Chapter 8: Noninterference and Policy Composition

- Overview
- Problem
- Deterministic Noninterference
- Nondeducibility
- Generalized Noninterference
- Restrictiveness

Overview

- Problem
 - Policy composition
- Noninterference
 - HIGH inputs affect LOW outputs
- Nondeducibility
 - HIGH inputs can be determined from LOW outputs
- Restrictiveness
 - When can policies be composed successfully

Composition of Policies

- Two organizations have two security policies
- They merge
 - How do they combine security policies to create one security policy?
 - Can they create a coherent, consistent security policy?

The Problem

- Single system with 2 users
 - Each has own virtual machine
 - Holly at system high, Lara at system low so they cannot communicate directly
- CPU shared between VMs based on load
 - Forms a *covert channel* through which Holly, Lara can communicate

Example Protocol

- Holly, Lara agree:
 - Begin at noon
 - Lara will sample CPU utilization every minute
 - To send 1 bit, Holly runs program
 - Raises CPU utilization to over 60%
 - To send 0 bit, Holly does not run program
 - CPU utilization will be under 40%
- Not "writing" in traditional sense
 - But information flows from Holly to Lara

Policy vs. Mechanism

- Can be hard to separate these
- In the abstract: CPU forms channel along which information can be transmitted
 - Violates *-property
 - Not "writing" in traditional sense
- Conclusions:
 - Model does not give sufficient conditions to prevent communication, *or*
 - System is improperly abstracted; need a better definition of "writing"

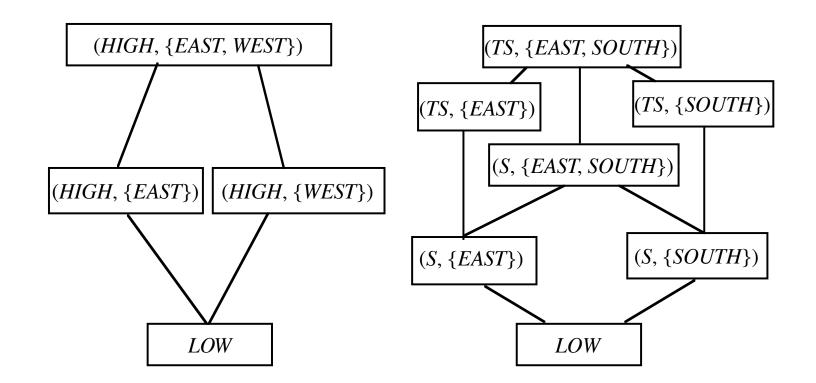
Composition of Bell-LaPadula

- Why?
 - Some standards require secure components to be connected to form secure (distributed, networked) system
- Question
 - Under what conditions is this secure?
- Assumptions
 - Implementation of systems precise with respect to each system's security policy

Issues

- Compose the lattices
- What is relationship among labels?
 - If the same, trivial
 - If different, new lattice must reflect the relationships among the levels

Example



Computer Security: Art and Science ©2002-2004 Matt Bishop

Analysis

- Assume S < HIGH < TS
- Assume SOUTH, EAST, WEST different
- Resulting lattice has:
 - 4 clearances (LOW < S < HIGH < TS)
 - 3 categories (SOUTH, EAST, WEST)

Same Policies

- If we can change policies that components must meet, composition is trivial (as above)
- If we *cannot*, we must show composition meets the same policy as that of components; this can be very hard

Different Policies

- What does "secure" now mean?
- Which policy (components) dominates?
- Possible principles:
 - Any access allowed by policy of a component must be allowed by composition of components (*autonomy*)
 - Any access forbidden by policy of a component must be forbidden by composition of components (*security*)

Computer Security: Art and Science ©2002-2004 Matt Bishop

Implications

- Composite system satisfies security policy of components as components' policies take precedence
- If something neither allowed nor forbidden by principles, then:
 - Allow it (Gong & Qian)
 - Disallow it (Fail-Safe Defaults)

Example

- System X: Bob can't access Alice's files
- System Y: Eve, Lilith can access each other's files
- Composition policy:
 - Bob can access Eve's files
 - Lilith can access Alice's files
- Question: can Bob access Lilith's files?

Solution (Gong & Qian)

- Notation:
 - -(a, b): *a* can read *b*'s files
 - AS(x): access set of system x
- Set-up:
 - $-AS(X) = \emptyset$
 - $AS(Y) = \{ (Eve, Lilith), (Lilith, Eve) \}$ $- AS(X \cup Y) = \{ (Bob, Eve), (Lilith, Alice),$ $(Eve, Lilith), (Lilith, Eve) \}$

Computer Security: Art and Science ©2002-2004 Matt Bishop Slide #8-15

Solution (Gong & Qian)

• Compute transitive closure of $AS(X \cup Y)$:

 $- AS(X \cup Y)^+ = \{$

(Bob, Eve), (Bob, Lilith), (Bob, Alice),

(Eve, Lilith), (Eve, Alice),

(Lilith, Eve), (Lilith, Alice) }

• Delete accesses conflicting with policies of components:

– Delete (Bob, Alice)

• (Bob, Lilith) in set, so Bob can access Lilith's files

Idea

- Composition of policies allows accesses not mentioned by original policies
- Generate all possible allowed accesses
 - Computation of transitive closure
- Eliminate forbidden accesses
 - Removal of accesses disallowed by individual access policies
- Everything else is allowed
- Note; determining if access allowed is of polynomial complexity

Interference

- Think of it as something used in communication
 - Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects it—communication
- Plays role of writing (interfering) and reading (detecting the interference)

Model

- System as state machine
 - Subjects $S = \{ s_i \}$
 - States $\Sigma = \{ \sigma_i \}$
 - Outputs $O = \{ o_i \}$
 - Commands $Z = \{ z_i \}$
 - State transition commands $C = S \times Z$
- Note: no inputs
 - Encode either as selection of commands or in state transition commands

