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Chapter 8: Noninterference and
Policy Composition

• Overview
• Problem
• Deterministic Noninterference
• Nondeducibility
• Generalized Noninterference
• Restrictiveness



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #8-2

Overview

• Problem
– Policy composition

• Noninterference
– HIGH inputs affect LOW outputs

• Nondeducibility
– HIGH inputs can be determined from LOW outputs

• Restrictiveness
– When can policies be composed successfully
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Composition of Policies

• Two organizations have two security
policies

• They merge
– How do they combine security policies to

create one security policy?
– Can they create a coherent, consistent security

policy?
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The Problem

• Single system with 2 users
– Each has own virtual machine
– Holly at system high, Lara at system low so

they cannot communicate directly
• CPU shared between VMs based on load

– Forms a covert channel through which Holly,
Lara can communicate
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Example Protocol

• Holly, Lara agree:
– Begin at noon
– Lara will sample CPU utilization every minute
– To send 1 bit, Holly runs program

• Raises CPU utilization to over 60%
– To send 0 bit, Holly does not run program

• CPU utilization will be under 40%

• Not “writing” in traditional sense
– But information flows from Holly to Lara
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Policy vs. Mechanism

• Can be hard to separate these
• In the abstract: CPU forms channel along which

information can be transmitted
– Violates *-property
– Not “writing” in traditional sense

• Conclusions:
– Model does not give sufficient conditions to prevent

communication, or
– System is improperly abstracted; need a better

definition of “writing”
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Composition of Bell-LaPadula

• Why?
– Some standards require secure components to be connected to

form secure (distributed, networked) system

• Question
– Under what conditions is this secure?

• Assumptions
– Implementation of systems precise with respect to each system’s

security policy
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Issues

• Compose the lattices
• What is relationship among labels?

– If the same, trivial
– If different, new lattice must reflect the

relationships among the levels
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Example

LOW

(HIGH, {EAST}) (HIGH, {WEST})

(HIGH, {EAST, WEST})

LOW

(TS, {EAST}) (TS, {SOUTH})

(TS, {EAST, SOUTH})

(S, {EAST, SOUTH})

(S, {EAST}) (S, {SOUTH})
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Analysis

• Assume S < HIGH < TS
• Assume SOUTH, EAST, WEST different
• Resulting lattice has:

– 4 clearances (LOW < S < HIGH < TS)
– 3 categories (SOUTH, EAST, WEST)
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Same Policies

• If we can change policies that components
must meet, composition is trivial (as above)

• If we cannot, we must show composition
meets the same policy as that of
components; this can be very hard
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Different Policies

• What does “secure” now mean?
• Which policy (components) dominates?
• Possible principles:

– Any access allowed by policy of a component
must be allowed by composition of components
(autonomy)

– Any access forbidden by policy of a component
must be forbidden by composition of
components (security)
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Implications

• Composite system satisfies security policy
of components as components’ policies take
precedence

• If something neither allowed nor forbidden
by principles, then:
– Allow it (Gong & Qian)
– Disallow it (Fail-Safe Defaults)



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #8-14

Example

• System X: Bob can’t access Alice’s files
• System Y: Eve, Lilith can access each

other’s files
• Composition policy:

– Bob can access Eve’s files
– Lilith can access Alice’s files

• Question: can Bob access Lilith’s files?
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Solution (Gong & Qian)

• Notation:
– (a, b): a can read b’s files
– AS(x): access set of system x

• Set-up:
– AS(X) = ∅
– AS(Y) = { (Eve, Lilith), (Lilith, Eve) }
– AS(X∪Y) = { (Bob, Eve), (Lilith, Alice),

  (Eve, Lilith), (Lilith, Eve) }
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Solution (Gong & Qian)

• Compute transitive closure of AS(X∪Y):
– AS(X∪Y)+ = {
(Bob, Eve), (Bob, Lilith), (Bob, Alice),
(Eve, Lilith), (Eve, Alice),
(Lilith, Eve), (Lilith, Alice) }

• Delete accesses conflicting with policies of
components:
– Delete (Bob, Alice)

• (Bob, Lilith) in set, so Bob can access Lilith’s files
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Idea

• Composition of policies allows accesses not mentioned by
original policies

• Generate all possible allowed accesses
– Computation of transitive closure

• Eliminate forbidden accesses
– Removal of accesses disallowed by individual access policies

• Everything else is allowed
• Note; determining if access allowed is of polynomial

complexity
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Interference

• Think of it as something used in
communication
– Holly/Lara example: Holly interferes with the

CPU utilization, and Lara detects
it—communication

• Plays role of writing (interfering) and
reading (detecting the interference)
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Model

