no relevant tickets
• P2 has no relevant tickets
• P3 has no relevant tickets
• A1 has P1/Rtc
• A2 has P2/Rtc ∪ A1/tc
• A3 has P3/Rtc ∪ A2/tc
• S has A3/tc ∪ C/Rtc
• C has C/R3
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Construction
• Only link2(S, A3) true ⇒ apply f2

– A3 has P3/Rtc ∪ A2/t ∪ A3/t ∪ C/Rtc
• Now link1(A3, A2) true ⇒ apply f1

– A2 has P2/Rtc ∪ A1/tc ∪ A2/t ∪ C/Rtc
• Now link1(A2, A1) true ⇒ apply f1

– A1 has P2/Rtc ∪ A1/tc ∪ A1/t ∪ C/Rtc
• Now all link3s true ⇒ apply f3

– C has C/R3 ∪ P1/R4,1 ∪ P2/R4,2 ∪ P3/R4,3
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Finish Construction

• Now link4s true ⇒ apply f4
– P1 has C/R1,1 ∪ P1/R2,1
– P2 has C/R1,2 ∪ P2/R2,2
– P3 has C/R1,3 ∪ P3/R2,3

• 3-parent joint create gives same rights to
P1, P2, P3, C

• If create of C fails, link2 fails, so
construction fails
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Theorem

• The two-parent joint creation operation can
implement an n-parent joint creation
operation with a fixed number of additional
types and rights, and augmentations to the
link predicates and filter functions.

• Proof: by construction, as above
– Difference is that the two systems need not

start at the same initial state



July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-55

Theorems

• Monotonic ESPM and the monotonic HRU
model are equivalent.

• Safety question in ESPM also decidable if
acyclic attenuating scheme



July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-56

Expressiveness

• Graph-based representation to compare models
• Graph

– Vertex: represents entity, has static type
– Edge: represents right, has static type

• Graph rewriting rules:
– Initial state operations create graph in a particular state
– Node creation operations add nodes, incoming edges
– Edge adding operations add new edges between

existing vertices
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Example: 3-Parent Joint Creation

• Simulate with 2-parent
– Nodes P1, P2, P3 parents
– Create node C with type c with edges of type e
– Add node A1 of type a and edge from P1 to A1

of type e´
P2 P3P1

A1



July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-58

Next Step

• A1, P2 create A2; A2, P3 create A3

• Type of nodes, edges are a and e´

P2
P3P1

A1 A2

A3
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Next Step

• A3 creates S, of type a
• S creates C, of type c

SC

P2
P3P1

A1 A2

A3
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Last Step

• Edge adding operations:
– P1→A1→A2→A3→S→C: P1 to C edge type e
– P2→A2→A3→S→C: P2 to C edge type e
– P3→A3→S→C: P3 to C edge type e

S

C

P2
P3P1

A1

A2
A3
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Definitions

• Scheme: graph representation as above
• Model: set of schemes
• Schemes A, B correspond if graph for both

is identical when all nodes with types not in
A and edges with types in A are deleted
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Example

• Above 2-parent joint creation simulation in
scheme TWO

• Equivalent to 3-parent joint creation
scheme THREE in which P1, P2, P3, C are
of same type as in TWO, and edges from
P1, P2, P3 to C are of type e, and no types a
and e´ exist in TWO
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Simulation

Scheme A simulates scheme B iff
• every state B can reach has a corresponding state

in A that A can reach; and
• every state that A can reach either corresponds to

a state B can reach, or has a successor state that
corresponds to a state B can reach
– The last means that A can have intermediate states not

corresponding to states in B, like the intermediate ones
in TWO in the simulation of THREE
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Expressive Power

• If scheme in MA no scheme in MB can
simulate, MB less expressive than MA

• If every scheme in MA can be simulated by
a scheme in MB, MB as expressive as MA

• If MA as expressive as MB and vice versa,
MA and MB equivalent
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Example

• Scheme A in model M
– Nodes X1, X2, X3
– 2-parent joint create
– 1 node type, 1 edge type
– No edge adding operations
– Initial state: X1, X2, X3, no edges

• Scheme B in model N
– All same as A except no 2-parent joint create
– 1-parent create

• Which is more expressive?
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Can A Simulate B?

• Scheme A simulates 1-parent create: have
both parents be same node
– Model M as expressive as model N
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Can B Simulate A?

• Suppose X1, X2 jointly create Y in A
– Edges from X1, X2 to Y, no edge from X3 to Y

• Can B simulate this?
– Without loss of generality, X1 creates Y
– Must have edge adding operation to add edge

from X2 to Y
– One type of node, one type of edge, so

operation can add edge between any 2 nodes
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No

• All nodes in A have even number of incoming
edges
– 2-parent create adds 2 incoming edges

• Edge adding operation in B that can edge from X2
to C can add one from X3 to C
– A cannot enter this state
– B cannot transition to a state in which Y has even

number of incoming edges
• No remove rule

• So B cannot simulate A; N less expressive than M
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Theorem

• Monotonic single-parent models are less
expressive than monotonic multiparent
models

• ESPM more expressive than SPM
– ESPM multiparent and monotonic
– SPM monotonic but single parent
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Typed Access Matrix Model

• Like ACM, but with set of types T
– All subjects, objects have types
– Set of types for subjects TS

• Protection state is (S, O, τ, A)
– τ:O→T specifies type of each object
– If X subject, τ(X) in TS
– If X object, τ(X) in T – TS
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Create Rules

• Subject creation
– create subject s of type ts
– s must not exist as subject or object when operation

executed
– ts ∈ TS

• Object creation
– create object o of type to
– o must not exist as subject or object when operation

executed
– to ∈ T – TS
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Create Subject

• Precondition: s ∉ S
• Primitive command: create subject s of

type t
• Postconditions:

– S´ = S ∪{ s }, O´ = O ∪{ s }
– (∀y ∈ O)[τ´(y) = τ (y)], τ´(s) = t
– (∀y ∈ O´)[a´[s, y] = ∅], (∀x ∈ S´)[a´[x, s] = ∅]
– (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]



July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #3-73

Create Object

• Precondition: o ∉ O
• Primitive command: create object o of

type t
• Postconditions:

– S´ = S, O´ = O ∪ { o }
– (∀y ∈ O)[τ´(y) = τ (y)], τ´(o) = t
– (∀x ∈ S´)[a´[x, o] = ∅]
– (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]
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Definitions

• MTAM Model: TAM model without
delete, destroy
– MTAM is Monotonic TAM

• α(x1:t1, ..., xn:tn) create command
– ti child type in α if any of create subject xi of

type ti or create object xi of type ti occur in α
– ti parent type otherwise
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Cyclic Creates

command havoc(s1 : u, s2 : u, o1 : v, o2 : v, o3 : w, o4 : w)
create subject s1 of type u;
create object o1 of type v;
create object o3 of type w;
enter r into a[s2, s1];
enter r into a[s2, o2];
enter r into a[s2, o4]

end
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Creation Graph

• u, v, w child types
• u, v, w also parent

types
• Graph: lines from

parent types to child
types

• This one has cycles

u

v w
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Theorems

• Safety decidable for systems with acyclic
MTAM schemes

• Safety for acyclic ternary MATM decidable
in time polynomial in the size of initial
ACM
– “ternary” means commands have no more than

3 parameters
– Equivalent in expressive power to MTAM
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Key Points

• Safety problem undecidable
• Limiting scope of systems can make

problem decidable
• Types critical to safety problem’s analysis


