Symbolic Logic

Appendix E

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-1

Outline

* Propositional logic
e Mathematical induction

* Predicate logic

* Temporal logic systems
* CTL

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-2

Propositional Logic

* Proposition is an atomic, declarative sentence that can be shown to
be true or false but not both

* “There was not a cloud in the sky today”
* Represent as p or g, usually with subscripts

* Connectives:
e —, or negation (not) [highest precedence]
 V, or disjunction (and) [this and conjunction have the same precedence]
* A, or conjunction (or) [this and disjunction have the same precedence]
 —, or implication (if ... then ...) [lowest precedence]

(,) group operands and operators in the usual way

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-3

Terms

* Natural deduction, a means of reasoning about propositions
* Proof rules, rules letting infer formulas from other formulas

* Premises, formulas we know or assume to be true to reach a
conclusion (formula) we want to establish

e Contradiction, a formula that is always false; denoted by L (bottom)
* Tautology, a formula that is always true; denoted by T (top)

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-4

Examples

*pAp=1
* A contradiction, as p and =p cannot both be true

*pV-ap=T
* A tautology, as either p or —p will be true

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-5

Rules of Natural Deduction

1. If pand g are true, sois p A g (conjunction introduction rule)
If p A gis true, sois p and so is g (conjunction elimination rule)

3. Ifpistrue,soispV gq;if gistrue, soispV q (disjunction
introduction rule)

4. IfpV qistrue, and we want to conclude Q, we assume p and
conclude Q; then we assume g and conclude Q. Given p V g and
these two proofs, we can infer Q (disjunction elimination rule)

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-6

Rules of Natural Deduction

5. Assume p is true temporarily and based on this assumption prove q.
Then we can conclude p — g (implication introduction)

6. If we can conclude p and p — g, then we can conclude q. (modus
ponens; also implication elimination)

7. If we assume p and conclude 1, then we infer = p (negation
introduction)

8. If we assume p and = p, then we conclude L (negation elimination)

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-7

Rules of Natural Deduction

9. If we assume 1, then we can prove any p. (bottom elimination)

10. If we have concluded p, then we can also conclude ——p (double
negation introduction)

11. If we have concluded ——p, then we can also conclude p (double
negation elimination)

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-8

Derived Rules

* If we have concluded -g and p—q, we can also conclude -p (modus
tollens)

e Assume —q is true. Suppose we assume p and we can then prove
p—q. Then g holds. But this is impossible, so our assumption (that p is
true) must be false (reductio ad absurdum or proof by contradiction)

e See the implication elimination rule above

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-9

Well-Formed Formulas

* A word is a set of symbols using symbols for propositions, connectors,
parentheses

* Only some (well-formed formulas or WFFs) are meaningful; these are
defined inductively
* A propositional atom is a WFF
Negation of a WFF is a WFF
Conjunction of WFFs is a WFF
Disjunction of WFFs is a WFF
Implication between two WFFs is a WFF

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-10

Truth Tables
. p | a | pAa_| pVa | poq | -p

T m - -

m M T — P

m 4 4 - B
l

m — ™ -
— 4 ™ -
— 4 ™ -

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-11

Equivalence of Formulas: Definitions

* Sequent is a set of formulas ¢4, . .. ¢, and a conclusion ; denoted
¢1; = ¢n - l/)

e Sequent is valid if a proof of it can be found

e ¢ and Y are provably equivalent if and only if both ¢ Y and Y ¢
hold

* Two formulas are semantically equivalent if they have the same truth
table values. If Y evaluates to true whenever ¢,, . .. ¢, evaluate to
true, this is denoted ¢p,, ... o, E Y

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-12

Soundness and Completeness Theorems

Soundness Theorem: Let ¢, ... ¢, and Y be propositional logic
formulas. If ¢,,... ¢, Y, theng,, ... D, EY.

* If, given a set of premises, there is a proof of a conclusion, then the
premises and conclusion are semantically equivalent

Completeness Theorem: Let ¢, ... ¢, and Y be propositional logic
formulas. If ¢,, ..., EY,thenp,, ..., .

* If a set of premises and a conclusion are semantically equivalent, then
there is a natural deduction proof for the sequent.

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-13

Mathematical Induction

We want to prove a property M(n) holds for all natural numbers n
We proceed as follows:

* BASIS: prove that M(1) holds

« INDUCTION HYPOTHESIS: assert that M(n) holds forn=1, ..., k

« INDUCTION STEP: prove that if M(k) holds, then M(k+1) holds
Then M(n) is true for all natural numbers n.

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-14

Example

n(n+1)

* Prove the sum of the first n natural numbers is

BASIS: M(1) = MHD 1(22) = % =1, which is clearly true

INDUCTION HYPOTHESIS: Forn=1, ..., k, M(k) is true
INDUCTION STEP: Consider M(k+1)=1+...+ k + (k+1)

1+...+k+(k+1)=k(k+1)

+ (k+1) induction hypothesis

(continued on next slide)

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-15

Example (con’t)

kletD) | (k+1) induction hypothesis

1+...+k+(k+1) =

=—+—-+—+- expanding terms
2 2 2 2
k?+3k+2 .