• System as state machine
– Subjects S = { si }
– States Σ = { σi }
– Outputs O = { oi }
– Commands Z = { zi }
– State transition commands C = S × Z

• Note: no inputs
– Encode either as selection of commands or in state transition

commands
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Functions

• State transition function T: C×Σ→Σ
– Describes effect of executing command c in

state σ
• Output function P: C×Σ→O

– Output of machine when executng command c
in state s

• Initial state is σ0
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Example

• Users Heidi (high), Lucy (low)
• 2 bits of state, H (high) and L (low)

– System state is (H, L) where H, L are 0, 1
• 2 commands: xor0, xor1 do xor with 0, 1

– Operations affect both state bits regardless of
whether Heidi or Lucy issues it
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Example: 2-bit Machine

• S = { Heidi, Lucy }
• Σ = { (0,0), (0,1), (1,0), (1,1) }
• C = { xor0, xor1 }

Input States (H, L)

(0,0)(0,1)(1,0)(1,1)xor1
(1,1)(1,0)(0,1)(0,0)xor0
(1,1)(1,0)(0,1)(0,0)
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Outputs and States

• T is inductive in first argument, as
T(c0, σ0) = σ1; T(ci+1, σi+1) = T(ci+1,T(ci,σi))

• Let C* be set of possible sequences of
commands in C

• T*: C*×Σ→Σ and
cs = c0…cn ⇒ T*(cs,σi) = T(cn,…,T(c0,σi)…)

• P similar; define P* similarly
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Projection

• T*(cs,σi) sequence of state transitions
• P*(cs,σi) corresponding outputs
• proj(s, cs, σi) set of outputs in P*(cs,σi) that

subject s authorized to see
– In same order as they occur in P*(cs,σi)
– Projection of outputs for s

• Intuition: list of outputs after removing
outputs that s cannot see
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Purge

• G ⊆ S, G a group of subjects
• A ⊆ Z, A a set of commands
• πG(cs) subsequence of cs with all elements

(s,z), s ∈ G deleted
• πA(cs) subsequence of cs with all elements

(s,z), z ∈ A deleted
• πG,A(cs) subsequence of cs with all elements

(s,z), s ∈ G and z ∈ A deleted



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #8-26

Example: 2-bit Machine

• Let σ0 = (0,1)
• 3 commands applied:

– Heidi applies xor0
– Lucy applies xor1
– Heidi applies xor1

• cs = ((Heidi,xor0),(Lucy,xor1),(Heidi,xor0))
• Output is 011001

– Shorthand for sequence (0,1)(1,0)(0,1)
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Example

• proj(Heidi, cs, σ0) = 011001
• proj(Lucy, cs, σ0) = 101
• πLucy(cs) = (Heidi,xor0), (Heidi,xor1)
• πLucy,xor1(cs) = (Heidi,xor0), (Heidi,xor1)
• πHeidi (cs) = (Lucy,xor1)
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Example

• πLucy,xor0(cs) =
(Heidi,xor0),(Lucy,xor1),(Heidi,xor1)

• πHeidi,xor0(cs) = πxor0(cs) =
(Lucy,xor1),(Heidi, xor1)

• πHeidi,xor1(cs) = (Heidi, xor0), (Lucy, xor1)
• πxor1(cs) = (Heidi, xor0)
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Noninterference

• Intuition: Set of outputs Lucy can see corresponds
to set of inputs she can see, there is no interference

• Formally: G, G′ ⊆ S, G ≠  G′; A ⊆ Z; Users in G
executing commands in A are noninterfering with
users in G′ iff for all cs ∈ C*, and for all s ∈ G′,

proj(s, cs, σi) = proj(s, πG,A(cs), σi)
– Written A,G :| G′
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Example

• Let cs = ((Heidi,xor0),(Lucy,xor1),(Heidi,xor1))
and σ0 = (0, 1)

• Take G = { Heidi }, G′ = { Lucy }, A = ∅
• πHeidi(cs) = (Lucy,xor1)

– So proj(Lucy, πHeidi(cs), σ0) = 0
• proj(Lucy, cs, σ0) = 101
• So { Heidi } :| { Lucy } is false

– Makes sense; commands issued to change H bit also
affect L bit
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Example

• Same as before, but Heidi’s commands affect H
bit only, Lucy’s the L bit only

• Output is 0H0L1H
• πHeidi(cs) = (Lucy,xor1)

– So proj(Lucy, πHeidi(cs), σ0) = 0
• proj(Lucy, cs, σ0) = 0
• So { Heidi } :| { Lucy } is true

– Makes sense; commands issued to change H bit now do
not affect L bit
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Security Policy

• Partitions systems into authorized,
unauthorized states

• Authorized states have no forbidden
interferences

• Hence a security policy is a set of
noninterference assertions
– See previous definition
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Alternative Development

