

Lattices

Appendix A

Outline

- Overview
- Definitions
- Lattices
- Examples

Overview

- Lattices used to analyze several models
 - Bell-LaPadula confidentiality model
 - Biba integrity model
- A lattice consists of a set and a relation
- Relation must partially order set
 - Relation orders some, but not all, elements of set

Sets and Relations

- S set, R: $S \times S$ relation
 - If $a, b \in S$, and $(a, b) \in R$, write aRb
- Example
 - $I = \{ 1, 2, 3 \}; R \text{ is } \le$
 - $R = \{ (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3) \}$
 - So we write $1 \le 2$ and $3 \le 3$ but not $3 \le 2$

Relation Properties

Reflexive

- For all $a \in S$, aRa
- On I, \leq is reflexive as $1 \leq 1$, $2 \leq 2$, $3 \leq 3$

Antisymmetric

- For all $a, b \in S$, $aRb \land bRa \Rightarrow a = b$
- On I, \leq is antisymmetric as $1 \leq x$ and $x \leq 1$ means x = 1

• Transitive

- For all $a, b, c \in S$, $aRb \land bRc \Rightarrow aRc$
- On $I_1 \le is$ transitive as $1 \le 2$ and $2 \le 3$ means $1 \le 3$

Example

- C set of complex numbers
- $a \in \mathbb{C} \Rightarrow a = a_R + a_I i$, where a_R , a_I integers
- $a \le_{\mathbf{C}} b$ if, and only if, $a_{\mathbf{R}} \le b_{\mathbf{R}}$ and $a_{\mathbf{I}} \le b_{\mathbf{I}}$
- $a \le_{\mathbf{C}} b$ is reflexive, antisymmetric, transitive
 - As \leq is over integers, and a_R , a_I are integers

Partial Ordering

- Relation R orders some members of set S
 - If all ordered, it's a total ordering
- Example
 - ≤ on integers is total ordering
 - $\leq_{\mathbb{C}}$ is partial ordering on \mathbb{C}
 - Neither $3+5i \le_{\mathbb{C}} 4+2i$ nor $4+2i \le_{\mathbb{C}} 3+5i$ holds

Upper Bounds

- For $a, b \in S$, if u in S with aRu, bRu exists, then u is an upper bound
 - A least upper bound if there is no $t \in S$ such that aRt, bRt, and tRu
- Example
 - For 1 + 5i, $2 + 4i \in \mathbb{C}$
 - Some upper bounds are 2 + 5*i*, 3 + 8*i*, and 9 + 100*i*
 - Least upper bound is 2 + 5*i*

Lower Bounds

- For $a, b \in S$, if l in S with lRa, lRb exists, then l is a lower bound
 - A greatest lower bound if there is no $t \in S$ such that tRa, tRb, and lRt
- Example
 - For 1 + 5i, $2 + 4i \in \mathbb{C}$
 - Some lower bounds are 0, -1 + 2i, 1 + 1i, and 1+4i
 - Greatest lower bound is 1 + 4i

Lattices

- Set S, relation R
 - R is reflexive, antisymmetric, transitive on elements of S
 - For every $s, t \in S$, there exists a greatest lower bound under R
 - For every $s, t \in S$, there exists a least upper bound under R

Example

- $S = \{ 0, 1, 2 \}; R = \le \text{ is a lattice}$
 - R is clearly reflexive, antisymmetric, transitive on elements of S
 - Least upper bound of any two elements of S is the greater of the elements
 - Greatest lower bound of any two elements of S is the lesser of the elements

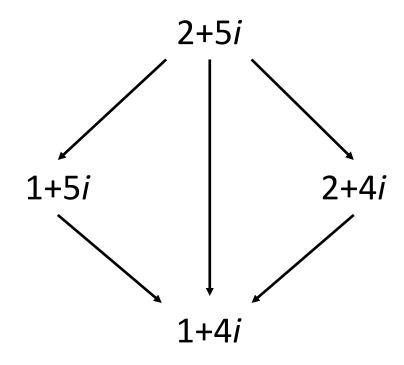
Picture

Arrows represent ≤; this forms a total ordering

Example

- \mathbb{C} , $\leq_{\mathbb{C}}$ form a lattice
 - $\leq_{\mathbb{C}}$ is reflexive, antisymmetric, and transitive
 - Shown earlier
 - Least upper bound for *a* and *b*:
 - $c_R = \max(a_R, b_R), c_I = \max(a_I, b_I);$ then $c = c_R + c_I i$
 - Greatest lower bound for a and b:
 - $c_R = \min(a_R, b_R), c_I = \min(a_I, b_I)$; then $c = c_R + c_I i$

Picture



Arrows represent ≤_ℂ