Functions

- State transition function $T: C \times \Sigma \rightarrow \Sigma$
 - Describes effect of executing command c in state σ
- Output function $P: C \times \Sigma \rightarrow O$
 - Output of machine when executing command c in state s
- Initial state is σ_0

Example

- Users Heidi (high), Lucy (low)
- 2 bits of state, H (high) and L (low)
 - System state is (H, L) where H, L are 0, 1
- 2 commands: *xor0*, *xor1* do xor with 0, 1
 - Operations affect *both* state bits regardless of whether Heidi or Lucy issues it

Example: 2-bit Machine

- $S = \{$ Heidi, Lucy $\}$
- $\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$

•
$$C = \{ xor0, xor1 \}$$

	Input States (H, L)			
	(0,0)	(0,1)	(1,0)	(1,1)
xor0	(0,0)	(0,1)	(1,0)	(1,1)
xor1	(1,1)	(1,0)	(0,1)	(0,0)

Computer Security: Art and Science ©2002-2004 Matt Bishop

Outputs and States

- *T* is inductive in first argument, as $T(c_0, \sigma_0) = \sigma_1; T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i))$
- Let *C** be set of possible sequences of commands in *C*

•
$$T^*: C^* \times \Sigma \to \Sigma$$
 and

$$c_s = c_0 \dots c_n \Rightarrow T^*(c_s, \sigma_i) = T(c_n, \dots, T(c_0, \sigma_i) \dots)$$

• *P* similar; define *P** similarly

Computer Security: Art and Science ©2002-2004 Matt Bishop

Projection

- $T^*(c_s, \sigma_i)$ sequence of state transitions
- $P^*(c_s, \sigma_i)$ corresponding outputs
- $proj(s, c_s, \sigma_i)$ set of outputs in $P^*(c_s, \sigma_i)$ that subject s authorized to see
 - In same order as they occur in $P^*(c_s, \sigma_i)$
 - Projection of outputs for s
- Intuition: list of outputs after removing outputs that *s* cannot see

Purge

- $G \subseteq S$, G a group of subjects
- $A \subseteq Z$, A a set of commands
- π_G(c_s) subsequence of c_s with all elements
 (s,z), s ∈ G deleted
- π_A(c_s) subsequence of c_s with all elements
 (s,z), z ∈ A deleted
- $\pi_{G,A}(c_s)$ subsequence of c_s with all elements $(s,z), s \in G$ and $z \in A$ deleted

Computer Security: Art and Science ©2002-2004 Matt Bishop

Example: 2-bit Machine

- Let $\sigma_0 = (0,1)$
- 3 commands applied:
 - Heidi applies *xor0*
 - Lucy applies xor1
 - Heidi applies *xor1*
- $c_s = ((\text{Heidi}, xor\theta), (\text{Lucy}, xor1), (\text{Heidi}, xor\theta))$
- Output is 011001
 - Shorthand for sequence (0,1)(1,0)(0,1)

Example

- *proj*(Heidi, c_s, σ_0) = 011001
- *proj*(Lucy, c_s, σ_0) = 101
- $\pi_{\text{Lucy}}(c_s) = (\text{Heidi}, xor0), (\text{Heidi}, xor1)$
- $\pi_{\text{Lucy},xorl}(c_s) = (\text{Heidi},xor0), (\text{Heidi},xor1)$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, xor1)$

Example

- $\pi_{\text{Lucy},xor0}(c_s) =$ (Heidi,xor0),(Lucy,xor1),(Heidi,xor1)
- $\pi_{\text{Heidi},xor0}(c_s) = \pi_{xor0}(c_s) =$ (Lucy,xor1),(Heidi, xor1)
- $\pi_{\text{Heidi},xorl}(c_s) = (\text{Heidi}, xor0), (\text{Lucy}, xorl)$
- $\pi_{xorl}(c_s) = (\text{Heidi}, xor0)$

Noninterference

- Intuition: Set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference
- Formally: $G, G' \subseteq S, G \neq G'; A \subseteq Z$; Users in G executing commands in A are *noninterfering* with users in G' iff for all $c_s \in C^*$, and for all $s \in G'$,

$$proj(s, c_s, \sigma_i) = proj(s, \pi_{G,A}(c_s), \sigma_i)$$

– Written A, G := G'

Computer Security: Art and Science ©2002-2004 Matt Bishop

Example

- Let $c_s = ((\text{Heidi}, xor0), (\text{Lucy}, xor1), (\text{Heidi}, xor1))$ and $\sigma_0 = (0, 1)$
- Take $G = \{ \text{Heidi} \}, G' = \{ \text{Lucy} \}, A = \emptyset$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, xor1)$ - So *proj*(Lucy, $\pi_{\text{Heidi}}(c_s), \sigma_0) = 0$
- proj(Lucy, c_s, σ_0) = 101
- So { Heidi } : I { Lucy } is false
 - Makes sense; commands issued to change H bit also affect L bit

Example

- Same as before, but Heidi's commands affect *H* bit only, Lucy's the *L* bit only
- Output is $0_H 0_L 1_H$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, xor1)$ - So *proj*(Lucy, $\pi_{\text{Heidi}}(c_s), \sigma_0) = 0$
- proj(Lucy, c_s, σ_0) = 0
- So { Heidi } : I { Lucy } is true
 - Makes sense; commands issued to change H bit now do not affect L bit

Security Policy

- Partitions systems into authorized, unauthorized states
- Authorized states have no forbidden interferences
- Hence a *security policy* is a set of noninterference assertions

 See previous definition

Alternative Development

- System X is a set of protection domains D = { d₁, ..., d_n }
- When command *c* executed, it is executed in protection domain *dom*(*c*)
- Give alternate versions of definitions shown previously