• System X is a set of protection domains D =
{ d1, …, dn }

• When command c executed, it is executed
in protection domain dom(c)

• Give alternate versions of definitions shown
previously
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Output-Consistency

• c ∈ C, dom(c) ∈ D
• ~dom(c) equivalence relation on states of system X
• ~dom(c) output-consistent if

σa ~dom(c) σb ⇒ P(c, σa) = P(c, σb)
• Intuition: states are output-consistent if for subjects in

dom(c), projections of outputs for both states after c are the
same
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Security Policy

• D = { d1, …, dn }, di a protection domain
• r: D×D a reflexive relation
• Then r defines a security policy
• Intuition: defines how information can flow

around a system
– dirdj means info can flow from di to dj

– dirdi as info can flow within a domain
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Projection Function

• π′ analogue of π, earlier
• Commands, subjects absorbed into protection

domains
• d ∈ D, c ∈ C, cs ∈ C*
• π′d(ν) = ν
• π′d(csc) = π′d(cs)c if dom(c)rd
• π′d(csc) = π′d(cs) otherwise
• Intuition: if executing c interferes with d, then c is

visible; otherwise, as if c never executed
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Noninterference-Secure

• System has set of protection domains D
• System is noninterference-secure with respect to policy r if

P*(c, T*(cs, σ0)) = P*(c, T*(π′d(cs), σ0))
• Intuition: if executing cs causes the same transitions for

subjects in domain d as does its projection with respect to
domain d, then no information flows in violation of the
policy
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Lemma

• Let T*(cs, σ0) ~d T*(π′d(cs), σ0) for c ∈ C
• If ~d output-consistent, then system is

noninterference-secure with respect to
policy r
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Proof

• d = dom(c) for c ∈ C
• By definition of output-consistent,

T*(cs, σ0) ~d T*(π′d(cs), σ0)
implies

P*(c,T*(cs, σ0)) = P*(c,T*(π′d(cs), σ0))
• This is definition of noninterference-secure

with respect to policy r
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Unwinding Theorem

• Links security of sequences of state
transition commands to security of
individual state transition commands

• Allows you to show a system design is ML
secure by showing it matches specs from
which certain lemmata derived
– Says nothing about security of system, because

of implementation, operation, etc. issues
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Locally Respects

• r is a policy
• System X locally respects r if dom(c) being

noninterfering with d ∈ D implies σa ~d T(c,
σa)

• Intuition: applying c under policy r to
system X  has no effect on domain d when X
locally respects r
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Transition-Consistent

• r policy, d ∈ D
• If σa ~d σb implies T(c, σa) ~d T(c, σb),

system X transition-consistent under r
• Intuition: command c does not affect

equivalence of states under policy r
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Lemma

• c1, c2 ∈ C, d ∈ D
• For policy r, dom(c1)rd and dom(c2)rd
• Then

T*(c1c2,σ) = T(c1,T(c2,σ)) = T(c2,T(c1,σ))
• Intuition: if info can flow from domains of

commands into d, then order doesn’t affect
result of applying commands
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Unwinding Theorem

• Links security of sequences of state
transition commands to security of
individual state transition commands

• Allows you to show a system design is ML
secure by showing it matches specs from
which certain lemmata derived
– Says nothing about security of system, because

of implementation, operation, etc. issues



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #8-45

Locally Respects

• r is a policy
• System X locally respects r if dom(c) being

noninterfering with d ∈ D implies σa ~d T(c,
σa)

• Intuition: applying c under policy r to
system X  has no effect on domain d when X
locally respects r
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Transition-Consistent

• r policy, d ∈ D
• If σa ~d σb implies T(c, σa) ~d T(c, σb),

system X transition-consistent under r
• Intuition: command c does not affect

equivalence of states under policy r
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Lemma

• c1, c2 ∈ C, d ∈ D
• For policy r, dom(c1)rd and dom(c2)rd
• Then

T*(c1c2,σ) = T(c1,T(c2,σ)) = T(c2,T(c1,σ))
• Intuition: if info can flow from domains of

commands into d, then order doesn’t affect
result of applying commands



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #8-48

Theorem

• r policy, X system that is output consistent,
transition consistent, locally respects r

• X noninterference-secure with respect to policy r
• Significance: basis for analyzing systems claiming

to enforce noninterference policy
– Establish conditions of theorem for particular set of

commands, states with respect to some policy, set of
protection domains

– Noninterference security with respect to r follows
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Proof

• Must show σa ~d σb implies
T*(cs, σa) ~d T*(π′d(cs), σb)

• Induct on length of cs

• Basis: cs = ν, so T*(cs, σ) = σ; π′d(ν) = ν;
claim holds

• Hypothesis: cs = c1 … cn; then claim holds
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Induction Step

