
June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-1

Chapter 22: Malicious Logic

• What is malicious logic
• Types of malicious logic
• Theory of malicious logic
• Defenses

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-2

Overview

• Defining malicious logic
• Types

– Trojan horses
– Computer viruses and worms
– Other types

• Theory: arbitrary program being a virus
undecidable?

• Defenses
– Properties of malicious logic
– Trust

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-3

Malicious Logic

• Set of instructions that cause site security
policy to be violated

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-4

Example

• Shell script on a UNIX system:
cp /bin/sh /tmp/.xyzzy
chmod u+s,o+x /tmp/.xyzzy
rm ./ls
ls $*

• Place in program called “ls” and trick
someone into executing it

• You now have a setuid-to-them shell!

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-5

Trojan Horse

• Program with an overt purpose (known to
user) and a covert purpose (unknown to
user)
– Often called a Trojan
– Named by Dan Edwards in Anderson Report

• Example: previous script is Trojan horse
– Overt purpose: list files in directory
– Covert purpose: create setuid shell

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-6

Example: NetBus

• Designed for Windows NT system
• Victim uploads and installs this

– Usually disguised as a game program, or in one
• Acts as a server, accepting and executing

commands for remote administrator
– This includes intercepting keystrokes and

mouse motions and sending them to attacker
– Also allows attacker to upload, download files

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-7

Replicating Trojan Horse

• Trojan horse that makes copies of itself
– Also called propagating Trojan horse
– Early version of animal game used this to delete copies

of itself
• Hard to detect

– 1976: Karger and Schell suggested modifying compiler
to include Trojan horse that copied itself into specific
programs including later version of the compiler

– 1980s: Thompson implements this

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-8

Thompson's Compiler
• Modify the compiler so that when it compiles

login , login accepts the user's correct password or
a fixed password (the same one for all users)

• Then modify the compiler again, so when it
compiles a new version of the compiler, the extra
code to do the first step is automatically inserted

• Recompile the compiler
• Delete the source containing the modification and

put the undoctored source back

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-9

login source correct compiler login executable

user password

login source doctored compiler login executable

magic password
user password or

logged in

logged in

The Login Program

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-10

compiler source correct compiler compiler executable

login source

compiler source doctored compiler compiler executable

correct login executable

login source

rigged login executable

The Compiler

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-11

Comments

• Great pains taken to ensure second version of
compiler never released
– Finally deleted when a new compiler executable from a

different system overwrote the doctored compiler
• The point: no amount of source-level verification

or scrutiny will protect you from using untrusted
code
– Also: having source code helps, but does not ensure

you’re safe

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-12

Computer Virus

• Program that inserts itself into one or more files
and performs some action
– Insertion phase is inserting itself into file
– Execution phase is performing some (possibly null)

action
• Insertion phase must be present

– Need not always be executed
– Lehigh virus inserted itself into boot file only if boot

file not infected

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-13

Pseudocode
beginvirus:
if spread-condition then begin
for some set of target files do begin
if target is not infected then begin
determine where to place virus instructions

copy instructions from beginvirus to endvirus

into target

alter target to execute added instructions

end;
end;

end;
perform some action(s)

goto beginning of infected program
endvirus:

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-14

Trojan Horse Or Not?

• Yes
– Overt action = infected program’s actions
– Covert action = virus’ actions (infect, execute)

• No
– Overt purpose = virus’ actions (infect, execute)
– Covert purpose = none

• Semantic, philosophical differences
– Defenses against Trojan horse also inhibit computer

viruses

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-15

History

• Programmers for Apple II wrote some
– Not called viruses; very experimental

• Fred Cohen
– Graduate student who described them
– Teacher (Adleman) named it “computer virus”
– Tested idea on UNIX systems and UNIVAC

1108 system

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-16

Cohen’s Experiments

• UNIX systems: goal was to get superuser
privileges
– Max time 60m, min time 5m, average 30m
– Virus small, so no degrading of response time
– Virus tagged, so it could be removed quickly

• UNIVAC 1108 system: goal was to spread
– Implemented simple security property of Bell-LaPadula
– As writing not inhibited (no *-property enforcement),

viruses spread easily

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-17

First Reports

• Brain (Pakistani) virus (1986)
– Written for IBM PCs
– Alters boot sectors of floppies, spreads to other

floppies
• MacMag Peace virus (1987)

