
June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-1

Chapter 24: Auditing

• Overview
• What is auditing?
• What does an audit system look like?
• How do you design an auditing system?
• Auditing mechanisms
• Examples: NFSv2, LAFS

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-2

What is Auditing?

• Logging
– Recording events or statistics to provide

information about system use and performance
• Auditing

– Analysis of log records to present information
about the system in a clear, understandable
manner

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-3

Uses

• Describe security state
– Determine if system enters unauthorized state

• Evaluate effectiveness of protection
mechanisms
– Determine which mechanisms are appropriate

and working
– Deter attacks because of presence of record

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-4

Problems

• What do you log?
– Hint: looking for violations of a policy, so

record at least what will show such violations
• What do you audit?

– Need not audit everything
– Key: what is the policy involved?

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-5

Audit System Structure

• Logger
– Records information, usually controlled by

parameters
• Analyzer

– Analyzes logged information looking for
something

• Notifier
– Reports results of analysis

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-6

Logger

• Type, quantity of information recorded
controlled by system or program
configuration parameters

• May be human readable or not
– If not, usually viewing tools supplied
– Space available, portability influence storage

format

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-7

Example: RACF

• Security enhancement package for IBM’s
MVS/VM

• Logs failed access attempts, use of
privilege to change security levels, and (if
desired) RACF interactions

• View events with LISTUSERS commands

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-8

RACF: Sample Entry
USER=EW125004 NAME=S.J.TURNER OWNER=SECADM CREATED=88.004
 DEFAULT-GROUP=HUMRES PASSDATE=88.004 PASS-INTERVAL=30
 ATTRIBUTES=ADSP
 REVOKE DATE=NONE RESUME-DATE=NONE
 LAST-ACCESS=88.020/14:15:10
 CLASS AUTHORIZATIONS=NONE
 NO-INSTALLATION-DATA
 NO-MODEL-NAME
 LOGON ALLOWED (DAYS) (TIME)
 ————————————————
 ANYDAY ANYTIME
 GROUP=HUMRES AUTH=JOIN CONNECT-OWNER=SECADM
 CONNECT-DATE=88.004
 CONNECTS= 15 UACC=READ LAST-CONNECT=88.018/16:45:06
 CONNECT ATTRIBUTES=NONE
 REVOKE DATE=NONE RESUME DATE=NONE
 GROUP=PERSNL AUTH=JOIN CONNECT-OWNER=SECADM CONNECT-DATE:88.004
 CONNECTS= 25 UACC=READ LAST-CONNECT=88.020/14:15:10
 CONNECT ATTRIBUTES=NONE
 REVOKE DATE=NONE RESUME DATE=NONE
 SECURITY-LEVEL=NONE SPECIFIED
 CATEGORY AUTHORIZATION
 NONE SPECIFIED

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-9

Example: Windows NT
• Different logs for different types of events

– System event logs record system crashes, component failures, and
other system events

– Application event logs record events that applications request be
recorded

– Security event log records security-critical events such as logging
in and out, system file accesses, and other events

• Logs are binary; use event viewer to see them
• If log full, can have system shut down, logging disabled,

or logs overwritten

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-10

Windows NT Sample Entry
Date: 2/12/2000 Source: Security
Time: 13:03 Category: Detailed Tracking
Type: Success EventID: 592
User:WINDSOR\Administrator
Computer: WINDSOR

Description:
A new process has been created:

New Process ID: 2216594592
Image File Name:

 \Program Files\Internet Explorer\IEXPLORE.EXE
Creator Process ID: 2217918496
User Name: Administrator
FDomain: WINDSOR
Logon ID: (0x0,0x14B4c4)

[would be in graphical format]

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-11

Analyzer

• Analyzes one or more logs
– Logs may come from multiple systems, or a

single system
– May lead to changes in logging
– May lead to a report of an event

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-12

Examples
• Using swatch to find instances of telnet from tcpd logs:

/telnet/&!/localhost/&!/*.site.com/

• Query set overlap control in databases
– If too much overlap between current query and past queries, do not answer

• Intrusion detection analysis engine (director)
– Takes data from sensors and determines if an intrusion is occurring

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-13

Notifier

• Informs analyst, other entities of results of
analysis

• May reconfigure logging and/or analysis on
basis of results

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-14

Examples

• Using swatch to notify of telnets
/telnet/&!/localhost/&!/*.site.com/ mail staff