Output-Consistency

- $c \in C, dom(c) \in D$
- $\sim^{dom(c)}$ equivalence relation on states of system X
- $\sim^{dom(c)}$ output-consistent if

 $\sigma_a \sim^{dom(c)} \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b)$

• Intuition: states are output-consistent if for subjects in *dom*(*c*), projections of outputs for both states after *c* are the same

Security Policy

- $D = \{ d_1, \dots, d_n \}, d_i$ a protection domain
- *r*: *D*×*D* a reflexive relation
- Then *r* defines a security policy
- Intuition: defines how information can flow around a system
 - $-d_i r d_j$ means info can flow from d_i to d_j
 - $-d_i r d_i$ as info can flow within a domain

Projection Function

- π' analogue of π , earlier
- Commands, subjects absorbed into protection domains
- $d \in D, c \in C, c_s \in C^*$
- $\pi'_d(v) = v$
- $\pi'_d(c_s c) = \pi'_d(c_s)c$ if dom(c)rd
- $\pi'_d(c_s c) = \pi'_d(c_s)$ otherwise
- Intuition: if executing *c* interferes with *d*, then *c* is visible; otherwise, as if *c* never executed

Computer Security: Art and Science ©2002-2004 Matt Bishop

Noninterference-Secure

- System has set of protection domains *D*
- System is noninterference-secure with respect to policy *r* if

 $P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))$

• Intuition: if executing c_s causes the same transitions for subjects in domain *d* as does its projection with respect to domain *d*, then no information flows in violation of the policy

Lemma

- Let $T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$ for $c \in C$
- If ~^d output-consistent, then system is noninterference-secure with respect to policy *r*

Proof

- d = dom(c) for $c \in C$
- By definition of output-consistent,

$$T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$$

implies

 $P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))$

• This is definition of noninterference-secure with respect to policy *r*

June 1, 2004

Computer Security: Art and Science ©2002-2004 Matt Bishop Slide #8-39

Unwinding Theorem

- Links security of sequences of state transition commands to security of individual state transition commands
- Allows you to show a system design is ML secure by showing it matches specs from which certain lemmata derived
 - Says *nothing* about security of system, because of implementation, operation, *etc*. issues

Locally Respects

- *r* is a policy
- System X locally respects r if dom(c) being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
- Intuition: applying *c* under policy *r* to system *X* has no effect on domain *d* when *X* locally respects *r*

Transition-Consistent

- r policy, $d \in D$
- If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X transition-consistent under r
- Intuition: command *c* does not affect equivalence of states under policy *r*

Lemma

- $c_1, c_2 \in C, d \in D$
- For policy r, $dom(c_1)rd$ and $dom(c_2)rd$
- Then

 $T^*(c_1c_2, \sigma) = T(c_1, T(c_2, \sigma)) = T(c_2, T(c_1, \sigma))$

• Intuition: if info can flow from domains of commands into *d*, then order doesn't affect result of applying commands

Unwinding Theorem

- Links security of sequences of state transition commands to security of individual state transition commands
- Allows you to show a system design is ML secure by showing it matches specs from which certain lemmata derived
 - Says *nothing* about security of system, because of implementation, operation, *etc.* issues

Locally Respects

- *r* is a policy
- System X locally respects r if dom(c) being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
- Intuition: applying *c* under policy *r* to system *X* has no effect on domain *d* when *X* locally respects *r*

Transition-Consistent

- r policy, $d \in D$
- If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X transition-consistent under r
- Intuition: command *c* does not affect equivalence of states under policy *r*

Lemma

- $c_1, c_2 \in C, d \in D$
- For policy r, $dom(c_1)rd$ and $dom(c_2)rd$
- Then

 $T^*(c_1c_2, \sigma) = T(c_1, T(c_2, \sigma)) = T(c_2, T(c_1, \sigma))$

• Intuition: if info can flow from domains of commands into *d*, then order doesn't affect result of applying commands

Theorem

- *r* policy, *X* system that is output consistent, transition consistent, locally respects *r*
- X noninterference-secure with respect to policy r
- Significance: basis for analyzing systems claiming to enforce noninterference policy
 - Establish conditions of theorem for particular set of commands, states with respect to some policy, set of protection domains
 - Noninterference security with respect to *r* follows

Proof

- Must show $\sigma_a \sim^d \sigma_b$ implies $T^*(c_s, \sigma_a) \sim^d T^*(\pi'_d(c_s), \sigma_b)$
- Induct on length of c_s
- Basis: $c_s = v$, so T*(c_s , σ) = σ ; $\pi'_d(v) = v$; claim holds
- Hypothesis: $c_s = c_1 \dots c_n$; then claim holds

Induction Step

- Consider $c_s c_{n+1}$. Assume $\sigma_a \sim^d \sigma_b$ and look at $T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$
- 2 cases:
 - $dom(c_{n+1})rd$ holds
 - $dom(c_{n+1})rd$ does not hold

Computer Security: Art and Science ©2002-2004 Matt Bishop

$dom(c_{n+1})rd$ Holds

$$T^{*}(\pi'_{d}(c_{s}c_{n+1}), \sigma_{b}) = T^{*}(\pi'_{d}(c_{s})c_{n+1}, \sigma_{b})$$
$$= T(c_{n+1}, T^{*}(\pi'_{d}(c_{s}), \sigma_{b}))$$

– by definition of T^* and π'_d

- T(c_{n+1}, σ_a) ~^d T(c_{n+1}, σ_b)

 as X transition-consistent and σ_a ~^d σ_b

 T(c_{n+1}, T*(c_s, σ_a))~^dT(c_{n+1}, T*(π'_d(c_s), σ_b))
 - by transition-consistency and IH