– Written for Macintosh
– Prints “universal message of peace” on March

2, 1988 and deletes itself

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-18

More Reports

• Duff’s experiments (1987)
– Small virus placed on UNIX system, spread to

46 systems in 8 days
– Wrote a Bourne shell script virus

• Highland’s Lotus 1-2-3 virus (1989)
– Stored as a set of commands in a spreadsheet

and loaded when spreadsheet opened
– Changed a value in a specific row, column and

spread to other files

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-19

Types of Viruses

• Boot sector infectors
• Executable infectors
• Multipartite viruses
• TSR viruses
• Stealth viruses
• Encrypted viruses
• Polymorphic viruses
• Macro viruses

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-20

Boot Sector Infectors

• A virus that inserts itself into the boot sector of a
disk
– Section of disk containing code
– Executed when system first “sees” the disk

• Including at boot time …

• Example: Brain virus
– Moves disk interrupt vector from 13H to 6DH
– Sets new interrupt vector to invoke Brain virus
– When new floppy seen, check for 1234H at location 4

• If not there, copies itself onto disk after saving original boot
block

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-21

Executable Infectors

• A virus that infects executable programs
– Can infect either .EXE or .COM on PCs
– May prepend itself (as shown) or put itself anywhere,

fixing up binary so it is executed at some point

Header Executable code and data

0 100 1000

Header Executable code and data

0 100 1000 1100

Virus code

200

First program instruction to be executed

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-22

Executable Infectors (con’t)

• Jerusalem (Israeli) virus
– Checks if system infected

• If not, set up to respond to requests to execute files
– Checks date

• If not 1987 or Friday 13th, set up to respond to clock interrupts
and then run program

• Otherwise, set destructive flag; will delete, not infect, files
– Then: check all calls asking files to be executed

• Do nothing for COMND.COM
• Otherwise, infect or delete

– Error: doesn’t set signature when .EXE executes
• So .EXE files continually reinfected

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-23

Multipartite Viruses

• A virus that can infect either boot sectors or
executables

• Typically, two parts
– One part boot sector infector
– Other part executable infector

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-24

TSR Viruses

• A virus that stays active in memory after the
application (or bootstrapping, or disk
mounting) is completed
– TSR is “Terminate and Stay Resident”

• Examples: Brain, Jerusalem viruses
– Stay in memory after program or disk mount is

completed

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-25

Stealth Viruses

• A virus that conceals infection of files
• Example: IDF virus modifies DOS service

interrupt handler as follows:
– Request for file length: return length of

uninfected file
– Request to open file: temporarily disinfect file,

and reinfect on closing
– Request to load file for execution: load infected

file

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-26

Encrypted Viruses

• A virus that is enciphered except for a small
deciphering routine
– Detecting virus by signature now much harder as most

of virus is enciphered

Virus code Enciphered virus codeDeciphering
routine

Deciphering key

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-27

Example
(* Decryption code of the 1260 virus *)
(* initialize the registers with the keys *)
rA = k1; rB = k2;
(* initialize rC with the virus;
 starts at sov, ends at eov *)
rC = sov;
(* the encipherment loop *)
while (rC != eov) do begin

(* encipher the byte of the message *)
(*rC) = (*rC) xor rA xor rB;
(* advance all the counters *)
rC = rC + 1;
rA = rA + 1;

end

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-28

Polymorphic Viruses

• A virus that changes its form each time it inserts
itself into another program

• Idea is to prevent signature detection by changing
the “signature” or instructions used for
deciphering routine

• At instruction level: substitute instructions
• At algorithm level: different algorithms to achieve

the same purpose
• Toolkits to make these exist (Mutation Engine,

Trident Polymorphic Engine)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-29

Example

• These are different instructions (with different bit
patterns) but have the same effect:
– add 0 to register
– subtract 0 from register
– xor 0 with register
– no-op

• Polymorphic virus would pick randomly from
among these instructions

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-30

Macro Viruses

• A virus composed of a sequence of
instructions that are interpreted rather than
executed directly

• Can infect either executables (Duff’s shell
virus) or data files (Highland’s Lotus 1-2-3
spreadsheet virus)

• Independent of machine architecture
– But their effects may be machine dependent

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-31

Example

• Melissa
– Infected Microsoft Word 97 and Word 98 documents

• Windows and Macintosh systems

– Invoked when program opens infected file
– Installs itself as “open” macro and copies itself into