• Query set overlap control in databases
– Prevents response from being given if too

much overlap occurs
• Three failed logins in a row disable user

account
– Notifier disables account, notifies sysadmin

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-15

Designing an Audit System
• Essential component of security mechanisms
• Goals determine what is logged

– Idea: auditors want to detect violations of policy, which provides a set of
constraints that the set of possible actions must satisfy

– So, audit functions that may violate the constraints
• Constraint pi : action ⇒ condition

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-16

Example: Bell-LaPadula
• Simple security condition and *-property

– S reads O ⇒ L(S) ≥ L(O)
– S writes O ⇒ L(S) ≤ L(O)
– To check for violations, on each read and write, must log L(S), L(O),

action (read, write), and result (success, failure)
– Note: need not record S, O!

• In practice, done to identify the object of the (attempted) violation and the
user attempting the violation

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-17

Remove Tranquility

• New commands to manipulate security
level must also record information
– S reclassify O to L(O´) ⇒ L(O) ≤ L(S) and

L(O´) ≤ L(S)
– Log L(O), L(O´), L(S), action (reclassify), and

result (success, failure)
– Again, need not record O or S to detect

violation
• But needed to follow up …

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-18

Example: Chinese Wall
• Subject S has COI(S) and CD(S)

– CDH(S) is set of company datasets that S has accessed
• Object O has COI(O) and CD(O)

– san(O) iff O contains only sanitized information
• Constraints

– S reads O ⇒ COI(O) ≠ COI(S) ∨ ∃O′(CD(O′) ∈ CDH(S))
– S writes O ⇒ (S canread O) ∧ ¬∃O′(COI(O) = COI(O′) ∧ S canread O′ ∧

¬san(Ó))

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-19

Recording
• S reads O ⇒ COI(O) ≠ COI(S) ∨ ∃O′(CD(O′) ∈ CDH(S))

– Record COI(O), COI(S), CDH(S), CD(O′) if such an O′ exists, action
(read), and result (success, failure)

• S writes O ⇒ (S canread O) ∧ ¬∃O′(COI(O) = COI(O′) ∧ S canread
O′ ∧ ¬san(O′))
– Record COI(O), COI(S), CDH(S), plus COI(O′) and CD(O′) if such an O′

exists, action (write), and result (success, failure)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-20

Implementation Issues
• Show non-security or find violations?

– Former requires logging initial state as well as changes
• Defining violations

– Does “write” include “append” and “create directory”?
• Multiple names for one object

– Logging goes by object and not name
– Representations can affect this (if you read raw disks, you’re reading

files; can your auditing system determine which file?)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-21

Syntactic Issues

• Data that is logged may be ambiguous
– BSM: two optional text fields followed by two

mandatory text fields
– If three fields, which of the optional fields is

omitted?
• Solution: use grammar to ensure well-

defined syntax of log files

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-22

Example
entry : date host prog [bad] user [“from” host] “to”

user “on” tty
date : daytime
host : string
prog : string “:”
bad : “FAILED”
user : string
tty : “/dev/” string

• Log file entry format defined unambiguously
• Audit mechanism could scan, interpret entries without confusion

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-23

More Syntactic Issues

• Context
– Unknown user uses anonymous ftp to retrieve

file “/etc/passwd”
– Logged as such
– Problem: which /etc/passwd file?

• One in system /etc directory
• One in anonymous ftp directory /var/ftp/etc, and as

ftp thinks /var/ftp is the root directory, /etc/passwd
refers to /var/ftp/etc/passwd

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-24

Log Sanitization
• U set of users, P policy defining set of information C(U)

that U cannot see; log sanitized when all information in
C(U) deleted from log

• Two types of P
– C(U) can’t leave site

• People inside site are trusted and information not sensitive to them
– C(U) can’t leave system

• People inside site not trusted or (more commonly) information
sensitive to them

• Don’t log this sensitive information

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-25

Logging Organization

• Top prevents information from leaving site
– Users’ privacy not protected from system administrators, other administrative

personnel
• Bottom prevents information from leaving system

– Data simply not recorded, or data scrambled before recording

Logging system Log UsersSanitizer

Logging system Log UsersSanitizer

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-26

Reconstruction

• Anonymizing sanitizer cannot be undone
– No way to recover data from this

• Pseudonymizing sanitizer can be undone
– Original log can be reconstructed

• Importance
– Suppose security analysis requires access to

information that was sanitized?