Computer Security: Art and Science ©2002-2004 Matt Bishop

$dom(c_{n+1})rd$ Holds

- $T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s)c_{n+1}, \sigma_b))$ - by substitution from earlier equality $T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s)c_{n+1}, \sigma_b))$ - by definition of T^*
- proving hypothesis

$dom(c_{n+1})rd$ Does Not Hold

$$T^*(\pi'_d(c_s c_{n+1}), \sigma_b) = T^*(\pi'_d(c_s), \sigma_b)$$

$$- \text{ by definition of } \pi'_d$$

$$T^*(c_s, \sigma_b) = T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$$

$$- \text{ by above and IH}$$

$$T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(c_s, \sigma_a)$$

$$- \text{ as } X \text{ locally respects } r, \text{ so } \sigma \sim^d T(c_{n+1}, \sigma) \text{ for any } \sigma$$

$$T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s) c_{n+1}, \sigma_b))$$

$$- \text{ substituting back}$$

proving hypothesis

Computer Security: Art and Science ©2002-2004 Matt Bishop

Finishing Proof

• Take $\sigma_a = \sigma_b = \sigma_0$, so from claim proved by induction,

$$T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$$

By previous lemma, as X (and so ~^d) output consistent, then X is noninterference-secure with respect to policy r

Access Control Matrix

- Example of interpretation
- Given: access control information
- Question: are given conditions enough to provide noninterference security?
- Assume: system in a particular state
 - Encapsulates values in ACM

ACM Model

• Objects $L = \{ l_1, ..., l_m \}$ - Locations in memory

• Values
$$V = \{ v_1, ..., v_n \}$$

– Values that L can assume

- Set of states $\Sigma = \{ \sigma_1, ..., \sigma_k \}$
- Set of protection domains $D = \{ d_1, ..., d_j \}$

Functions

- value: $L \times \Sigma \rightarrow V$
 - returns value v stored in location l when system in state σ
- read: $D \rightarrow 2^V$
 - returns set of objects observable from domain d
- write: $D \rightarrow 2^V$
 - returns set of objects observable from domain d

Interpretation of ACM

- Functions represent ACM
 - Subject *s* in domain *d*, object *o*
 - $-r \in A[s, o]$ if $o \in read(d)$
 - $w \in A[s, o]$ if $o \in write(d)$
- Equivalence relation:

$$[\sigma_a \sim^{dom(c)} \sigma_b] \Leftrightarrow [\forall l_i \in read(d) \\ [value(l_i, \sigma_a) = value(l_i, \sigma_b)]]$$

You can read the *exactly* the same locations in both states

Enforcing Policy r

- 5 requirements
 - 3 general ones describing dependence of commands on rights over input and output
 - Hold for all ACMs and policies
 - -2 that are specific to some security policies
 - Hold for *most* policies

Enforcing Policy r: First

 Output of command *c* executed in domain *dom(c)* depends only on values for which subjects in *dom(c)* have read access

$$\sigma_a \sim^{dom(c)} \sigma_b \Longrightarrow P(c, \sigma_a) = P(c, \sigma_b)$$

Enforcing Policy r: Second

If c changes l_i, then c can only use values of objects in read(dom(c)) to determine new value

$$[\sigma_{a} \sim^{dom(c)} \sigma_{b} and \\ (value(l_{i}, T(c, \sigma_{a})) \neq value(l_{i}, \sigma_{a}) or \\ value(l_{i}, T(c, \sigma_{b})) \neq value(l_{i}, \sigma_{b}))] \Rightarrow \\ value(l_{i}, T(c, \sigma_{a})) = value(l_{i}, T(c, \sigma_{b}))$$

June 1, 2004

Computer Security: Art and Science ©2002-2004 Matt Bishop Slide #8-61

Enforcing Policy r: Third

• If *c* changes l_i , then dom(c) provides subject executing *c* with write access to l_i $value(l_i, T(c, \sigma_a)) \neq value(l_i, \sigma_a) \Rightarrow$ $l_i \in write(dom(c))$

Computer Security: Art and Science ©2002-2004 Matt Bishop

Enforcing Policies r: Fourth

- If domain *u* can interfere with domain *v*, then every object that can be read in *u* can also be read in *v*
- So if object *o* cannot be read in *u*, but can be read in *v*; and object *o*' in *u* can be read in *v*, then info flows from *o* to *o*', then to *v*

Let $u, v \in D$; then $urv \Rightarrow read(u) \subseteq read(v)$

Enforcing Policies r: Fifth

• Subject *s* can read object *o* in *v*, subject *s'* can read *o* in *u*, then domain *v* can interfere with domain *u*

 $l_i \in read(u) \text{ and } l_i \in write(v) \Rightarrow vru$

Computer Security: Art and Science ©2002-2004 Matt Bishop

Theorem

- Let *X* be a system satisfying the five conditions. The *X* is noninterference-secure with respect to r
- Proof: must show *X* output-consistent, locally respects *r*, transition-consistent
 - Then by unwinding theorem, theorem holds

Output-Consistent

• Take equivalence relation to be ~^d, first condition *is* definition of output-consistent

Computer Security: Art and Science ©2002-2004 Matt Bishop

Locally Respects r

- Proof by contradiction: assume (dom(c),d) ∉ r but σ_a ~^d
 T(c, σ_a) does not hold
- Some object has value changed by *c*:

 $\exists l_i \in read(d) [value(l_i, \sigma_a) \neq value(l_i, T(c, \sigma_a))]$

- Condition 3: $l_i \in write(d)$
- Condition 5: *dom*(*c*)*rd*, contradiction
- So $\sigma_a \sim^d T(c, \sigma_a)$ holds, meaning X locally respects r