Normal template
• This way, infects any files that are opened in future

– Invokes mail program, sends itself to everyone in user’s
address book

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-32

Computer Worms

• A program that copies itself from one computer to
another

• Origins: distributed computations
– Schoch and Hupp: animations, broadcast messages
– Segment: part of program copied onto workstation
– Segment processes data, communicates with worm’s

controller
– Any activity on workstation caused segment to shut

down

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-33

Example: Internet Worm of 1988

• Targeted Berkeley, Sun UNIX systems
– Used virus-like attack to inject instructions into running

program and run them
– To recover, had to disconnect system from Internet and

reboot
– To prevent re-infection, several critical programs had to

be patched, recompiled, and reinstalled
• Analysts had to disassemble it to uncover function
• Disabled several thousand systems in 6 or so

hours

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-34

Example: Christmas Worm

• Distributed in 1987, designed for IBM networks
• Electronic letter instructing recipient to save it and

run it as a program
– Drew Christmas tree, printed “Merry Christmas!”
– Also checked address book, list of previously received

email and sent copies to each address
• Shut down several IBM networks
• Really, a macro worm

– Written in a command language that was interpreted

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-35

Rabbits, Bacteria

• A program that absorbs all of some class of
resources

• Example: for UNIX system, shell commands:
while true
do

mkdir x
chdir x

done

• Exhausts either disk space or file allocation table
(inode) space

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-36

Logic Bombs

• A program that performs an action that violates
the site security policy when some external event
occurs

• Example: program that deletes company’s payroll
records when one particular record is deleted
– The “particular record” is usually that of the person

writing the logic bomb
– Idea is if (when) he or she is fired, and the payroll

record deleted, the company loses all those records

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-37

Theory of Viruses

• Is there a single algorithm that detects
computer viruses precisely?
– Need to define viruses in terms of Turing

machines
– See if we can map the halting problem into that

algorithm

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-38

Step 1: Virus
• T Turing machine

– sv distinguished state of T
• V sequence of symbols on machine tape
• For every v ∈ V, when T lies at the beginning of v in tape

square k, suppose that after some number of instructions
are executed, a sequence v′ ∈ V lies on the tape beginning
at location k′, where either k+|v|≤k′ or k′+|v|≤k.

• (T, V) is a viral set and the elements of V are computer
viruses.

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-39

In A Picture

• Virus v can copy another element of V either
before or after itself on the tape
– May not overwrite itself
– Before at left, after at right

v v´

k k + j k´ k´+ j

v´ v

k´ k´+ j k k + j

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-40

Overview of Argument
• Arbitrary T, sequence S of symbols on tape
• Construct second Turing machine T′, tape V, such that

when T halts on S, V and T′ create copy of S on tape
• T′ replicates S iff T halts on S

– Recall replicating program is a computer virus
• So there is a procedure deciding if (T′, V) is a viral set iff

there is a procedure that determines if T halts on S
– That is, if the halting problem is solvable

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-41

Theorem

• It is undecidable whether an arbitrary program
contains a computer virus

• Proof:
– T defines Turing machine
– V defines sequence of tape symbols
– A, B ∈ M (tape symbols)
– qi ∈ K for i ≥ 1 (states)
– a, b, i, j non-negative integers
– δ: K×M → K×M×{L,R,–} (transition function; – is no

motion)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-42

Proof

• Abbreviation for δ:
δ(qa, y) = (qa, y, L) when y ≠ A

means all definitions of d where:
– first element (current state) is qa

– second element (tape symbol) is anything other
than A

– third element is L (left head motion)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-43

Abbreviations

• LS(qa, x, qb)
– In state qa, move head left until square with symbol x
– Enter state qb
– Head remains over symbol x

• RS(qa, x, qb)
– In state qa, move head right until square with symbol x
– Enter state qb
– Head remains over symbol x

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-44

Abbreviations

• LS(qa, x, qb)
δ(qa, x) = (qb, x, –)
δ(qa, y) = (qa, y, L) when y ≠ x

• RS(qa, x, qb)
δ(qa, x) = (qb, x, –)
δ(qa, y) = (qa, y, R) when y ≠ x

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-45

Abbreviation

• COPY(qa, x, y, z, qb)
– In state qa, move head right until square with

symbol x
– Copy symbols on tape until next square with

symbol y
– Place copy after first symbol z following y
– Enter state qb

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-46

Idea of Actions

• Put marker (A) over initial symbol
• Move to where to write it (B)
• Write it and mark location of next symbol