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-27

Issue

• Key: sanitization must preserve properties
needed for security analysis

• If new properties added (because analysis
changes), may have to resanitize
information
– This requires pseudonymous sanitization or

the original log

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-28

Example
• Company wants to keep its IP addresses secret, but wants

a consultant to analyze logs for an address scanning attack
– Connections to port 25 on IP addresses 10.163.5.10, 10.163.5.11,

10.163.5.12, 10.163.5.13, 10.163.5.14, 10.163.5.15
– Sanitize with random IP addresses

• Cannot see sweep through consecutive IP addresses
– Sanitize with sequential IP addresses

• Can see sweep through consecutive IP addresses

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-29

Generation of Pseudonyms
1. Devise set of pseudonyms to replace sensitive information

• Replace data with pseudonyms
• Maintain table mapping pseudonyms to data

2. Use random key to encipher sensitive datum and use secret sharing
scheme to share key
• Used when insiders cannot see unsanitized data, but outsiders (law

enforcement) need to
• Requires t out of n people to read data

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-30

Application Logging

• Applications logs made by applications
– Applications control what is logged
– Typically use high-level abstractions such as:

su: bishop to root on /dev/ttyp0

– Does not include detailed, system call level
information such as results, parameters, etc.

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-31

System Logging
• Log system events such as kernel actions

– Typically use low-level events
3876 ktrace CALL execve(0xbfbff0c0,0xbfbff5cc,0xbfbff5d8)
3876 ktrace NAMI "/usr/bin/su"
3876 ktrace NAMI "/usr/libexec/ld-elf.so.1"
3876 su RET xecve 0
3876 su CALL __sysctl(0xbfbff47c,0x2,0x2805c928,0xbfbff478,0,0)
3876 su RET __sysctl 0
3876 su CALL mmap(0,0x8000,0x3,0x1002,0xffffffff,0,0,0)
3876 su RET mmap 671473664/0x2805e000
3876 su CALL geteuid
3876 su RET geteuid 0

– Does not include high-level abstractions such as loading libraries
(as above)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-32

Contrast
• Differ in focus

– Application logging focuses on application events, like failure to
supply proper password, and the broad operation (what was the
reason for the access attempt?)

– System logging focuses on system events, like memory mapping
or file accesses, and the underlying causes (why did access fail?)

• System logs usually much bigger than application logs
• Can do both, try to correlate them

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-33

Design
• A posteriori design

– Need to design auditing mechanism for system not built with
security in mind

• Goal of auditing
– Detect any violation of a stated policy

• Focus is on policy and actions designed to violate policy; specific
actions may not be known

– Detect actions known to be part of an attempt to breach security
• Focus on specific actions that have been determined to indicate

attacks

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-34

Detect Violations of Known
Policy

• Goal: does system enter a disallowed state?
• Two forms

– State-based auditing
• Look at current state of system

– Transition-based auditing
• Look at actions that transition system from one

state to another

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-35

State-Based Auditing

• Log information about state and determine
if state allowed
– Assumption: you can get a snapshot of system

state
– Snapshot needs to be consistent
– Non-distributed system needs to be quiescent
– Distributed system can use Chandy-Lamport

algorithm, or some other algorithm, to obtain
this

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-36

Example

• File system auditing tools
– Thought of as analyzing single state (snapshot)
– In reality, analyze many slices of different state

unless file system quiescent
– Potential problem: if test at end depends on

result of test at beginning, relevant parts of
system state may have changed between the
first test and the last

• Classic TOCTTOU flaw

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-37

Transition-Based Auditing

• Log information about action, and examine
current state and proposed transition to
determine if new state would be disallowed
– Note: just analyzing the transition may not be

enough; you may need the initial state
– Tend to use this when specific transitions

always require analysis (for example, change
of privilege)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-38

Example

• TCP access control mechanism intercepts
TCP connections and checks against a list
of connections to be blocked
– Obtains IP address of source of connection
– Logs IP address, port, and result

(allowed/blocked) in log file
– Purely transition-based (current state not

analyzed at all)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-39

Detect Known Violations of
Policy

• Goal: does a specific action and/or state
that is known to violate security policy
occur?
– Assume that action automatically violates

policy
– Policy may be implicit, not explicit
– Used to look for known attacks

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-40

Example

• Land attack
– Consider 3-way handshake to initiate TCP connection

(next slide)
– What happens if source, destination ports and

addresses the same? Host expects ACK(t+1), but gets
ACK(s+1).

