
June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-1

Chapter 12: Authentication

• Basics
• Passwords
• Challenge-Response
• Biometrics
• Location
• Multiple Methods

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-2

Overview

• Basics
• Passwords

– Storage
– Selection
– Breaking them

• Other methods
• Multiple methods

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-3

Basics

• Authentication: binding of identity to
subject
– Identity is that of external entity (my identity,

Matt, etc.)
– Subject is computer entity (process, etc.)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-4

Establishing Identity

• One or more of the following
– What entity knows (eg. password)
– What entity has (eg. badge, smart card)
– What entity is (eg. fingerprints, retinal

characteristics)
– Where entity is (eg. In front of a particular

terminal)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-5

Authentication System

• (A, C, F, L, S)
– A information that proves identity
– C information stored on computer and used to

validate authentication information
– F complementation function; f : A → C
– L functions that prove identity
– S functions enabling entity to create, alter

information in A or C

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-6

Example

• Password system, with passwords stored on
line in clear text
– A set of strings making up passwords
– C = A
– F singleton set of identity function { I }
– L single equality test function { eq }
– S function to set/change password

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-7

Passwords

• Sequence of characters
– Examples: 10 digits, a string of letters, etc.
– Generated randomly, by user, by computer with user

input
• Sequence of words

– Examples: pass-phrases
• Algorithms

– Examples: challenge-response, one-time passwords

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-8

Storage

• Store as cleartext
– If password file compromised, all passwords revealed

• Encipher file
– Need to have decipherment, encipherment keys in

memory
– Reduces to previous problem

• Store one-way hash of password
– If file read, attacker must still guess passwords or

invert the hash

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-9

Example

• UNIX system standard hash function
– Hashes password into 11 char string using one of 4096

hash functions
• As authentication system:

– A = { strings of 8 chars or less }
– C = { 2 char hash id || 11 char hash }
– F = { 4096 versions of modified DES }
– L = { login, su, … }
– S = { passwd, nispasswd, passwd+, … }

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-10

Anatomy of Attacking

• Goal: find a ∈ A such that:
– For some f ∈ F, f(a) = c ∈ C
– c is associated with entity

• Two ways to determine whether a meets these
requirements:
– Direct approach: as above
– Indirect approach: as l(a) succeeds iff f(a) = c ∈ C for

some c associated with an entity, compute l(a)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-11

Preventing Attacks

• How to prevent this:
– Hide one of a, f, or c

• Prevents obvious attack from above
• Example: UNIX/Linux shadow password files

– Hides c’s
– Block access to all l ∈ L or result of l(a)

• Prevents attacker from knowing if guess succeeded
• Example: preventing any logins to an account from

a network
– Prevents knowing results of l (or accessing l)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-12

Dictionary Attacks

• Trial-and-error from a list of potential
passwords
– Off-line: know f and c’s, and repeatedly try

different guesses g ∈ A until the list is done or
passwords guessed

• Examples: crack, john-the-ripper
– On-line: have access to functions in L and try

guesses g until some l(g) succeeds
• Examples: trying to log in by guessing a password

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-13

Using Time

Anderson’s formula:
• P probability of guessing a password in

specified period of time
• G number of guesses tested in 1 time unit
• T number of time units
• N number of possible passwords (|A|)
• Then P ≥ TG/N

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-14

Example

• Goal
– Passwords drawn from a 96-char alphabet
– Can test 104 guesses per second
– Probability of a success to be 0.5 over a 365 day period
– What is minimum password length?

• Solution
– N ≥ TG/P = (365×24×60×60)×104/0.5 = 6.31×1011

– Choose s such that Σs
j=0 96j ≥ N

– So s ≥ 6, meaning passwords must be at least 6 chars
long

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-15

Approaches: Password Selection

• Random selection
– Any password from A equally likely to be

selected
• Pronounceable passwords
• User selection of passwords

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-16

Pronounceable Passwords
• Generate phonemes randomly

– Phoneme is unit of sound, eg. cv, vc, cvc, vcv
– Examples: helgoret, juttelon are; przbqxdfl, zxrptglfn are not

• Problem: too few
• Solution: key crunching

– Run long key through hash function and convert to printable
sequence

– Use this sequence as password

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-17

User Selection
• Problem: people pick easy to guess passwords

– Based on account names, user names, computer names, place
names

– Dictionary words (also reversed, odd capitalizations, control
characters, “elite-speak”, conjugations or declensions, swear
words, Torah/Bible/Koran/… words)

– Too short, digits only, letters only
– License plates, acronyms, social security numbers
– Personal characteristics or foibles (pet names, nicknames, job

characteristics, etc.