(move B down one)
• Go back and overwrite marker A with

symbol
• Iterate until V copied

– Note: A, B symbols that do not occur in V

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-47

Abbreviation

RS(qa, x, qa+i)
δ(qa+i, x) = (qa+i+1, A, –)

– Move head over x, replace with marker A
RS(qa+i+1, y, qa+i+2)
RS(qa+i+2, z, qa+i+3)

– Skip to where segment is to be copied
δ(qa+i+3, z) = (qa+i+4, z, R)
δ(qa+i+4, u) = (qa+i+5, B,–) for any u ∈ M

– Mark next square with B

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-48

More

• LS(qa+i+5, A, qa+i+6)
• δ(qa+i+6, A) = (qa+i+7, x, –)

– Put x (clobbered by A) back
• δ(qa+i+7, sj) = (qa+i+5j+10, A, R) for sj ≠ y
• δ(qa+i+7, y) = (qa+i+8, y, R)

– Overwrite symbol being copied (if last, enter new state)
• RS(qa+i+5j+10, B, qa+i+5j+11)
• δ(qa+i+5j+11, B) = (qa+i+5j+12, sj, R)

– Make copy of symbol

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-49

More

δ(qa+i+5j+12, u) = (qa+i+5j+13, B, –)
– Mark where next symbol goes

LS(qa+i+5j+13, A, qa+i+5j+14)
δ(qa+i+5j+14, A)= (qa+i+7, sj, R)

– Copy back symbol
RS(qa+i+8, B, qa+i+9)
δ(qa+i+9, B) = (qb, y, –)

– Write terminal symbol

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-50

Construction of T′, V′

• Symbols of T′: M′ = M u { A, B, C, D }
• States of T′ :

K′ = K u { qa, qb, qc, qd, qe, qf, qg, qh, qH }
• qa initial state of T′
• qH halting state of T′
• SIMULATE(qf, T, qh)

– Simulate execution of T on tape with head at current
position, qf, qh in K′ correspond to initial, terminal state
of T

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-51

T′

• Let V′ = (A, B, V, C, D).
• Idea: copy V after D, run T on V, and if it finishes, copy V

over results
• Then if T halts, (T′, V) a viral set by definition

A B V C D B V C ...

Head

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-52

Running T in T′

δ(qa, A) = (qb, A, –)
δ(qa, y) = (qH, y, –) for y ≠ A

– Beginning, halting transitions
COPY(qb, B, C, D, qc)

– Copy V after D
LS(qc, A, qd)
RS(qd, D, qe)
δ(qe, D) = (qe, D, R)

– Position head so T executes copy of V

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-53

Running T in T′

δ(qe, B) = (qf, B, R)
– Position head after B at beginning of copy of V

SIMULATE(qf, T, qh)
– T runs on copy of V (execution phase)

LS(qh, A, qg)
– T finishes; go to beginning of T′ tape

COPY(qg, A, D, D, qH)
– Copy initial contents of V over results of running T on

V (reproduction phase)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-54

Analysis

• If T halts on V, definition of “viral set” and
“virus” satisfied

• If T never halts on V, V never recopied, and
definition never satisfied

• Establishes result

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-55

More General Result

• Theorem: It is undecidable whether an
arbitrary program contains malicious logic

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-56

Defenses

• Distinguish between data, instructions
• Limit objects accessible to processes
• Inhibit sharing
• Detect altering of files
• Detect actions beyond specifications
• Analyze statistical characteristics

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-57

Data vs. Instructions

• Malicious logic is both
– Virus: written to program (data); then executes

(instructions)
• Approach: treat “data” and “instructions” as

separate types, and require certifying authority to
approve conversion
– Keys are assumption that certifying authority will not

make mistakes and assumption that tools, supporting
infrastructure used in certifying process are not corrupt

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-58

Example: LOCK

• Logical Coprocessor Kernel
– Designed to be certified at TCSEC A1 level

• Compiled programs are type “data”
– Sequence of specific, auditable events required

to change type to “executable”
• Cannot modify “executable” objects

– So viruses can’t insert themselves into
programs (no infection phase)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-59

Example: Duff and UNIX

• Observation: users with execute permission
usually have read permission, too
– So files with “execute” permission have type

“executable”; those without it, type “data”
– Executable files can be altered, but type

immediately changed to “data”
• Implemented by turning off execute permission
• Certifier can change them back