– RFC ambiguous:
• p. 36 of RFC: send RST to terminate connection
• p. 69 of RFC: reply with empty packet having current

sequence number t+1 and ACK number s+1—but it receives
packet and ACK number is incorrect. So it repeats this …
system hangs or runs very slowly, depending on whether
interrupts are disabled

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-41

3-Way Handshake and Land
Normal:
1. srcseq = s, expects ACK s+1
2. destseq = t, expects ACK t+1;

src gets ACK s+1
3. srcseq = s+1, destseq = t+1; dest

gets ACK t+1
Land:
1. srcseq = destseq = s, expects

ACK s+1
2. srcseq = destseq = t, expects

ACK t+1 but gets ACK s+1
3. Never reached; recovery from

error in 2 attempted

Source

Destination

SYN(s) ACK(s+1)
SYN(t) ACK(t+1)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-42

Detection
• Must spot initial Land packet with source, destination

addresses the same
• Logging requirement:

– source port number, IP address
– destination port number, IP address

• Auditing requirement:
– If source port number = destination port number and source IP

address = destination IP address, packet is part of a Land attack

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-43

Auditing Mechanisms

• Systems use different mechanisms
– Most common is to log all events by default,

allow system administrator to disable logging
that is unnecessary

• Two examples
– One audit system designed for a secure system
– One audit system designed for non-secure

system

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-44

Secure Systems

• Auditing mechanisms integrated into system
design and implementation

• Security officer can configure reporting and
logging:
– To report specific events
– To monitor accesses by a subject
– To monitor accesses to an object

• Controlled at audit subsystem
– Irrelevant accesses, actions not logged

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-45

Example 1: VAX VMM

• Designed to be a secure production system
– Audit mechanism had to have minimal impact
– Audit mechanism had to be very reliable

• Kernel is layered
– Logging done where events of interest occur
– Each layer audits accesses to objects it controls

• Audit subsystem processes results of logging
from mechanisms in kernel
– Audit subsystem manages system log
– Invoked by mechanisms in kernel

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-46

VAX VMM Audit Subsystem

• Calls provide data to be logged
– Identification of event, result
– Auxiliary data depending on event
– Caller’s name

• Subsystem checks criteria for logging
– If request matcher, data is logged
– Criteria are subject or object named in audit table, and

severity level (derived from result)
– Adds date and time, other information

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-47

Other Issues

• Always logged
– Programmer can request event be logged
– Any attempt to violate policy

• Protection violations, login failures logged when they occur
repeatedly

• Use of covert channels also logged

• Log filling up
– Audit logging process signaled to archive log when log

is 75% full
– If not possible, system stops

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-48

Example 2: CMW

• Compartmented Mode Workstation designed to
allow processing at different levels of sensitivity
– Auditing subsystem keeps table of auditable events
– Entries indicate whether logging is turned on, what

type of logging to use
– User level command chaud allows user to control

auditing and what is audited
• If changes affect subjects, objects currently being logged, the

logging completes and then the auditable events are changed

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-49

CMW Process Control

• System calls allow process to control
auditing
– audit_on turns logging on, names log filke
– audit_write validates log entry given as

parameter, logs entry if logging for that entry
is turned on

– audit_suspend suspends logging temporarily
– audit_resume resumes logging after suspension
– audit_off turns logging off for that process

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-50

System Calls

• On system call, if auditing on:
– System call recorded
– First 3 parameters recorded (but pointers not

followed)
• How audit_write works

– If room in log, append new entry
– Otherwise halt system, discard new entry, or

disable event that caused logging
• Continue to try to log other events

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-51

Other Ways to Log

• Problem: some processes want to log
higher-level abstractions (application
logging)
– Window manager creates, writes high-level

events to log
– Difficult to map low-level events into high-

level ones
– Disables low-level logging for window

manager as unnecessary

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-52

CMW Auditing

• Tool (redux) to analyze logged events
• Converts binary logs to printable format
• Redux allows user to constrain printing

based on several criteria
– Users
– Objects
– Security levels
– Events

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-53

Non-Secure Systems

• Have some limited logging capabilities
– Log accounting data, or data for non-security

purposes
– Possibly limited security data like failed logins

• Auditing subsystems focusing on security
usually added after system completed
– May not be able to log all events, especially if

limited kernel modifications to support audit
subsystem

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-54

Example: Basic Security Module

• BSM enhances SunOS, Solaris security
– Logs composed of records made up of tokens

• Token contains information about event: user
identity, groups, file system information, network,
system call and result, etc. as appropriate

