

Entropy and Uncertainty

Appendix C

SECOND EDITION

Outline

- Random variables
- Joint probability
- Conditional probability
- Entropy (or uncertainty in bits)
- Joint entropy
- Conditional entropy
- Applying it to secrecy of ciphers

Random Variable

- Variable that represents outcome of an event
 - X represents value from roll of a fair die; probability for rolling n: p(=n) = 1/6
 - If die is loaded so 2 appears twice as often as other numbers, p(X=2) = 2/7and, for $n \neq 2$, p(X=n) = 1/7
- Note: p(X) means specific value for X doesn't matter
 - Example: all values of *X* are equiprobable

Joint Probability

- Joint probability of X and Y, p(X, Y), is probability that X and Y simultaneously assume particular values
 - If X, Y independent, p(X, Y) = p(X)p(Y)
- Roll die, toss coin
 - $p(X=3, Y=heads) = p(X=3)p(Y=heads) = 1/6 \times 1/2 = 1/12$

Two Dependent Events

• X = roll of red die, Y = sum of red, blue die rolls

p(Y=2) = 1/36 p(Y=3) = 2/36 p(Y=4) = 3/36 p(Y=5) = 4/36p(Y=6) = 5/36 p(Y=7) = 6/36 p(Y=8) = 5/36 p(Y=9) = 4/36p(Y=10) = 3/36 p(Y=11) = 2/36 p(Y=12) = 1/36

• Formula:

p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) = 1/108

Conditional Probability

- Conditional probability of X given Y, p(X | Y), is probability that X takes on a particular value given Y has a particular value
- Continuing example ...
 - p(Y=7 | X=1) = 1/6
 - p(Y=7 | X=3) = 1/6

Relationship

- p(X, Y) = p(X | Y) p(Y) = p(X) p(Y | X)
- Example:

p(X=3,Y=8) = p(X=3 | Y=8) p(Y=8) = (1/5)(5/36) = 1/36

• Note: if X, Y independent: p(X|Y) = p(X)

Entropy

- Uncertainty of a value, as measured in bits
- Example: X value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty
 - Therefore entropy of X is H(X) = 1
- Formal definition: random variable X, values x₁, ..., x_n; so

 $\Sigma_i p(X = x_i) = 1$; then entropy is:

$$H(X) = -\sum_i p(X=x_i) \log p(X=x_i)$$

Heads or Tails?

• $H(X) = -p(X=heads) \lg p(X=heads) - p(X=tails) \lg p(X=tails)$ = $-(1/2) \lg (1/2) - (1/2) \lg (1/2)$ = -(1/2) (-1) - (1/2) (-1) = 1

• Confirms previous intuitive result

n-Sided Fair Die

 $H(X) = -\sum_{i} p(X = x_{i}) \lg p(X = x_{i})$ As $p(X = x_{i}) = 1/n$, this becomes $H(X) = -\sum_{i} (1/n) \lg (1/n) = -n(1/n) (-\lg n)$ so $H(X) = \lg n$

which is the number of bits in *n*, as expected

Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul

W represents the winner. What is its entropy?

•
$$w_1 = Ann, w_2 = Pam, w_3 = Paul$$

- $p(W=w_1) = p(W=w_2) = 2/5, p(W=w_3) = 1/5$
- So $H(W) = -\sum_i p(W=w_i) \lg p(W=w_i)$
 - $= -(2/5) \lg (2/5) (2/5) \lg (2/5) (1/5) \lg (1/5)$
 - $= -(4/5) + \lg 5 \approx -1.52$
- If all equally likely to win, $H(W) = \lg 3 \approx 1.58$

SECOND EDITION

Joint Entropy

- X takes values from { $x_1, ..., x_n$ }, and $\Sigma_i p(X=x_i) = 1$
- Y takes values from { y_1 , ..., y_m }, and $\Sigma_i p(Y=y_i) = 1$
- Joint entropy of *X*, *Y* is:

 $H(X, Y) = -\sum_{j} \sum_{i} p(X=x_{i}, Y=y_{j}) \log p(X=x_{i}, Y=y_{j})$

Example

X: roll of fair die, Y: flip of coin

As X, Y are independent:

$$p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12$$

and

$$H(X, Y) = -\sum_{j} \sum_{i} p(X=x_{i}, Y=y_{j}) \log p(X=x_{i}, Y=y_{j})$$

= -2 [6 [(1/12) lg (1/12)] = lg 12

Conditional Entropy

- X takes values from $\{x_1, ..., x_n\}$ and $\sum_i p(X=x_i) = 1$
- Y takes values from { y_1 , ..., y_m } and $\Sigma_i p(Y=y_i) = 1$
- Conditional entropy of X given Y=y_i is:

$$H(X \mid Y=y_j) = -\sum_i p(X=x_i \mid Y=y_j) \log p(X=x_i \mid Y=y_j)$$

• Conditional entropy of X given Y is:

$$H(X \mid Y) = -\sum_{j} p(Y=y_{j}) \sum_{i} p(X=x_{i} \mid Y=y_{j}) \log p(X=x_{i} \mid Y=y_{j})$$

Example

- X roll of red die, Y sum of red, blue roll
- Note p(X=1|Y=2) = 1, p(X=i|Y=2) = 0 for $i \neq 1$
 - If the sum of the rolls is 2, both dice were 1
- Thus

$$H(X|Y=2) = -\sum_{i} p(X=x_{i}|Y=2) \log p(X=x_{i}|Y=2) = 0$$

Example (*con't*)

- Note *p*(*X*=*i*, *Y*=7) = 1/6
 - If the sum of the rolls is 7, the red die can be any of 1, ..., 6 and the blue die must be 7–roll of red die
- $H(X | Y=7) = -\sum_{i} p(X=x_{i} | Y=7) \lg p(X=x_{i} | Y=7)$ = -6 (1/6) lg (1/6) = lg 6

Perfect Secrecy

- Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
- *M* = { *m*₁, ..., *m*_n } set of messages
- *C* = { *c*₁, ..., *c*_{*n*} } set of messages
- Cipher $c_i = E(m_i)$ achieves *perfect secrecy* if H(M | C) = H(M)