– So virus can spread only if run as certifier

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-60

Limiting Accessibility

• Basis: a user (unknowingly) executes
malicious logic, which then executes with
all that user’s privileges
– Limiting accessibility of objects should limit

spread of malicious logic and effects of its
actions

• Approach draws on mechanisms for
confinement

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-61

Information Flow Metrics

• Idea: limit distance a virus can spread
• Flow distance metric fd(x):

– Initially, all info x has fd(x) = 0
– Whenever info y is shared, fd(y) increases by 1
– Whenever y1, …, yn used as input to compute z,

fd(z) = max(fd(y1), …, fd(yn))
• Information x accessible if and only if for

some parameter V, fd(x) < V

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-62

Example

• Anne: VA = 3; Bill, Cathy: VB = VC = 2
• Anne creates program P containing virus
• Bill executes P

– P tries to write to Bill’s program Q
• Works, as fd(P) = 0, so fd(Q) = 1 < VB

• Cathy executes Q
– Q tries to write to Cathy’s program R

• Fails, as fd(Q) = 1, so fd(R) would be 2

• Problem: if Cathy executes P, R can be infected
– So, does not stop spread; slows it down greatly, though

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-63

Implementation Issues

• Metric associated with information, not objects
– You can tag files with metric, but how do you tag the

information in them?
– This inhibits sharing

• To stop spread, make V = 0
– Disallows sharing
– Also defeats purpose of multi-user systems, and is

crippling in scientific and developmental environments
• Sharing is critical here

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-64

Reducing Protection Domain

• Application of principle of least privilege
• Basic idea: remove rights from process so it

can only perform its function
– Warning: if that function requires it to write, it

can write anything
– But you can make sure it writes only to those

objects you expect

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-65

Example: ACLs and C-Lists

• s1 owns file f1 and s2 owns program p2 and file f3
– Suppose s1 can read, write f1, execute p2, write f3
– Suppose s2 can read, write, execute p2 and read f3

• s1 needs to run p2
– p2 contains Trojan horse

• So s1 needs to ensure p12 (subject created when s1 runs p2)
can’t write to f3

– Ideally, p12 has capability { (s1, p2, x) } so no problem
• In practice, p12 inherits s1’s rights—bad! Note s1 does not own

f3, so can’t change its rights over f3

• Solution: restrict access by others

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-66

Authorization Denial Subset

• Defined for each user si
• Contains ACL entries that others cannot

exercise over objects si owns
• In example: R(s2) = { (s1, f3, w) }

– So when p12 tries to write to f3, as p12 owned by
s1 and f3 owned by s2, system denies access

• Problem: how do you decide what should be
in your authorization denial subset?

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-67

Karger’s Scheme

• Base it on attribute of subject, object
• Interpose a knowledge-based subsystem to

determine if requested file access reasonable
– Sits between kernel and application

• Example: UNIX C compiler
– Reads from files with names ending in “.c”, “.h”
– Writes to files with names beginning with “/tmp/ctm”

and assembly files with names ending in “.s”
• When subsystem invoked, if C compiler tries to

write to “.c” file, request rejected

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-68

Lai and Gray

• Implemented modified version of Karger’s scheme
on UNIX system
– Allow programs to access (read or write) files named

on command line
– Prevent access to other files

• Two types of processes
– Trusted (no access checks or restrictions)
– Untrusted (valid access list controls access)

• VAL initialized to command line arguments plus any
temporary files that the process creates

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-69

File Access Requests

1. If file on VAL, use effective UID/GID of process
to determine if access allowed

2. If access requested is read and file is world-
readable, allow access

3. If process creating file, effective UID/GID
controls allowing creation
– Enter file into VAL as NNA (new non-argument); set

permissions so no other process can read file
4. Ask user. If yes, effective UID/GID controls

allowing access; if no, deny access

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-70

Example

• Assembler invoked from compiler
as x.s /tmp/ctm2345

and creates temp file /tmp/as1111
– VAL is

x.s /tmp/ctm2345 /tmp/as1111

• Now Trojan horse tries to copy x.s to another file
– On creation, file inaccessible to all except creating user

so attacker cannot read it (rule 3)
– If file created already and assembler tries to write to it,

user is asked (rule 4), thereby revealing Trojan horse

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-71

Trusted Programs

• No VALs applied here
– UNIX command interpreters

• csh, sh
– Program that spawn them

• getty, login
– Programs that access file system recursively

• ar, chgrp, chown, diff, du, dump, find, ls, restore, tar
– Programs that often access files not in argument list