• Consider cscn+1. Assume σa ~d σb and look
at T*(π′d(cscn+1), σb)

• 2 cases:
– dom(cn+1)rd holds
– dom(cn+1)rd does not hold
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dom(cn+1)rd Holds

T*(π′d(cscn+1), σb) = T*(π′d(cs )cn+1, σb)
= T(cn+1, T*(π′d(cs ), σb))

– by definition of T* and π′d
• T(cn+1, σa) ~d T(cn+1, σb)

– as X transition-consistent and σa ~d σb

• T(cn+1,T*(cs,σa))~dT(cn+1,T*(π′d(cs ), σb))
– by transition-consistency and IH
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dom(cn+1)rd Holds

T(cn+1,T*(cs,σa))~dT(cn+1,T*(π′d(cs )cn+1, σb))
– by substitution from earlier equality

T(cn+1,T*(cs,σa))~dT(cn+1,T*(π′d(cs )cn+1, σb))
– by definition of T*

• proving hypothesis
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dom(cn+1)rd Does Not Hold

T*(π′d(cscn+1), σb) = T*(π′d(cs ), σb)
– by definition of π′d

T*(cs, σb) = T*(π′d(cscn+1), σb)
– by above and IH

T(cn+1, T*(cs, σa)) ~d T*(cs, σa)
– as X locally respects r, so σ ~d T(cn+1, σ) for any σ

T(cn+1,T*(cs,σa))~dT(cn+1,T*(π′d(cs )cn+1, σb))
– substituting back

• proving hypothesis
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Finishing Proof

• Take σa = σb = σ0, so from claim proved by
induction,

T*(cs, σ0) ~d T*(π′d(cs), σ0)
• By previous lemma, as X (and so ~d) output

consistent, then X is noninterference-secure
with respect to policy r
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Access Control Matrix

• Example of interpretation
• Given: access control information
• Question: are given conditions enough to

provide noninterference security?
• Assume: system in a particular state

– Encapsulates values in ACM
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ACM Model

• Objects L = { l1, …, lm }
– Locations in memory

• Values V = { v1, …, vn }
– Values that L can assume

• Set of states Σ = { σ1, …, σk }
• Set of protection domains D = { d1, …, dj }
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Functions

• value: L×Σ→V
– returns value v stored in location l when system in state σ

• read: D→2V

– returns set of objects observable from domain d

• write: D→2V

– returns set of objects observable from domain d
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Interpretation of ACM

• Functions represent ACM
– Subject s in domain d, object o
– r ∈ A[s, o] if o ∈ read(d)
– w ∈ A[s, o] if o ∈ write(d)

• Equivalence relation:
[σa ~dom(c) σb]⇔[ ∀li ∈ read(d)

[ value(li, σa) = value(li, σb) ] ]
– You can read the exactly the same locations in both

states
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Enforcing Policy r

• 5 requirements
– 3 general ones describing dependence of

commands on rights over input and output
• Hold for all ACMs and policies

– 2 that are specific to some security policies
• Hold for most policies
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Enforcing Policy r: First

• Output of command c executed in domain
dom(c) depends only on values for which
subjects in dom(c) have read access

σa ~dom(c) σb ⇒ P(c, σa) = P(c, σb)
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Enforcing Policy r: Second

• If c changes li, then c can only use values of
objects in read(dom(c)) to determine new
value
[ σa ~dom(c) σb and

(value(li, T(c, σa)) ≠  value(li, σa) or
value(li, T(c, σb)) ≠  value(li, σb)) ] ⇒
value(li, T(c, σa)) = value(li, T(c, σb))
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Enforcing Policy r: Third

• If c changes li, then dom(c) provides subject
executing c with write access to li

value(li, T(c, σa)) ≠  value(li, σa) ⇒
li ∈ write(dom(c))
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Enforcing Policies r: Fourth

• If domain u can interfere with domain v,
then every object that can be read in u can
also be read in v

• So if object o cannot be read in u, but can be
read in v; and object o′ in u can be read in v,
then info flows from o to o′, then to v
Let u, v ∈ D; then urv ⇒ read(u) ⊆ read(v)
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Enforcing Policies r: Fifth

• Subject s can read object o in v, subject s′
can read o in u, then domain v can interfere
with domain u

li ∈ read(u) and li ∈ write(v) ⇒ vru
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Theorem

• Let X be a system satisfying the five
conditions. The X is noninterference-secure
with respect to r

• Proof: must show X output-consistent,
locally respects r, transition-consistent
– Then by unwinding theorem, theorem holds
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Output-Consistent

• Take equivalence relation to be ~d, first
condition is definition of output-consistent
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Locally Respects r