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-55

More About Records

• Records refer to auditable events
– Kernel events: opening a file
– Application events: failure to authenticate when

logging in
• Grouped into audit event classes based on events

causing record generation
– Before log created: tell system what to generate

records for
– After log created: defined classes control which

records given to analysis tools

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-56

Example Record

• Logs are binary; this is from praudit

header,35,AUE_EXIT,Wed Sep 18 11:35:28 1991, + 570000 msec,
process,bishop,root,root,daemon,1234,
return,Error 0,5
trailer,35

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-57

Auditing File Systems

• Network File System (NFS)
– Industry standard
– Server exports file system; client imports it
– Root of tree being exported called server

mount point; place in client file tree where
exported file system imported called client
mount point

• Logging and Auditing File System (LAFS)
– Built on NFS

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-58

NFS Version 2

• Mounting protocol
– Client kernel contacts server’s mount daemon
– Daemon checks client is authorized to mount file

system
– Daemon returns file handle pointing to server mount

point
– Client creates entry in client file system corresponding

to file handle
– Access restrictions enforced

• On client side: server not aware of these
• On server side: client not aware of these

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-59

File Access Protocol
• Process tries to open file as if it were local
• Client kernel sends file handle for element of path

referring to remote file to server’s NFS server using
LOOKUP request

• If file handle valid, server replies with appropriate file
handle

• Client requests attributes with GETATTR
– Client then determines if access allowed; if not, denies

• Iterate above three steps until handle obtained for
requested file
– Or access denied by client

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-60

Other Important Details

• NFS stateless
– Server has no idea which files are being

accessed and by whom
• NFS access control

– Most servers require requests to come from
privileged programs

• Check that source port is 1023 or less
– Underlying messages identify user

• To some degree of certainty …

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-61

Site Policy

1. NFS servers respond only to authorized
clients

2. UNIX access controls regulate access to
server’s exported file system

3. No client host can access a non-exported
file system

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-62

Resulting Constraints

1. File access granted ⇒ client authorized to import
file system, user can search all parent directories,
user can access file as requested, file is
descendent of server’s file system mount point

• From P1, P2, P3
2. Device file created or file type changed to device
⇒ user’s UID is 0

• From P2; only UID 0 can do these actions

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-63

More Constraints

3. Possession of file handle ⇒ file handle issued to
user
• From P1, P2; otherwise unauthorized client could

access files in forbidden ways
4. Operation succeeds ⇒ similar local operation

would succeed
• From P2; mount should fail if requester UID not 0

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-64

NFS Operations

• Transitions from secure to non-secure state
can occur only when NFS command occurs

• Example commands:
– MOUNT filesystem

• Mount the named file system on the requesting
client, if allowed

– LOOKUP dir_handle file_name
• Search in directory with handle dir_handle for file

named file_name; return file handle for file_name

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-65

Logging Requirements

1.When file handle issued, server records
handle, UID and GID of user requesting it,
client host making request
• Similar to allocating file descriptor when file

opened; allows validation of later requests
2.When file handle used as parameter, server

records UID, GID of user
• Was user using file handle issued that file

handle—useful for detecting spoofs

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-66

Logging Requirements

3. When file handle issued, server records
relevant attributes of containing object
• On LOOKUP, attributes of containing

directory show whether it can be searched
4. Record results of each operation

• Lets auditor determine result
5. Record file names used as arguments

• Reconstruct path names, purpose of commands

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-67

Audit Criteria: MOUNT

• MOUNT
– Check that MOUNT server denies all requests

by unauthorized clients to import file system
that host exports

• Obtained from constraints 1, 4
• Log requirements 1 (who requests it), 3 (access

attributes—to whom can it be exported), 4 (result)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-68

Audit Criteria: LOOKUP

2. Check file handle comes from client, user to
which it was issued
• Obtained from constraint 3
• Log requirement 1 (who issued to), 2 (who is using)

3. Check that directory has file system mount point
as ancestor and user has search permission on
directory
• Obtained from constraint 1
• Log requirements 2 (who is using handle), 3 (owner,

group, type, permissions of object), 4 (result), 5
(reconstruct path name)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-69

LAFS

• File system that records user level activities
• Uses policy-based language to automate

checks for violation of policies
• Implemented as extension to NFS

– You create directory with lmkdir and attach
policy with lattach:

lmkdir /usr/home/xyzzy/project policy
lattach /usr/home/xyzzy/project /lafs/xyzzy/project

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-70

LAFS Components

• Name server
• File manager
• Configuration assistant

– Sets up required protection modes; interacts with name
server, underlying file protection mechanisms