Transition Consistency

- Assume $\sigma_a \sim^d \sigma_b$
- Must show value $(l_i, T(c, \sigma_a)) = value(l_i, T(c, \sigma_b))$ for $l_i \in read(d)$
- 3 cases dealing with change that *c* makes in l_i in states σ_a, σ_b

Case 1

- $value(l_i, T(c, \sigma_a)) \neq value(l_i, \sigma_a)$
- Condition 3: $l_i \in write(dom(c))$
- As $l_i \in read(d)$, condition 5 says dom(c)rd
- Condition 4 says $read(dom(c)) \subseteq read(d)$
- As $\sigma_a \sim^d \sigma_b$, $\sigma_a \sim^{dom(c)} \sigma_b$
- Condition 2:
 - $value(l_i, T(c, \sigma_a)) = value(l_i, T(c, \sigma_b))$
- So $T(c, \sigma_a) \sim^{dom(c)} T(c, \sigma_b)$, as desired

Case 2

- $value(l_i, T(c, \sigma_b)) \neq value(l_i, \sigma_b)$
- Condition 3: $l_i \in write(dom(c))$
- As $l_i \in read(d)$, condition 5 says dom(c)rd
- Condition 4 says $read(dom(c)) \subseteq read(d)$
- As $\sigma_a \sim^d \sigma_b$, $\sigma_a \sim^{dom(c)} \sigma_b$
- Condition 2:

 $value(l_i, T(c, \sigma_a)) = value(l_i, T(c, \sigma_b))$

• So $T(c, \sigma_{a}) \sim^{dom(c)} T(c, \sigma_{b})$, as desired

Case 3

• Neither of the previous two

 $-value(l_i, T(c, \sigma_a)) = value(l_i, \sigma_a)$

 $- value(l_i, T(\mathbf{c}, \boldsymbol{\sigma}_b)) = value(l_i, \boldsymbol{\sigma}_b)$

- Interpretation of $\sigma_a \sim^d \sigma_b$ is: for $l_i \in read(d)$, $value(l_i, \sigma_a) = value(l_i, \sigma_b)$
- So $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, as desired
- In all 3 cases, *X* transition-consistent

Policies Changing Over Time

- Problem: previous analysis assumes static system
 In real life, ACM changes as system commands issued
- Example: $w \in C^*$ leads to current state
 - cando(w, s, z) holds if s can execute z in current state
 - Condition noninterference on *cando*
 - If ¬*cando*(*w*, Lara, "write *f*"), Lara can't interfere with any other user by writing file *f*

Generalize Noninterference

• $G \subseteq S$ group of subjects, $A \subseteq Z$ set of commands, *p* predicate over elements of C^*

•
$$c_s = (c_1, ..., c_n) \in C^*$$

• $\pi''(v) = v$

•
$$\pi''((c_1, ..., c_n)) = (c_1', ..., c_n')$$

- $c_i' = v$ if $p(c_1', ..., c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
- $c_i' = c_i$ otherwise

Intuition

- $\pi''(c_s) = c_s$
- But if *p* holds, and element of c_s involves both command in *A* and subject in *G*, replace corresponding element of c_s with empty command v
 - Just like deleting entries from c_s as $\pi_{A,G}$ does earlier

Noninterference

- $G, G' \subseteq S$ groups of subjects, $A \subseteq Z$ set of commands, p predicate over C^*
- Users in *G* executing commands in *A* are noninterfering with users in *G'* under condition *p* iff, for all c_s ∈ C*, all s ∈ G', proj(s, c_s, σ_i) = proj(s, π''(c_s), σ_i)

 Written A,G :| G' if p

Example

• From earlier one, simple security policy based on noninterference:

$$\forall (s \in S) \; \forall (z \in Z)$$

- $[\{z\}, \{s\} : | S \text{ if } \neg cando(w, s, z)]$
- If subject can't execute command (the *cando* part), subject can't use that command to interfere with another subject

Policies Changing Over Time

- Problem: previous analysis assumes static system
 In real life, ACM changes as system commands issued
- Example: $w \in C^*$ leads to current state
 - cando(w, s, z) holds if s can execute z in current state
 - Condition noninterference on *cando*
 - If ¬*cando*(*w*, Lara, "write *f*"), Lara can't interfere with any other user by writing file *f*

Generalize Noninterference

• $G \subseteq S$ group of subjects, $A \subseteq Z$ set of commands, *p* predicate over elements of C^*

•
$$c_s = (c_1, ..., c_n) \in C^*$$

• $\pi''(v) = v$

•
$$\pi''((c_1, ..., c_n)) = (c_1', ..., c_n')$$

- $c_i' = v$ if $p(c_1', ..., c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
- $c_i' = c_i$ otherwise

Intuition

- $\pi''(c_s) = c_s$
- But if *p* holds, and element of c_s involves both command in *A* and subject in *G*, replace corresponding element of c_s with empty command v
 - Just like deleting entries from c_s as $\pi_{A,G}$ does earlier

Noninterference

- $G, G' \subseteq S$ groups of subjects, $A \subseteq Z$ set of commands, p predicate over C^*
- Users in *G* executing commands in *A* are noninterfering with users in *G'* under condition *p* iff, for all c_s ∈ C*, all s ∈ G', proj(s, c_s, σ_i) = proj(s, p''(c_s), σ_i)

 Written A,G :| G' if p

Example

• From earlier one, simple security policy based on noninterference:

$$\forall (s \in S) \; \forall (z \in Z)$$

- $[\{z\}, \{s\} : | S \text{ if } \neg cando(w, s, z)]$
- If subject can't execute command (the *cando* part), subject can't use that command to interfere with another subject

