
June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-1

Chapter 6: Integrity Policies

• Overview
• Requirements
• Biba’s models
• Lipner’s model
• Clark-Wilson model

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-2

Overview

• Requirements
– Very different than confidentiality policies

• Biba’s models
– Low-Water-Mark policy
– Ring policy
– Strict Integrity policy

• Lipner’s model
– Combines Bell-LaPadula, Biba

• Clark-Wilson model

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-3

Requirements of Policies
1. Users will not write their own programs, but will use existing

production programs and databases.
2. Programmers will develop and test programs on a non-production

system; if they need access to actual data, they will be given
production data via a special process, but will use it on their
development system.

3. A special process must be followed to install a program from the
development system onto the production system.

4. The special process in requirement 3 must be controlled and
audited.

5. The managers and auditors must have access to both the system
state and the system logs that are generated.

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-4

Biba Integrity Model

Basis for all 3 models:
• Set of subjects S, objects O, integrity levels I,

relation ≤ ⊆ I × I holding when second dominates
first

• min: I × I → I returns lesser of integrity levels
• i: S ∪ O → I gives integrity level of entity
• r: S × O means s ∈ S can read o ∈ O
• w, x defined similarly

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-5

Intuition for Integrity Levels

• The higher the level, the more confidence
– That a program will execute correctly
– That data is accurate and/or reliable

• Note relationship between integrity and
trustworthiness

• Important point: integrity levels are not
security levels

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-6

Information Transfer Path

• An information transfer path is a sequence
of objects o1, ..., on+1 and corresponding
sequence of subjects s1, ..., sn such that si r
oi and si w oi+1 for all i, 1 ≤ i ≤ n.

• Idea: information can flow from o1 to on+1
along this path by successive reads and
writes

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-7

Low-Water-Mark Policy

• Idea: when s reads o, i(s) = min(i(s), i (o)); s can
only write objects at lower levels

• Rules
1. s ∈ S can write to o ∈ O if and only if i(o) ≤ i(s).
2. If s ∈ S reads o ∈ O, then i′(s) = min(i(s), i(o)),

where i′(s) is the subject’s integrity level after the
read.

3. s1 ∈ S can execute s2 ∈ S if and only if i(s2) ≤ i(s1).

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-8

Information Flow and Model

• If there is information transfer path from o1 ∈ O
to on+1 ∈ O, enforcement of low-water-mark
policy requires i(on+1) ≤ i(o1) for all n > 1.
– Idea of proof: Assume information transfer path exists

between o1 and on+1. Assume that each read and write
was performed in the order of the indices of the
vertices. By induction, the integrity level for each
subject is the minimum of the integrity levels for all
objects preceding it in path, so i(sn) ≤ i(o1). As nth
write succeeds, i(on+1) ≤ i(sn). Hence i(on+1) ≤ i(o1).

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-9

Problems

• Subjects’ integrity levels decrease as system runs
– Soon no subject will be able to access objects at high

integrity levels
• Alternative: change object levels rather than

subject levels
– Soon all objects will be at the lowest integrity level

• Crux of problem is model prevents indirect
modification
– Because subject levels lowered when subject reads

from low-integrity object

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-10

Ring Policy

• Idea: subject integrity levels static
• Rules

1. s ∈ S can write to o ∈ O if and only if i(o) ≤ i(s).
2. Any subject can read any object.
3. s1 ∈ S can execute s2 ∈ S if and only if i(s2) ≤ i(s1).

• Eliminates indirect modification problem
• Same information flow result holds

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-11

Strict Integrity Policy

• Similar to Bell-LaPadula model
1. s ∈ S can read o ∈ O iff i(s) ≤ i(o)
2. s ∈ S can write to o ∈ O iff i(o) ≤ i(s)
3. s1 ∈ S can execute s2 ∈ S iff i(s2) ≤ i(s1)

• Add compartments and discretionary controls to
get full dual of Bell-LaPadula model