• Proof by contradiction: assume (dom(c),d) ∉ r but σa ~d

T(c, σa) does not hold
• Some object has value changed by c:

∃ li ∈ read(d) [ value(li, σa) ≠  value(li, T(c, σa)) ]
• Condition 3: li ∈ write(d)
• Condition 5: dom(c)rd, contradiction
• So σa ~d T(c, σa) holds, meaning X locally respects r
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Transition Consistency

• Assume σa ~d σb

• Must show value(li, T(c, σa)) = value(li, T(c,
σb)) for li ∈ read(d)

• 3 cases dealing with change that c makes in
li in states σa, σb
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Case 1

• value(li, T(c, σa)) ≠  value(li, σa)
• Condition 3: li ∈ write(dom(c))
• As li ∈ read(d), condition 5 says dom(c)rd
• Condition 4 says read(dom(c)) ⊆ read(d)
• As σa ~d σb, σa ~dom(c) σb

• Condition 2:
• value(li, T(c, σa)) = value(li, T(c, σb))

• So T(c, σa) ~dom(c) T(c, σb), as desired
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Case 2

• value(li, T(c, σb)) ≠  value(li, σb)
• Condition 3: li ∈ write(dom(c))
• As li ∈ read(d), condition 5 says dom(c)rd
• Condition 4 says read(dom(c)) ⊆ read(d)
• As σa ~d σb, σa ~dom(c) σb

• Condition 2:
value(li, T(c, σa)) = value(li, T(c, σb))

• So T(c, σa) ~dom(c) T(c, σb), as desired
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Case 3

• Neither of the previous two
– value(li, T(c, σa)) = value(li, σa)
– value(li, T(c, σb)) = value(li, σb)

• Interpretation of σa ~d σb is:
for li ∈ read(d), value(li, σa) = value(li, σb)

• So T(c, σa) ~d T(c, σb), as desired
• In all 3 cases, X transition-consistent
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Policies Changing Over Time

• Problem: previous analysis assumes static system
– In real life, ACM changes as system commands issued

• Example: w ∈ C* leads to current state
– cando(w, s, z) holds if s can execute z in current state
– Condition noninterference on cando
– If ¬cando(w, Lara, “write f”), Lara can’t interfere with

any other user by writing file f
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Generalize Noninterference

• G ⊆ S group of subjects, A ⊆ Z set of commands, p
predicate over elements of C*

• cs = (c1, …, cn) ∈ C*
• π′′(ν) = ν
• π′′((c1, …, cn)) = (c1′, …, cn′)

– ci′ = ν if p(c1′, …, ci–1′) and ci = (s, z) with s ∈ G and z ∈ A
– ci′ = ci otherwise
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Intuition

• π′′(cs) = cs

• But if p holds, and element of cs involves
both command in A and subject in G,
replace corresponding element of cs with
empty command ν
– Just like deleting entries from cs as πA,G does

earlier
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Noninterference

• G, G′ ⊆ S groups of subjects, A ⊆ Z set of
commands, p predicate over C*

• Users in G executing commands in A are
noninterfering with users in G′ under
condition p iff, for all cs ∈ C*, all s ∈ G′,
proj(s, cs, σi) = proj(s, π′′(cs), σi)
– Written A,G :| G′ if p
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Example

• From earlier one, simple security policy
based on noninterference:

∀(s ∈ S) ∀(z ∈ Z)
[ {z}, {s} :| S if ¬cando(w, s, z) ]

• If subject can’t execute command (the ¬
cando part), subject can’t use that command
to interfere with another subject
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Policies Changing Over Time

• Problem: previous analysis assumes static system
– In real life, ACM changes as system commands issued

• Example: w ∈ C* leads to current state
– cando(w, s, z) holds if s can execute z in current state
– Condition noninterference on cando
– If ¬cando(w, Lara, “write f”), Lara can’t interfere with

any other user by writing file f
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Generalize Noninterference

• G ⊆ S group of subjects, A ⊆ Z set of commands, p
predicate over elements of C*

• cs = (c1, …, cn) ∈ C*
• π′′(ν) = ν
• π′′((c1, …, cn)) = (c1′, …, cn′)

– ci′ = ν if p(c1′, …, ci–1′) and ci = (s, z) with s ∈ G and z ∈ A
– ci′ = ci otherwise
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Intuition

• π′′(cs) = cs

• But if p holds, and element of cs involves
both command in A and subject in G,
replace corresponding element of cs with
empty command ν
– Just like deleting entries from cs as πA,G does

earlier
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Noninterference

• G, G′ ⊆ S groups of subjects, A ⊆ Z set of
commands, p predicate over C*

• Users in G executing commands in A are
noninterfering with users in G′ under
condition p iff, for all cs ∈ C*, all s ∈ G′,
proj(s, cs, σi) = proj(s, p’’(cs), σi)
– Written A,G :| G′ if p
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Example