Another Example

• Consider system in which rights can be passed

$$- pass(s, z) \text{ gives } s \text{ right to execute } z$$

- w_n = v₁, ..., v_n sequence of v_i ∈ C*

$$- prev(w_n) = w_{n-1}; last(wn) = v_n$$

Policy

• No subject *s* can use *z* to interfere if, in previous state, *s* did not have right to *z*, and no subject gave it to *s*

$$\{ z \}, \{ s \} : | S if$$

$$[\neg cando(prev(w), s, z) \land$$
$$[cando(prev(w), s', pass(s, z)) \Rightarrow$$
$$\neg last(w) = (s', pass(s, z))]]$$

Effect

- Suppose $s_1 \in S$ can execute $pass(s_2, z)$
- For all $w \in C^*$, $cando(w, s_1, pass(s_2, z))$ true
- Initially, $cando(v, s_2, z)$ false
- Let $z' \in Z$ be such that (s_3, z') noninterfering with (s_2, z)

- So for each w_n with $v_n = (s_3, z')$, $cando(w_n, s_2, z) = cando(w_{n-1}, s_2, z)$

Computer Security: Art and Science ©2002-2004 Matt Bishop Slide #8-84

Effect

• Then policy says for all $s \in S$ $proj(s, ((s_2, z), (s_1, pass(s_2, z)), (s_3, z'), (s_2, z)), \sigma_i) =$

 $proj(s, ((s_1, pass(s_2, z)), (s_3, z'), (s_2, z)), \sigma_i)$

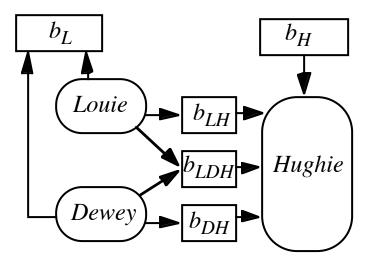
• So *s*₂'s first execution of *z* does not affect any subject's observation of system

Policy Composition I

- Assumed: Output function of input
 - Means deterministic (else not function)
 - Means uninterruptability (differences in timings can cause differences in states, hence in outputs)
- This result for deterministic, noninterference-secure systems

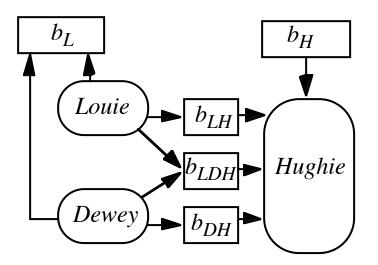
Compose Systems

- Louie, Dewey LOW
- Hughie HIGH
- b_L output buffer
 - Anyone can read it
- b_H input buffer
 - From HIGH source
- Hughie reads from:
 - b_{LH} (Louie writes)
 - b_{LDH} (Louie, Dewey write)
 - b_{DH} (Dewey writes)



Systems Secure

- All noninterferencesecure
 - Hughie has no output
 - So inputs don't interfere with it
 - Louie, Dewey have no input
 - So (nonexistent) inputs don't interfere with outputs



Security of Composition

- Buffers finite, sends/receives blocking: composition *not* secure!
 - Example: assume b_{DH} , b_{LH} have capacity 1
- Algorithm:
 - 1. Louie (Dewey) sends message to $b_{LH}(b_{DH})$
 - Fills buffer
 - 2. Louie (Dewey) sends second message to $b_{LH} (b_{DH})$
 - 3. Louie (Dewey) sends a 0 (1) to b_L
 - 4. Louie (Dewey) sends message to b_{LDH}
 - Signals Hughie that Louie (Dewey) completed a cycle

Hughie

- Reads bit from b_H
 - If 0, receive message from b_{LH}
 - If 1, receive message from b_{DH}
- Receive on b_{LDH}
 - To wait for buffer to be filled

Example

- Hughie reads 0 from b_H
 - Reads message from b_{LH}
- Now Louie's second message goes into b_{LH}
 - Louie completes setp 2 and writes 0 into b_L
- Dewey blocked at step 1
 - Dewey cannot write to b_L
- Symmetric argument shows that Hughie reading 1 produces a 1 in b_L
- So, input from b_H copied to output b_L

June 1, 2004

Computer Security: Art and Science ©2002-2004 Matt Bishop Slide #8-91

Nondeducibility

- Noninterference: do state transitions caused by high level commands interfere with sequences of state transitions caused by low level commands?
- Really case about inputs and outputs:
 - Can low level subject deduce *anything* about high level outputs from a set of low level outputs?

Example: 2-Bit System

- *High* operations change only *High* bit
 Similar for *Low*
- s0 = (0, 0)
- Commands (Heidi, xor1), (Lara, xor0), (Lara, xor1), (Lara, xor0), (Heidi, xor1), (Lara, xor0)
 - Both bits output after each command
- Output is: 00101011110101

Security

- Not noninterference-secure w.r.t. Lara
 - Lara sees output as 0001111
 - Delete *High* and she sees 00111
- But Lara still cannot deduce the commands deleted
 - Don't affect values; only lengths
- So it is deducibly secure
 - Lara can't deduce the commands Heidi gave

Event System

- 4-tuple (E, I, O, T)
 - *E* set of events
 - $I \subseteq E$ set of input events
 - $O \subseteq E$ set of output events
 - *T* set of all finite sequences of events legal within system
- *E* partitioned into *H*, *L*
 - *H* set of *High* events
 - *L* set of *Low* events

More Events ...