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-18

Picking Good Passwords
• “LlMm*2^Ap”

– Names of members of 2 families
• “OoHeØFSK”

– Second letter of each word of length 4 or more in third line of
third verse of Star-Spangled Banner, followed by “/”, followed by
author’s initials

• What’s good here may be bad there
– “DMC/MHmh” bad at Dartmouth (“Dartmouth Medical

Center/Mary Hitchcock memorial hospital”), ok here
• Why are these now bad passwords?

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-19

Proactive Password Checking

• Analyze proposed password for “goodness”
– Always invoked
– Can detect, reject bad passwords for an appropriate

definition of “bad”
– Discriminate on per-user, per-site basis
– Needs to do pattern matching on words
– Needs to execute subprograms and use results

• Spell checker, for example
– Easy to set up and integrate into password selection

system

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-20

Example: OPUS
• Goal: check passwords against large dictionaries quickly

– Run each word of dictionary through k different hash functions h1,
…, hk producing values less than n

– Set bits h1, …, hk in OPUS dictionary
– To check new proposed word, generate bit vector and see if all

corresponding bits set
• If so, word is in one of the dictionaries to some degree of probability
• If not, it is not in the dictionaries

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-21

Example: passwd+
• Provides little language to describe proactive checking

– test length(“$p”) < 6
• If password under 6 characters, reject it

– test infile(“/usr/dict/words”, “$p”)
• If password in file /usr/dict/words, reject it

– test !inprog(“spell”, “$p”, “$p”)
• If password not in the output from program spell, given the password

as input, reject it (because it’s a properly spelled word)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-22

Salting

• Goal: slow dictionary attacks
• Method: perturb hash function so that:

– Parameter controls which hash function is used
– Parameter differs for each password
– So given n password hashes, and therefore n

salts, need to hash guess n

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-23

Examples

• Vanilla UNIX method
– Use DES to encipher 0 message with password

as key; iterate 25 times
– Perturb E table in DES in one of 4096 ways

• 12 bit salt flips entries 1–11 with entries 25–36

• Alternate methods
– Use salt as first part of input to hash function

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-24

Guessing Through L
• Cannot prevent these

– Otherwise, legitimate users cannot log in
• Make them slow

– Backoff
– Disconnection
– Disabling

• Be very careful with administrative accounts!
– Jailing

• Allow in, but restrict activities

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-25

Password Aging

• Force users to change passwords after some
time has expired
– How do you force users not to re-use

passwords?
• Record previous passwords
• Block changes for a period of time

– Give users time to think of good passwords
• Don’t force them to change before they can log in
• Warn them of expiration days in advance

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-26

Challenge-Response

• User, system share a secret function f (in practice, f is a
known function with unknown parameters, such as a
cryptographic key)

user systemrequest to authenticate

user systemrandom message r
(the challenge)

user systemf(r)
(the response)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-27

Pass Algorithms

• Challenge-response with the function f itself a
secret
– Example:

• Challenge is a random string of characters such as “abcdefg”,
“ageksido”

• Response is some function of that string such as “bdf”, “gkip”
– Can alter algorithm based on ancillary information

• Network connection is as above, dial-up might require “aceg”,
“aesd”

– Usually used in conjunction with fixed, reusable
password

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-28

One-Time Passwords
• Password that can be used exactly once

– After use, it is immediately invalidated
• Challenge-response mechanism

– Challenge is number of authentications; response is password for
that particular number

• Problems
– Synchronization of user, system
– Generation of good random passwords
– Password distribution problem

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-29

S/Key

• One-time password scheme based on idea of
Lamport

• h one-way hash function (MD5 or SHA-1, for
example)

• User chooses initial seed k
• System calculates:

h(k) = k1, h(k1) = k2, …, h(kn–1) = kn

• Passwords are reverse order:
p1 = kn, p2 = kn–1, …, pn–1 = k2, pn = k1

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-30

S/Key Protocol

user system{ name }

user system{ i }

user system{ pi }

System stores maximum number of authentications n, number
of next authentication i, last correctly supplied password pi–1.