• Audit logger
– Logs file accesses; invoked whenever process accesses

file
• Policy checker

– Validates policies, checks logs conform to policy

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-71

How It Works

• No changes to applications
• Each file has 3 associated virtual files

– file%log: all accesses to file
– file%policy: access control policy for file
– file%audit: when accessed, triggers audit in which

accesses are compared to policy for file
• Virtual files not shown in listing

– LAFS knows the extensions and handles them properly

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-72

Example Policies
prohibit:0900–1700:*:*:wumpus:exec

– No-one can execute wumpus between 9AM and 5PM
allow:*:Makefile:*:make:read
allow:*:Makefile:Owner:makedepend:write
allow:*:*.o,*.out:Owner,Group:gcc,ld:write
allow:-010929:*.c,*.h:Owner:emacs,vi,ed:write

– Program make can read Makefile
– Owner can change Makefile using makedepend
– Owner, group member can create .o, .out files using

gcc and ld
– Owner can modify .c, .h files using named editors up to

Sep. 29, 2001

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-73

Comparison

• Security policy controls access
– Goal is to detect, report violations
– Auditing mechanisms built in

• LAFS “stacked” onto NFS
– If you access files not through LAFS, access

not recorded
• NFS auditing at lower layer

– So if you use NFS, accesses recorded

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-74

Comparison

• Users can specify policies in LAFS
– Use %policy file

• NFS policy embedded, not easily changed
– It would be set by site, not users

• Which is better?
– Depends on goal; LAFS is more flexible but

easier to evade. Use both together, perhaps?

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-75

Audit Browsing

• Goal of browser: present log information in a
form easy to understand and use

• Several reasons to do this:
– Audit mechanisms may miss problems that auditors

will spot
– Mechanisms may be unsophisticated or make invalid

assumptions about log format or meaning
– Logs usually not integrated; often different formats,

syntax, etc.

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-76

Browsing Techniques

• Text display
– Does not indicate relationships between events

• Hypertext display
– Indicates local relationships between events
– Does not indicate global relationships clearly

• Relational database browsing
– DBMS performs correlations, so auditor need not

know in advance what associations are of interest
– Preprocessing required, and may limit the associations

DBMS can make

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-77

More Browsing Techniques

• Replay
– Shows events occurring in order; if multiple logs,

intermingles entries
• Graphing

– Nodes are entities, edges relationships
– Often too cluttered to show everything, so graphing

selects subsets of events
• Slicing

– Show minimum set of log events affecting object
– Focuses on local relationships, not global ones

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-78

Example: Visual Audit Browser
• Frame Visualizer

– Generates graphical representation of logs
• Movie Maker

– Generates sequence of graphs, each event creating a new graph
suitably modified

• Hypertext Generator
– Produces page per user, page per modified file, summary and

index pages
• Focused Audit Browser

– Enter node name, displays node, incident edges, and nodes at end
of edges

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-79

Example Use

• File changed
– Use focused audit browser

• Changed file is initial focus
• Edges show which processes have altered file

– Focus on suspicious process
• Iterate through nodes until method used to gain

access to system determined
• Question: is masquerade occurring?

– Auditor knows audit UID of attacker

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-80

Tracking Attacker

• Use hypertext generator to get all audit records
with that UID
– Now examine them for irregular activity
– Frame visualizer may help here
– Once found, work forward to reconstruct activity

• For non-technical people, use movie maker to
show what happened
– Helpful for law enforcement authorities especially!

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-81

Example: MieLog

• Computes counts of single words, word pairs
– Auditor defines “threshold count”
– MieLog colors data with counts higher than threshold

• Display uses graphics and text together
– Tag appearance frequency area: colored based on

frequency (e.g., red is rare)
– Time information area: bar graph showing number of

log entries in that period of time; click to get entries
– Outline of message area: outline of log messages,

colored to match tag appearance frequency area
– Message in text area: displays log entry under study

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-82

Example Use

• Auditor notices unexpected gap in time
information area
– No log entries during that time!?!?

• Auditor focuses on log entries before, after gap
– Wants to know why logging turned off, then turned

back on
• Color of words in entries helps auditor find

similar entries elsewhere and reconstruct patterns

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #24-83

Key Points

• Logging is collection and recording; audit is
analysis

• Need to have clear goals when designing an audit
system

• Auditing should be designed into system, not
patched into system after it is implemented

• Browsing through logs helps auditors determine
completeness of audit (and effectiveness of audit
mechanisms!)