• Information flow result holds
– Different proof, though

• Term “Biba Model” refers to this

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-12

LOCUS and Biba

• Goal: prevent untrusted software from altering
data or other software

• Approach: make levels of trust explicit
– credibility rating based on estimate of software’s

trustworthiness (0 untrusted, n highly trusted)
– trusted file systems contain software with a single

credibility level
– Process has risk level or highest credibility level at

which process can execute
– Must use run-untrusted command to run software at

lower credibility level

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-13

Integrity Matrix Model

• Lipner proposed this as first realistic
commercial model

• Combines Bell-LaPadula, Biba models to
obtain model conforming to requirements

• Do it in two steps
– Bell-LaPadula component first
– Add in Biba component

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-14

Bell-LaPadula Clearances

• 2 security clearances/classifications
– AM (Audit Manager): system audit,

management functions
– SL (System Low): any process can read at this

level

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-15

Bell-LaPadula Categories

• 5 categories
– D (Development): production programs in

development but not yet in use
– PC (Production Code): production processes, programs
– PD (Production Data): data covered by integrity policy
– SD (System Development): system programs in

development but not yet in use
– T (Software Tools): programs on production system

not related to protected data

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-16

Users and Security Levels

(SL, {D, PC, PD, SD,
T}) and downgrade
privilege

System controllers

(AM, { D, OC, OD, SD,
T })

System managers and
auditors

(SL, { SD, T })System programmers

(SL, { D, T })Application developers
(SL, { PC, PD })Ordinary users

Security LevelSubjects

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-17

Objects and Classifications

(AM, { appropriate })System and application logs

(SL, { SD, T })System programs in modification

(SL, ∅)System programs

(SL, { T })Software tools

(SL, { PC, PD })Production data

(SL, { PC })Production code

(SL, { D, T })Development code/test data

Security LevelObjects

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-18

Ideas

• Ordinary users can execute (read) production
code but cannot alter it

• Ordinary users can alter and read production data
• System managers need access to all logs but

cannot change levels of objects
• System controllers need to install code (hence

downgrade capability)
• Logs are append only, so must dominate subjects

writing them

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-19

Check Requirements

1. Users have no access to T, so cannot write their
own programs

2. Applications programmers have no access to
PD, so cannot access production data; if needed,
it must be put into D, requiring the system
controller to intervene

3. Installing a program requires downgrade
procedure (from D to PC), so only system
controllers can do it

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-20

More Requirements

4. Control: only system controllers can
downgrade; audit: any such downgrading
must be altered

5. System management and audit users are
in AM and so have access to system
styate and logs

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-21

Problem

• Too inflexible
– System managers cannot run programs for

repairing inconsistent or erroneous production
database

• System managers at AM, production data at SL

• So add more …

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-22

Adding Biba

• 3 integrity classifications
– ISP(System Program): for system programs
– IO (Operational): production programs,

development software
– ISL (System Low): users get this on log in

• 2 integrity categories
– ID (Development): development entities
– IP (Production): production entities

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-23

Simplify Bell-LaPadula

• Reduce security categories to 3:
– SP (Production): production code, data
– SD (Development): same as D
– SSD (System Development): same as old SD

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-24

Users and Levels

(ISL, { IP })

(ISP, { IP, ID})

(ISL, { IP, ID})

(ISL, { ID })

(ISL, { ID })

(ISL, { IP })

Integrity Level

(SL, { SP })Repair

(SL, { SP, SD }) and
downgrade privilege

System controllers

(AM, { SP, SD, SSD })System managers
and auditors

(SL, { SSD })System programmers

(SL, { SD })Application
developers

(SL, { SP })Ordinary users

Security LevelSubjects

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-25

Objects and Classifications

(ISL, { IP })

(ISL, ∅)

(ISL, { ID })

(ISP, { IP, ID })

(IO, { ID })
(ISL, { IP })

(IO, { IP })

(ISL, { IP})
Integrity Level

(SL, {SP})Repair

(AM, { appropriate })System and application logs

(SL, { SSD })System programs in
modification

(SL, ∅)System programs

(SL, ∅)Software tools
(SL, { SP })Production data

(SL, { SP })Production code

(SL, { SD })Development code/test data
Security LevelObjects

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-26

Ideas

• Security clearances of subjects same as without
integrity levels

• Ordinary users need to modify production data, so
ordinary users must have write access to integrity
category IP

• Ordinary users must be able to write production
data but not production code; integrity classes
allow this
– Note writing constraints removed from security classes

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-27

Clark-Wilson Integrity Model

• Integrity defined by a set of constraints
– Data in a consistent or valid state when it satisfies these

• Example: Bank
– D today’s deposits, W withdrawals, YB yesterday’s

balance, TB today’s balance
– Integrity constraint: D + YB –W

• Well-formed transaction move system from one
consistent state to another

• Issue: who examines, certifies transactions done
correctly?

