

Euclidean Algorithm

Appendix B

Outline

- Overview
- Definitions
- Lattices
- Examples

Overview

- Solving modular equations arises in cryptography
- Euclidean Algorithm
- From Euclid to solving *ax* mod *n* = 1
- From $ax \mod n = 1$ to solving $ax \mod n = b$

Euclidean Algorithm

- Given positive integers *a* and *b*, find their greatest common divisor
- Idea
 - if x is the greatest common divisor of a and b, then x divides r = a b
 - reduces problem to finding largest x that divides r and b
 - iterate

Relation Properties

• Take *a* = 15, *b* = 12

a b q r

15 12 1 3 q = 15/12 = 1 $r = 15 - 1 \times 12 = 3$

12 3 4 0 $q = \frac{12}{3} = 4$ $r = \frac{12}{4} = 0$

- So gcd(15, 12) = 3
 - The *b* for which *r* is 0

• Take *a* = 35731, *b* = 25689

b	q	r		
24689	1	11042	q = 35731/24689 = 1	<i>r</i> = 35731–1×24689 = 11042
11042	2	2605	<i>q</i> = 24689/11042 = 2	<i>r</i> = 24689–2×11042 = 2605
2605	4	622	q = 11042/2605 = 4	<i>r</i> = 11042–4×2605 = 622
622	4	117	<i>q</i> = 2605/622 = 4	<i>r</i> = 2605–4×622 = 117
117	5	37	<i>q</i> = 622/117 = 5	<i>r</i> = 622–5×117 = 37
37	3	6	q = 117/37 = 3	<i>r</i> = 117–3×37
6	6	1	<i>q</i> = 37/6 = 6	$r = 37 - 6 \times 6 = 1$
1	6	0	q = 6/1 = 6	$r = 6 - 6 \times 1 = 0$
	24689 11042 2605 622 117 37 6	24689 1 11042 2 2605 4	246891110421104222605260546226224117117537373661	24689 1 11042 $q = 35731/24689 = 1$ 11042 2 2605 $q = 24689/11042 = 2$ 2605 4 622 $q = 11042/2605 = 4$ 622 4 117 $q = 2605/622 = 4$ 117 5 37 $q = 622/117 = 5$ 37 3 6 $q = 117/37 = 3$ 6 6 1 $q = 37/6 = 6$

Pseudocode

```
/* find gcd of a and b */
rprev := r := 1;
while r <> 0 do begin
 rprev := r;
 r := a mod b;
 write 'a = ', a, 'b =', b, 'q = ', a div b,
                                     'r = ', r, endline;
 a := b;
 b := r;
end;
gcd := rprev;
```


Extended Euclidean Algorithm

• Find two integers x and y such that

xa + yb = 1

• Find x and y such that 51x + 100y = 1

и	X	У	q			
100	0	1				
51	1	0	100/51 = 1	$u = 100 - 1 \times 51 = 49$	$x = 0 - 1 \times 1 = -1$	<i>y</i> = 1–1×0 = 1
49	-1	1	51/49 = 1	$u = 51 - 1 \times 49 = 2$	$x = 0 - 1 \times 1 = -1$	<i>y</i> = 1–1×0 = 1
2	2	-1	49/2 = 24	$u = 49 - 24 \times 2 = 1$	$x = 1 - 1 \times (-1) = 2$	<i>y</i> = 0–1×1=–1
1	-49	25	2/1 = 2	$u = 2 - 2 \times 1 = 0$	$x = -1 - 24 \times 1 = -49$	<i>y</i> = 1–24×(–1)=25
0	100	-51			<i>x</i> = 2–49×2 = 100	<i>y</i> = −1−25×2 = −51

- So, 51 × (-49) + 100 × 25 = 1
 - This is -2499 + 2500 = 1

• Find *x* and *y* such that 24689*x* + 35731*y* = 1

и	X	У	q			
35731	0	1				
24689	1	0	35731/24689 = 1	<i>u</i> = 35721–1×24689	$x = 0 - 1 \times 1$	$y = 1 - 1 \times$
11042	-1	1	24689/11042 = 2	<i>u</i> = 24689–2×11042	$x = 1 - 2 \times (-1)$	$y = 0 - 2 \times 1$
2605	3	-2	11042/2605 = 4	<i>u</i> = 11042–4×2605	$x = -1 - 4 \times 3$	$y = 1 - 4 \times (-2)$
622	-13	9	2605/622 = 4	$u = 2605 - 4 \times 622$	<i>x</i> = 3–4×(–13)	$y = -2 - 4 \times 9$
117	55	-38	622/117 = 5	<i>u</i> = 622–5×117	<i>x</i> = –13–5×55	y = 9–5×(–38)
37	-288	199	117/37 = 3	<i>u</i> = 117–3×37	<i>x</i> = 55–3×(–288)	y = −38−3×199
6	919	-635	37/6 = 6	<i>u</i> = 37–6×6	<i>x</i> = -288-6×919	y = 199–6×(–635)
1	-5802	4009	6/1=6	<i>u</i> = 6–6×1	<i>x</i> = 919–6×(–5802)	y = -635-6×(4009)
0	35731	-24689				

So, 24689 × (-5802) + 35731 × 4009 = 1

Pseudocode

```
/* find x and y such that ax + by = 1, for given a and b */
uprev := a; u := b;
xprev := 0; x := 1; yprev := 1; y := 0;
write 'u = ', uprev, ' x = ', xprev, ' y = ', yprev, endline;
write 'u = ', u, ' x = ', x, ' y = ', y;
while u <> 0 do begin
     q := uprev div u;
     write 'q = ', q, endline;
     utmp := uprev - u * q; uprev := u; u := utmp;
     xtmp := xprev - x * q; xprev := x; x := xtmp;
     ytmp := yprev - y * q; yprev := y; y := ytmp;
     write 'u = ', u, ' x = ', x, ' y = ', y;
end;
write endline;
x := xprev; y := yprev;
```


Solving $ax \mod n = 1$

- If $ax \mod n = 1$ then choose k such that ax = 1 + kn, or ax kn = 1. If b = -k, then ax + bn = 1.
- Use extended Euclidean algorithm to solve for *a*

- Solve for *x*: 51*x* mod 100 = 1
 - Recall (from earlier example) $51 \times (-49) + 100 \times 25 = 1$ Then $x = -49 \mod 100 = 51$
- Solve for *x*: 24689 mod 35731 = 1
 - Recall (from earlier example)
 24689 × (-5802) + 35731 × 4009 = 1
 Then x = -5802 mod 35731 = 29929

Solving $ax \mod n = b$

• A fundamental law of modular arithmetic:

 $xy \mod n = (x \mod n)(y \mod n) \mod n$

so if x solves $ax \mod n = 1$, then as

 $b(ax \mod n) = a(bx) \mod n = b$

bx solves $ax \mod n = b$

SECOND EDITION

Example

- Solve for x: 51x mod 100 = 10
 - Recall (from earlier example) that if
 51y mod 100 = 1, then y = 51.
 Then x = 10 × 51 mod 100 = 510 mod 100 = 10
- Solve for *x*: 24689 mod 35731 = 1753
 - Recall (from earlier example) that if 24689y mod 35731 = 1, then y = 29929. Then x = 1753 × 29929 mod 35731 = 12429