- $H \cap I$ set of *High* inputs
- $H \cap O$ set of *High* outputs
- $L \cap I$ set of *Low* inputs
- $L \cap O$ set of *Low* outputs
- T_{Low} set of all possible sequences of Low events that are legal within system
- $\pi_L: T \rightarrow T_{Low}$ projection function deleting all *High* inputs from trace
 - *Low* observer should not be able to deduce anything about *High* inputs from trace $t_{Low} \in T_{low}$

June 1, 2004

Deducibly Secure

- System deducibly secure if, for every trace $t_{Low} \in T_{Low}$, the corresponding set of high level traces contains every possible trace $t \in T$ for which $\pi_L(t) = t_{Low}$
 - Given any t_{Low} , the trace $t \in T$ producing that t_{Low} is equally likely to be *any* trace with $\pi_L(t) = t_{Low}$

Example

- Back to our 2-bit machine
 - Let xor0, xor1 apply to both bits
 - Both bits output after each command
- Initial state: (0, 1)
- Inputs: $1_H 0_L 1_L 0_H 1_L 0_L$
- Outputs: 10 10 01 01 10 10
- Lara (at *Low*) sees: 001100
 - Does not know initial state, so does not know first input; but can deduce fourth input is 0
- Not deducibly secure

June 1, 2004

Computer Security: Art and Science ©2002-2004 Matt Bishop Slide #8-98

Example

- Now *xor0*, *xor1* apply only to state bit with same level as user
- Inputs: $1_H 0_L 1_L 0_H 1_L 0_L$
- Outputs: 1011111011
- Lara sees: 01101
- She cannot deduce *anything* about input
 - Could be $0_H 0_L 1_L 0_H 1_L 0_L$ or $0_L 1_H 1_L 0_H 1_L 0_L$ for example
- Deducibly secure

Security of Composition

- In general: deducibly secure systems not composable
- Strong noninterference: deducible security

 requirement that no High output occurs
 unless caused by a High input
 - Systems meeting this property are composable

Example

- 2-bit machine done earlier does not exhibit strong noninterference
 - Because it puts out *High* bit even when there is no *High* input
- Modify machine to output only state bit at level of latest input
 - *Now* it exhibits strong noninterference

Problem

- Too restrictive; it bans some systems that are *obviously* secure
- Example: System *upgrade* reads *Low* inputs, outputs those bits at *High*
 - Clearly deducibly secure: low level user sees no outputs
 - Clearly does not exhibit strong noninterference, as no high level inputs!

Remove Determinism

- Previous assumption
 - Input, output synchronous
 - Output depends only on commands triggered by input
 - Sometimes absorbed into commands ...
 - Input processed one datum at a time
- Not realistic

– In real systems, lots of asynchronous events

Generalized Noninterference

- Nondeterministic systems meeting noninterference property meet *generalized noninterference-secure property*
 - More robust than nondeducible security because minor changes in assumptions affect whether system is nondeducibly secure

Example

- System with *High* Holly, *Low* lucy, text file at *High*
 - File fixed size, symbol <u>b</u> marks empty space
 - Holly can edit file, Lucy can run this program:

```
while true do begin
    n := read_integer_from_user;
    if n > file_length or char_in_file[n] = b then
        print random_character;
    else
        print char_in_file[n];
end;
```

Security of System

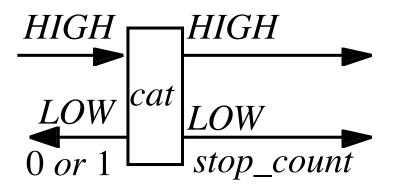
- Not noninterference-secure
 - High level inputs—Holly's changes—affect low level outputs
- *May* be deducibly secure
 - Can Lucy deduce contents of file from program?
 - If output meaningful ("This is right") or close ("Thes is right"), yes
 - Otherwise, no
- So deducibly secure depends on which inferences are allowed

Composition of Systems

- Does composing systems meeting generalized noninterference-secure property give you a system that also meets this property?
- Define two systems (*cat*, *dog*)
- Compose them

First System: cat

- Inputs, outputs can go left or right
- After some number of inputs, *cat* sends two outputs
 - First stop_count
 - Second parity of *High* inputs, outputs

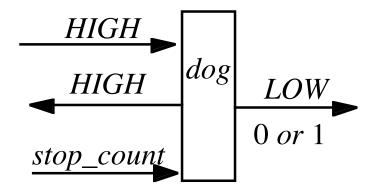


Noninterference-Secure?

- If even number of *High* inputs, output could be:
 - -0 (even number of outputs)
 - 1 (odd number of outputs)
- If odd number of *High* inputs, output could be:
 - 0 (odd number of outputs)
 - 1 (even number of outputs)
- High level inputs do not affect output
 - So noninterference-secure

Second System: dog

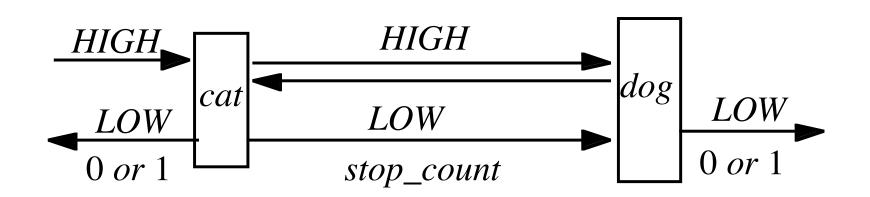
- High outputs to left
- Low outputs of 0 or 1 to right
- *stop_count* input from the left
 - When it arrives, *dog* emits 0 or 1



Noninterference-Secure?