• From earlier one, simple security policy
based on noninterference:

∀(s ∈ S) ∀(z ∈ Z)
[ {z}, {s} :| S if ¬cando(w, s, z) ]

• If subject can’t execute command (the ¬
cando part), subject can’t use that command
to interfere with another subject
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Another Example

• Consider system in which rights can be
passed
– pass(s, z) gives s right to execute z
– wn = v1, …, vn sequence of vi ∈ C*
– prev(wn) = wn–1; last(wn) = vn
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Policy

• No subject s can use z to interfere if, in
previous state, s did not have right to z, and
no subject gave it to s

{ z }, { s } :| S if
[ ¬cando(prev(w), s, z) ∧

[ cando(prev(w), s′, pass(s, z)) ⇒
¬last(w) = (s′, pass(s, z)) ] ]
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Effect

• Suppose s1 ∈ S can execute pass(s2, z)
• For all w ∈ C*, cando(w, s1, pass(s2, z)) true
• Initially, cando(ν, s2, z) false
• Let z′ ∈ Z be such that (s3, z′) noninterfering

with (s2, z)
– So for each wn with vn = (s3, z′),

cando(wn, s2, z) = cando(wn–1, s2, z)
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Effect

• Then policy says for all s ∈ S
proj(s, ((s2, z), (s1, pass(s2, z)),

(s3, z′), (s2, z)), σi) =
proj(s, ((s1, pass(s2, z)), (s3, z′), (s2, z)), σi)

• So s2’s first execution of z does not affect
any subject’s observation of system
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Policy Composition I

• Assumed: Output function of input
– Means deterministic (else not function)
– Means uninterruptability (differences in timings

can cause differences in states, hence in
outputs)

• This result for deterministic,
noninterference-secure systems



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #8-87

Compose Systems
• Louie, Dewey LOW
• Hughie HIGH
• bL output buffer

– Anyone can read it
• bH input buffer

– From HIGH source
• Hughie reads from:

– bLH (Louie writes)
– bLDH (Louie, Dewey write)
– bDH (Dewey writes)

bL bH

Louie

Dewey

Hughie

bLH

bDH

bLDH
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Systems Secure

• All noninterference-
secure
– Hughie has no output

• So inputs don’t interfere
with it

– Louie, Dewey have no
input

• So (nonexistent) inputs
don’t interfere with
outputs

bL bH

Louie

Dewey

Hughie

bLH

bDH

bLDH
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Security of Composition

• Buffers finite, sends/receives blocking: composition
not secure!
– Example: assume bDH, bLH have capacity 1

• Algorithm:
1. Louie (Dewey) sends message to bLH (bDH)

– Fills buffer
2. Louie (Dewey) sends second message to bLH (bDH)
3. Louie (Dewey) sends a 0 (1) to bL
4. Louie (Dewey) sends message to bLDH

– Signals Hughie that Louie (Dewey) completed a cycle
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Hughie

• Reads bit from bH
– If 0, receive message from bLH

– If 1, receive message from bDH

• Receive on bLDH
– To wait for buffer to be filled
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Example

• Hughie reads 0 from bH
– Reads message from bLH

• Now Louie’s second message goes into bLH
– Louie completes setp 2 and writes 0 into bL

• Dewey blocked at step 1
– Dewey cannot write to bL

• Symmetric argument shows that Hughie reading 1
produces a 1 in bL

• So, input from bH copied to output bL
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Nondeducibility

• Noninterference: do state transitions caused
by high level commands interfere with
sequences of state transitions caused by low
level commands?

• Really case about inputs and outputs:
– Can low level subject deduce anything about

high level outputs from a set of low level
outputs?
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Example: 2-Bit System

• High operations change only High bit
– Similar for Low

• s0 = (0, 0)
• Commands (Heidi, xor1), (Lara, xor0),

(Lara, xor1), (Lara, xor0), (Heidi, xor1),
(Lara, xor0)
– Both bits output after each command

• Output is: 00101011110101
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Security

• Not noninterference-secure w.r.t. Lara
– Lara sees output as 0001111
– Delete High and she sees 00111

• But Lara still cannot deduce the commands deleted
– Don’t affect values; only lengths

• So it is deducibly secure
– Lara can’t deduce the commands Heidi gave
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Event System

• 4-tuple (E, I, O, T)
– E set of events
– I ⊆ E set of input events
– O ⊆ E set of output events
– T set of all finite sequences of events legal within system