• binmail, cpp, dbx, mail, make, script, vi
– Various network daemons

• fingerd, ftpd, sendmail, talkd, telnetd, tftpd

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-72

Guardians, Watchdogs

• System intercepts request to open file
• Program invoked to determine if access is to

be allowed
– These are guardians or watchdogs

• Effectively redefines system (or library)
calls

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-73

Trust

• Trust the user to take explicit actions to limit their
process’ protection domain sufficiently
– That is, enforce least privilege correctly

• Trust mechanisms to describe programs’ expected
actions sufficiently for descriptions to be applied,
and to handle commands without such
descriptions properly

• Trust specific programs and kernel
– Problem: these are usually the first programs malicious

logic attack

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-74

Sandboxing

• Sandboxes, virtual machines also restrict
rights
– Modify program by inserting instructions to

cause traps when violation of policy
– Replace dynamic load libraries with

instrumented routines

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-75

Example: Race Conditions

• Occur when successive system calls operate on
object
– Both calls identify object by name
– Rebind name to different object between calls

• Sandbox: instrument calls:
– Unique identifier (inode) saved on first call
– On second call, inode of named file compared to that of

first call
• If they differ, potential attack underway …

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-76

Inhibit Sharing

• Use separation implicit in integrity policies
• Example: LOCK keeps single copy of

shared procedure in memory
– Master directory associates unique owner with

each procedure, and with each user a list of
other users the first trusts

– Before executing any procedure, system checks
that user executing procedure trusts procedure
owner

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-77

Multilevel Policies

• Put programs at the lowest security level, all
subjects at higher levels
– By *-property, nothing can write to those

programs
– By ss-property, anything can read (and execute)

those programs
• Example: DG/UX system

– All executables in “virus protection region”
below user and administrative regions

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-78

Detect Alteration of Files

• Compute manipulation detection code (MDC) to
generate signature block for each file, and save it

• Later, recompute MDC and compare to stored
MDC
– If different, file has changed

• Example: tripwire
– Signature consists of file attributes, cryptographic

checksums chosen from among MD4, MD5, HAVAL,
SHS, CRC-16, CRC-32, etc.)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-79

Assumptions

• Files do not contain malicious logic when original
signature block generated

• Pozzo & Grey: implement Biba’s model on
LOCUS to make assumption explicit
– Credibility ratings assign trustworthiness numbers from

0 (untrusted) to n (signed, fully trusted)
– Subjects have risk levels

• Subjects can execute programs with credibility ratings ≥ risk
level

• If credibility rating < risk level, must use special command to
run program

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-80

Antivirus Programs

• Look for specific sequences of bytes (called
“virus signature” in file
– If found, warn user and/or disinfect file

• Each agent must look for known set of
viruses

• Cannot deal with viruses not yet analyzed
– Due in part to undecidability of whether a

generic program is a virus

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-81

Detect Actions Beyond Spec

• Treat execution, infection as errors and
apply fault tolerant techniques

• Example: break program into sequences of
nonbranching instructions
– Checksum each sequence, encrypt result
– When run, processor recomputes checksum,

and at each branch co-processor compares
computed checksum with stored one

• If different, error occurred

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-82

N-Version Programming

• Implement several different versions of algorithm
• Run them concurrently

– Check intermediate results periodically
– If disagreement, majority wins

• Assumptions
– Majority of programs not infected
– Underlying operating system secure
– Different algorithms with enough equal intermediate

results may be infeasible
• Especially for malicious logic, where you would check file

accesses

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-83

Proof-Carrying Code

• Code consumer (user) specifies safety requirement
• Code producer (author) generates proof code

meets this requirement
– Proof integrated with executable code
– Changing the code invalidates proof

• Binary (code + proof) delivered to consumer
• Consumer validates proof
• Example statistics on Berkeley Packet Filter:

proofs 300–900 bytes, validated in 0.3 –1.3 ms
– Startup cost higher, runtime cost considerably shorter

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-84

Detecting Statistical Changes

• Example: application had 3 programmers working
on it, but statistical analysis shows code from a
fourth person—may be from a Trojan horse or
virus!

• Other attributes: more conditionals than in
original; look for identical sequences of bytes not
common to any library routine; increases in file
size, frequency of writing to executables, etc.
– Denning: use intrusion detection system to detect these

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #22-85

Key Points

• A perplexing problem
– How do you tell what the user asked for is not

what the user intended?
• Strong typing leads to separating data,

instructions
• File scanners most popular anti-virus agents

– Must be updated as new viruses come out