- When *stop_count* arrives:
 - May or may not be inputs for which there are no corresponding outputs
 - Parity of *High* inputs, outputs can be odd or even
 - Hence *dog* emits 0 or 1
- High level inputs do not affect low level outputs
 - So noninterference-secure

Compose Them



- Once sent, message arrives
 - But *stop_count* may arrive before all inputs have generated corresponding outputs
 - If so, even number of *High* inputs and outputs on *cat*, but odd number on *dog*
- Four cases arise

June 1, 2004

Computer Security: Art and Science ©2002-2004 Matt Bishop

The Cases

- *cat*, odd number of inputs, outputs; *dog*, even number of inputs, odd number of outputs
 - Input message from *cat* not arrived at *dog*, contradicting assumption
- *cat*, even number of inputs, outputs; *dog*, odd number of inputs, even number of outputs
 - Input message from *dog* not arrived at *cat*, contradicting assumption

The Cases

- cat, odd number of inputs, outputs; dog, odd number of inputs, even number of outputs
 - dog sent even number of outputs to cat, so cat has had at least one input from left
- cat, even number of inputs, outputs; dog, even number of inputs, odd number of outputs
 - dog sent odd number of outputs to cat, so cat has had at least one input from left

The Conclusion

- Composite system *catdog* emits 0 to left, 1 to right (or 1 to left, 0 to right)
 - Must have received at least one input from left
- Composite system *catdog* emits 0 to left, 0 to right (or 1 to left, 1 to right)
 - Could not have received any from left
- So, *High* inputs affect *Low* outputs
 - Not noninterference-secure

Feedback-Free Systems

- System has *n* distinct components
- Components c_i , c_j connected if any output of c_i is input to c_j
- System is *feedback-free* if for all c_i connected to c_j , c_j not connected to any c_i
 - Intuition: once information flows from one component to another, no information flows back from the second to the first

Feedback-Free Security

• *Theorem*: A feedback-free system composed of noninterference-secure systems is itself noninterference-secure

Some Feedback

- *Lemma*: A noninterference-secure system can feed a high level output *o* to a high level input *i* if the arrival of *o* at the input of the next component is delayed until *after* the next low level input or output
- *Theorem*: A system with feedback as described in the above lemma and composed of noninterference-secure systems is itself noninterference-secure

Why Didn't They Work?

- For compositions to work, machine must act same way regardless of what precedes low level input (high, low, nothing)
- *dog* does not meet this criterion
 - If first input is *stop_count*, *dog* emits 0
 - If high level input precedes *stop_count*, *dog* emits 0 or 1

State Machine Model

- 2-bit machine, levels *High*, *Low*, meeting 4 properties:
- 1. For every input i_k , state σ_j , there is an element $c_m \in C^*$ such that $T^*(c_m, \sigma_j) = \sigma_n$, where $\sigma_n \neq \sigma_j$
 - $-T^*$ is total function, inputs and commands always move system to a different state

Property 2

- There is an equivalence relation \equiv such that:
 - If system in state σ_i and high level sequence of inputs causes transition from σ_i to σ_j , then $\sigma_i \equiv \sigma_j$
 - If $\sigma_i \equiv \sigma_j$ and low level sequence of inputs $i_1, ..., i_n$ causes system in state σ_i to transition to σ'_i , then there is a state σ'_j such that $\sigma'_i \equiv \sigma'_j$ and the inputs $i_1, ..., i_n$ cause system in state σ_j to transition to σ'_j
- \equiv holds if low level projections of both states are same

Property 3

- Let $\sigma_i \equiv \sigma_j$. If high level sequence of outputs o_1, \ldots, o_n indicate system in state σ_i transitioned to state σ'_i , then for some state σ'_j with $\sigma'_j \equiv \sigma'_i$, high level sequence of outputs o'_1, \ldots, o'_m indicates system in σ_j transitioned to σ'_j
 - High level outputs do not indicate changes in low level projection of states

Property 4

- Let $\sigma_i \equiv \sigma_j$, let *c*, *d* be high level output sequences, *e* a low level output. If *ced* indicates system in state σ_i transitions to σ'_i , then there are high level output sequences *c*' and *d*' and state σ'_j such that *c'ed'* indicates system in state σ_j transitions to state σ'_j
 - Intermingled low level, high level outputs cause changes in low level state reflecting low level outputs only

Restrictiveness

• System is *restrictive* if it meets the preceding 4 properties

Computer Security: Art and Science ©2002-2004 Matt Bishop

Composition

• Intuition: by 3 and 4, high level output followed by low level output has same effect as low level input, so composition of restrictive systems should be restrictive

Composite System

- System M_1 's outputs are M_2 's inputs
- μ_{1i} , μ_{2i} states of M_1 , M_2
- States of composite system pairs of M₁, M₂ states (μ_{1i}, μ_{2i})
- *e* event causing transition
- *e* causes transition from state (μ_{1a}, μ_{2a}) to state (μ_{1b}, μ_{2b}) if any of 3 conditions hold

Conditions

- 1. M_1 in state μ_{1a} and *e* occurs, M_1 transitions to μ_{1b} ; *e* not an event for M_2 ; and $\mu_{2a} = \mu_{2b}$
- 2. M_2 in state μ_{2a} and *e* occurs, M_2 transitions to μ_{2b} ; *e* not an event for M_1 ; and $\mu_{1a} = \mu_{1b}$
- 3. M_1 in state μ_{1a} and *e* occurs, M_1 transitions to μ_{1b} ; M_2 in state μ_{2a} and *e* occurs, M_2 transitions to μ_{2b} ; *e* is input to one machine, and output from other

Intuition

- Event causing transition in composite system causes transition in at least 1 of the components
- If transition occurs in exactly one component, event must not cause transition in other component when not connected to the composite system

Equivalence for Composite

- Equivalence relation for composite system $(\sigma_a, \sigma_b) \equiv_C (\sigma_c, \sigma_d) \text{ iff } \sigma_a \equiv \sigma_c \text{ and } \sigma_b \equiv \sigma_d$
- Corresponds to equivalence relation in property 2 for component system

Key Points

- Composing secure policies does not always produce a secure policy
 - The policies must be restrictive
- Noninterference policies prevent HIGH inputs from affecting LOW outputs

– Prevents "writes down" in broadest sense

- Nondeducibility policies prevent the inference of HIGH inputs from LOW outputs
 - Prevents "reads up" in broadest sense