• E partitioned into H, L
– H set of High events
– L set of Low events
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More Events …
• H∩I set of High inputs
• H∩O set of High outputs
• L∩I set of Low inputs
• L∩O set of Low outputs
• TLow set of all possible sequences of Low events that are

legal within system
• πL:T→TLow projection function deleting all High inputs

from trace
‒  Low observer should not be able to deduce anything about High

inputs from trace tLow ∈ Tlow
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Deducibly Secure

• System deducibly secure if, for every trace
tLow ∈ TLow, the corresponding set of high
level traces contains every possible trace t ∈
T for which πL(t) = tLow
– Given any tLow, the trace t ∈ T producing that

tLow is equally likely to be any trace with πL(t) =
tLow
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Example
• Back to our 2-bit machine

– Let xor0, xor1 apply to both bits
– Both bits output after each command

• Initial state: (0, 1)
• Inputs: 1H0L1L0H1L0L
• Outputs: 10 10 01 01 10 10
• Lara (at Low) sees: 001100

– Does not know initial state, so does not know first input; but can
deduce fourth input is 0

• Not deducibly secure
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Example

• Now xor0, xor1 apply only to state bit with same
level as user

• Inputs: 1H0L1L0H1L0L
• Outputs: 1011111011
• Lara sees: 01101
• She cannot deduce anything about input

– Could be 0H0L1L0H1L0L or 0L1H1L0H1L0L for example
• Deducibly secure
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Security of Composition

• In general: deducibly secure systems not
composable

• Strong noninterference: deducible security
+ requirement that no High output occurs
unless caused by a High input
– Systems meeting this property are composable
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Example

• 2-bit machine done earlier does not exhibit
strong noninterference
– Because it puts out High bit even when there is

no High input
• Modify machine to output only state bit at

level of latest input
– Now it exhibits strong noninterference
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Problem

• Too restrictive; it bans some systems that
are obviously secure

• Example: System upgrade reads Low
inputs, outputs those bits at High
– Clearly deducibly secure: low level user sees no

outputs
– Clearly does not exhibit strong noninterference,

as no high level inputs!
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Remove Determinism

• Previous assumption
– Input, output synchronous
– Output depends only on commands triggered

by input
• Sometimes absorbed into commands …

– Input processed one datum at a time
• Not realistic

– In real systems, lots of asynchronous events
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Generalized Noninterference

• Nondeterministic systems meeting
noninterference property meet generalized
noninterference-secure property
– More robust than nondeducible security

because minor changes in assumptions affect
whether system is nondeducibly secure
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Example
• System with High Holly, Low lucy, text file at High

– File fixed size, symbol b marks empty space
– Holly can edit file, Lucy can run this program:

while true do begin
n := read_integer_from_user;
if n > file_length or char_in_file[n] = b then

print random_character;
else

print char_in_file[n];
end;
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Security of System

• Not noninterference-secure
– High level inputs—Holly’s changes—affect low level

outputs
• May be deducibly secure

– Can Lucy deduce contents of file from program?
– If output meaningful (“This is right”) or close (“Thes is

riqht”), yes
– Otherwise, no

• So deducibly secure depends on which inferences
are allowed
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Composition of Systems

• Does composing systems meeting
generalized noninterference-secure property
give you a system that also meets this
property?

• Define two systems (cat, dog)
• Compose them
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First System: cat

• Inputs, outputs can go
left or right

• After some number of
inputs, cat sends two
outputs
– First stop_count
– Second parity of High

inputs, outputs

HIGH HIGH

LOW

stop_count0 or 1

cat
LOW
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Noninterference-Secure?

• If even number of High inputs, output could be:
– 0 (even number of outputs)
– 1 (odd number of outputs)

• If odd number of High inputs, output could be:
– 0 (odd number of outputs)
– 1 (even number of outputs)

• High level inputs do not affect output
– So noninterference-secure
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Second System: dog

• High outputs to left
• Low outputs of 0 or 1

to right
• stop_count input from

the left
– When it arrives, dog

emits 0 or 1

HIGH

HIGH LOW

0 or 1

dog

stop_count
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Noninterference-Secure?

• When stop_count arrives:
– May or may not be inputs for which there are no

corresponding outputs
– Parity of High inputs, outputs can be odd or even
– Hence dog emits 0 or 1

• High level inputs do not affect low level outputs
– So noninterference-secure
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Compose Them

• Once sent, message arrives
– But stop_count may arrive before all inputs have generated corresponding

outputs
– If so, even number of High inputs and outputs on cat, but odd number on

dog
• Four cases arise

HIGH HIGH

LOW

stop_count0 or 1

cat LOW

0 or 1

dog
LOW



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #8-113

The Cases

• cat, odd number of inputs, outputs; dog, even number of
inputs, odd number of outputs
– Input message from cat not arrived at dog, contradicting

assumption

• cat, even number of inputs, outputs; dog, odd number of
inputs, even number of outputs
– Input message from dog not arrived at cat, contradicting

assumption
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The Cases

• cat, odd number of inputs, outputs; dog, odd number of
inputs, even number of outputs
– dog sent even number of outputs to cat, so cat has had at least one

input from left

• cat, even number of inputs, outputs; dog, even number of
inputs, odd number of outputs
– dog sent odd number of outputs to cat, so cat has had at least one

input from left
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The Conclusion