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-28

Entities

• CDIs: constrained data items
– Data subject to integrity controls

• UDIs: unconstrained data items
– Data not subject to integrity controls

• IVPs: integrity verification procedures
– Procedures that test the CDIs conform to the integrity

constraints
• TPs: transaction procedures

– Procedures that take the system from one valid state to
another

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-29

Certification Rules 1 and 2

CR1 When any IVP is run, it must ensure all CDIs
are in a valid state

CR2 For some associated set of CDIs, a TP must
transform those CDIs in a valid state into a
(possibly different) valid state

– Defines relation certified that associates a set of
CDIs with a particular TP

– Example: TP balance, CDIs accounts, in bank
example

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-30

Enforcement Rules 1 and 2

ER1 The system must maintain the certified
relations and must ensure that only TPs
certified to run on a CDI manipulate that CDI.

ER2 The system must associate a user with each
TP and set of CDIs. The TP may access those
CDIs on behalf of the associated user. The TP
cannot access that CDI on behalf of a user not
associated with that TP and CDI.

– System must maintain, enforce certified relation
– System must also restrict access based on user ID

(allowed relation)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-31

Users and Rules

CR3 The allowed relations must meet the
requirements imposed by the principle of
separation of duty.

ER3 The system must authenticate each user
attempting to execute a TP
– Type of authentication undefined, and depends on

the instantiation
– Authentication not required before use of the

system, but is required before manipulation of
CDIs (requires using TPs)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-32

Logging

CR4 All TPs must append enough
information to reconstruct the operation
to an append-only CDI.
– This CDI is the log
– Auditor needs to be able to determine

what happened during reviews of
transactions

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-33

Handling Untrusted Input

CR5 Any TP that takes as input a UDI may
perform only valid transformations, or no
transformations, for all possible values of the
UDI. The transformation either rejects the
UDI or transforms it into a CDI.
– In bank, numbers entered at keyboard are UDIs,

so cannot be input to TPs. TPs must validate
numbers (to make them a CDI) before using them;
if validation fails, TP rejects UDI

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-34

Separation of Duty In Model

ER4 Only the certifier of a TP may change
the list of entities associated with that
TP. No certifier of a TP, or of an entity
associated with that TP, may ever have
execute permission with respect to that
entity.
– Enforces separation of duty with respect to

certified and allowed relations

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-35

Comparison With Requirements

1. Users can’t certify TPs, so CR5 and ER4
enforce this

2. Procedural, so model doesn’t directly cover it;
but special process corresponds to using TP

• No technical controls can prevent programmer from
developing program on production system; usual
control is to delete software tools

3. TP does the installation, trusted personnel do
certification

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-36

Comparison With Requirements

4. CR4 provides logging; ER3 authenticates
trusted personnel doing installation; CR5,
ER4 control installation procedure

• New program UDI before certification, CDI
(and TP) after

5. Log is CDI, so appropriate TP can
provide managers, auditors access

• Access to state handled similarly

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-37

Comparison to Biba

• Biba
– No notion of certification rules; trusted

subjects ensure actions obey rules
– Untrusted data examined before being made

trusted
• Clark-Wilson

– Explicit requirements that actions must meet
– Trusted entity must certify method to upgrade

untrusted data (and not certify the data itself)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-38

UNIX Implementation

• Considered “allowed” relation
(user, TP, { CDI set })

• Each TP is owned by a different user
– These “users” are actually locked accounts, so no real

users can log into them; but this provides each TP a
unique UID for controlling access rights

– TP is setuid to that user
• Each TP’s group contains set of users authorized

to execute TP
• Each TP is executable by group, not by world

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-39

CDI Arrangement

• CDIs owned by root or some other unique
user
– Again, no logins to that user’s account allowed

• CDI’s group contains users of TPs allowed
to manipulate CDI

• Now each TP can manipulate CDIs for
single user

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-40

Examples

• Access to CDI constrained by user
– In “allowed” triple, TP can be any TP
– Put CDIs in a group containing all users authorized to

modify CDI
• Access to CDI constrained by TP

– In “allowed” triple, user can be any user
– CDIs allow access to the owner, the user owning the TP
– Make the TP world executable

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-41

Problems

• 2 different users cannot use same copy of TP to
access 2 different CDIs
– Need 2 separate copies of TP (one for each user and

CDI set)
• TPs are setuid programs

– As these change privileges, want to minimize their
number

• root can assume identity of users owning TPs,
and so cannot be separated from certifiers
– No way to overcome this without changing nature of

root

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #6-42

Key Points

• Integrity policies deal with trust
– As trust is hard to quantify, these policies are

hard to evaluate completely
– Look for assumptions and trusted users to find

possible weak points in their implementation
• Biba, Lipner based on multilevel integrity
• Clark-Wilson focuses on separation of duty

and transactions