System computes h(pi) = h(kn–i+1) = kn–i = pi–1. If match with
what is stored, system replaces pi–1 with pi and increments i.

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-31

Hardware Support

• Token-based
– Used to compute response to challenge

• May encipher or hash challenge
• May require PIN from user

• Temporally-based
– Every minute (or so) different number shown

• Computer knows what number to expect when
– User enters number and fixed password

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-32

C-R and Dictionary Attacks

• Same as for fixed passwords
– Attacker knows challenge r and response f(r);

if f encryption function, can try different keys
• May only need to know form of response; attacker

can tell if guess correct by looking to see if
deciphered object is of right form

• Example: Kerberos Version 4 used DES, but keys
had 20 bits of randomness; Purdue attackers
guessed keys quickly because deciphered tickets
had a fixed set of bits in some locations

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-33

Encrypted Key Exchange
• Defeats off-line dictionary attacks
• Idea: random challenges enciphered, so attacker cannot

verify correct decipherment of challenge
• Assume Alice, Bob share secret password s
• In what follows, Alice needs to generate a random public

key p and a corresponding private key q
• Also, k is a randomly generated session key, and RA and

RB are random challenges

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-34

EKE Protocol

Alice BobAlice || Es(p)

Alice BobEs(Ep(k))

Now Alice, Bob share a randomly generated
secret session key k

Alice BobEk(RA)

Alice BobEk(RARB)

Alice BobEk(RB)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-35

Biometrics

• Automated measurement of biological, behavioral
features that identify a person
– Fingerprints: optical or electrical techniques

• Maps fingerprint into a graph, then compares with database
• Measurements imprecise, so approximate matching algorithms

used
– Voices: speaker verification or recognition

• Verification: uses statistical techniques to test hypothesis that
speaker is who is claimed (speaker dependent)

• Recognition: checks content of answers (speaker independent)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-36

Other Characteristics

• Can use several other characteristics
– Eyes: patterns in irises unique

• Measure patterns, determine if differences are random; or
correlate images using statistical tests

– Faces: image, or specific characteristics like distance
from nose to chin

• Lighting, view of face, other noise can hinder this
– Keystroke dynamics: believed to be unique

• Keystroke intervals, pressure, duration of stroke, where key is
struck

• Statistical tests used

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-37

Cautions

• These can be fooled!
– Assumes biometric device accurate in the environment

it is being used in!
– Transmission of data to validator is tamperproof,

correct

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-38

Location

• If you know where user is, validate identity
by seeing if person is where the user is
– Requires special-purpose hardware to locate

user
• GPS (global positioning system) device gives

location signature of entity
• Host uses LSS (location signature sensor) to get

signature for entity

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-39

Multiple Methods
• Example: “where you are” also requires entity to have

LSS and GPS, so also “what you have”
• Can assign different methods to different tasks

– As users perform more and more sensitive tasks, must
authenticate in more and more ways (presumably, more
stringently) File describes authentication required

• Also includes controls on access (time of day, etc.), resources, and
requests to change passwords

– Pluggable Authentication Modules

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-40

PAM
• Idea: when program needs to authenticate, it checks

central repository for methods to use
• Library call: pam_authenticate

– Accesses file with name of program in /etc/pam_d
• Modules do authentication checking

– sufficient: succeed if module succeeds
– required: fail if module fails, but all required modules executed

before reporting failure
– requisite: like required, but don’t check all modules
– optional: invoke only if all previous modules fail

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-41

Example PAM File
auth sufficient /usr/lib/pam_ftp.so
auth required /usr/lib/pam_unix_auth.so use_first_pass
auth required /usr/lib/pam_listfile.so onerr=succeed \

item=user sense=deny file=/etc/ftpusers

For ftp:
1. If user “anonymous”, return okay; if not, set

PAM_AUTHTOK to password, PAM_RUSER to name,
and fail

2. Now check that password in PAM_AUTHTOK belongs
to that of user in PAM_RUSER; if not, fail

3. Now see if user in PAM_RUSER named in
/etc/ftpusers; if so, fail; if error or not found, succeed

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #12-42

Key Points
• Authentication is not cryptography

– You have to consider system components
• Passwords are here to stay

– They provide a basis for most forms of authentication
• Protocols are important

– They can make masquerading harder
• Authentication methods can be combined

– Example: PAM