• Composite system catdog emits 0 to left, 1 to right (or 1 to
left, 0 to right)
– Must have received at least one input from left

• Composite system catdog emits 0 to left, 0 to right (or 1 to
left, 1 to right)
– Could not have received any from left

• So, High inputs affect Low outputs
– Not noninterference-secure
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Feedback-Free Systems

• System has n distinct components
• Components ci, cj connected if any output of ci is input to

cj

• System is feedback-free if for all ci connected to cj, cj not
connected to any ci
– Intuition: once information flows from one component to another,

no information flows back from the second to the first
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Feedback-Free Security

• Theorem: A feedback-free system
composed of noninterference-secure
systems is itself noninterference-secure
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Some Feedback

• Lemma: A noninterference-secure system can feed a high
level output o to a high level input i if the arrival of o at the
input of the next component is delayed until after the next
low level input or output

• Theorem: A system with feedback as described in the
above lemma and composed of noninterference-secure
systems is itself noninterference-secure
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Why Didn’t They Work?

• For compositions to work, machine must act
same way regardless of what precedes low
level input (high, low, nothing)

• dog does not meet this criterion
– If first input is stop_count, dog emits 0
– If high level input precedes stop_count, dog

emits 0 or 1
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State Machine Model

• 2-bit machine, levels High, Low, meeting 4
properties:

1. For every input ik, state σj, there is an
element cm ∈ C* such that T*(cm, σj) = σn,
where σn ≠  σj

– T* is total function, inputs and commands
always move system to a different state
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Property 2

• There is an equivalence relation ≡ such that:
– If system in state σi and high level sequence of inputs causes

transition from σi to σj, then σi ≡ σj

– If σi ≡ σj and low level sequence of inputs i1, …, in causes system
in state σi to transition to σi′, then there is a state σj′ such that σi′ ≡
σj′ and the inputs  i1, …, in cause system in state σj to transition to
σj′

• ≡ holds if low level projections of both states are same
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Property 3

• Let σi ≡ σj. If high level sequence of outputs
o1, …, on indicate system in state σi
transitioned to state σi′, then for some state
σj′ with σj′ ≡ σi′, high level sequence of
outputs o1′, …, om′ indicates system in σj
transitioned to σj′
– High level outputs do not indicate changes in

low level projection of states
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Property 4

• Let σi ≡ σj, let c, d be high level output sequences, e a low
level output. If ced indicates system in state σi transitions
to σi′, then there are high level output sequences c’ and d’
and state σj′ such that c′ed′ indicates system in state σj
transitions to state σj′
– Intermingled low level, high level outputs cause changes in low

level state reflecting low level outputs only
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Restrictiveness

• System is restrictive if it meets the
preceding 4 properties
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Composition

• Intuition: by 3 and 4, high level output
followed by low level output has same
effect as low level input, so composition of
restrictive systems should be restrictive
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Composite System

• System M1’s outputs are M2’s inputs
• µ1i, µ2i states of M1, M2
• States of composite system pairs of M1, M2

states (µ1i, µ2i)
• e event causing transition
• e causes transition from state (µ1a, µ2a) to

state (µ1b, µ2b) if any of 3 conditions hold
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Conditions

1. M1 in state µ1a and e occurs, M1 transitions to µ1b; e not
an event for M2; and µ2a = µ2b

2. M2 in state µ2a and e occurs, M2 transitions to µ2b; e not
an event for M1; and µ1a = µ1b

3. M1 in state µ1a and e occurs, M1 transitions to µ1b; M2 in
state µ2a and e occurs, M2 transitions to µ2b; e is input to
one machine, and output from other
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Intuition

• Event causing transition in composite
system causes transition in at least 1 of the
components

• If transition occurs in exactly one
component, event must not cause transition
in other component when not connected to
the composite system
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Equivalence for Composite

• Equivalence relation for composite system
(σa, σb) ≡C (σc, σd) iff σa ≡ σc and σb ≡ σd

• Corresponds to equivalence relation in
property 2 for component system
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Key Points

• Composing secure policies does not always
produce a secure policy
– The policies must be restrictive

• Noninterference policies prevent HIGH inputs
from affecting LOW outputs
– Prevents “writes down” in broadest sense

• Nondeducibility policies prevent the inference of
HIGH inputs from LOW outputs
– Prevents “reads up” in broadest sense