= > combining terms
k+1)(k+2 :

- (ke)2(*2) factoring the numerator
k+1)[(k+1)+1 ..

- et)[(2+)+1] combining terms

which is M(k+1), completing the proof

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-16

Predicate Logic

* Logic using predicates and quantifiers

* Predicates describe something; quantifiers say what the description
applies to

e Quantifiers
* There exists an x: Ix
e Forall x: Vx
e Can combine with - for negation

* Variables
* Bound if quantified with either 3 or V
* Unbound or free if not bound

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-17

Examples

* Define:
* F(x): xis afile
* D(y): yis adirectory
e C(x, y): directory y contains file x

* Then:
V xF(x) -> (3 y (D(y) A C(x, y)))
says that “every file is contained in a directory”

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-18

Formula in Predicate Logic

* If pis a predicate of n arguments (1 < n) and the arguments are terms
t, ..., t,defined over the set of functions, then p(t,, ..., t,) isa
formula

* If ¢ is a formula, then ¢ is also a formula

* If ¢ and @ are formulas, then A @, ¢ V @, and ¢ = @ are also
formulas

* If ¢ is a formula and x a variable, then Vx¢ and 3x¢@ are also formulas

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-19

EEEEEEEE
EEEEEEEE

Rules for Natural Deduction in Predicate Logic <
* Equality: A term t is equal to itself

* Substitution: If t; = t, and x is a free variable in ¢(x), then f(t,) = f(t,)

* Universal quantifier elimination: If you have Vx ¢(x), then you can
replace the x in ¢(x) by any term t that is free in ¢(x)

* Universal quantifier introduction: If you can prove some formula ¢(x)
with x a free variable, then you can derive Vx ¢(x)

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-20

Temporal Logic Systems

Introduce notion of time into logic system
* Linear time logic systems: events are sequential

* Branching time logic systems: events are concurrent (“alternative
universes”

Systems view time as:
e continuous flow of events
e discrete events

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-21

Example: Control Tree Logic (CTL)

* Begin with propositional logic

* Add temporal connectives; each uses 2 symbols
* First symbol: “A”, along all paths; “E”: along at least one path
e Second symbol: ”X”, the next state; “F”, some next state; “G”, all future states;
“U”, until some future state
* Precedence rules (high to low)
e -, AG, EG, AF, EF, AX, EX
° AV
e —

AU, EU

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-22

Well-Formed Formulas in CTL

e T (top), L (bottom) are formulas
* All atomic descriptions are formulas

* If ¢ and @ are formulas, then g A, p V @, ¢ = @, -, AXp, EXD,
AlpUop], E[@oUgp], AGo, EGep, AFp, and EF¢ are also formulas

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-23

Semantics of CTL

* Amodelis M = (S, =, L), where S is a set of states, = is the transition
operator on Ssuchthat Vs €S (3s € S [s = §’]), L is a labeling
function,and L : S = P(atoms)

» P(atoms) power set of the defined atoms

e Let M= (S, =, L) be a model for CTL. Given any s € §, if a CTL formula
¢ holds in state s, we write this as M,s E ¢, and say that state s of
model M satisfies formula ¢.

* M,s ¥ ¢ means state s in model M does not satisfy ¢

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-24

Rules of CTL

M model, s, s, . . . states of M, p atomic proposition of M, ¢, ¢,, ¢, CTL
formulas

*VseS[M,seET]

* Tautologies hold in all states of M
*VseS[M,s ¥ 1]

* Tautologies hold in all states of M
* M,skEpifandonlyif p € L(s)

* P holds in state s of M whenever p is in the set of atoms that hold in state s;
conversely, if p not in that set, then p does not hold in state s

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-25

Rules of CTL

* If M, s ¥ ¢, then M, s E =¢

* If a state does not satisfy a formula in the model then it satisfies the negation
of the formula

*M,sE¢d,Ap,ifandonlyif M, s E ¢p,and M, s E ¢,
*M,sE @,V p,ifandonlyif M, s Ed,orM, s E ¢,

e A state in M satisfies the {and, or} of two formulas if and only if it satisfies
{both formulas, either formula} on the right

*M,sE¢p, > ¢,ifandonlyif M,s ¥ ¢, orM,s = ¢,

* A state in M satisfies the implication of two formulas if and only if it satisfies
the second formula, or neither formula

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-26

Rules of CTL

* M, s = AX¢ if and only if Vs; such that s = s; then M, s, E ¢
* M, s = EX¢ if and only if 3s; such thats = s, then M, s, E ¢

e A state satisfies a formula in some next state if and only if {every, at least one} state
implied by the original state also satisfies the formula

* M, s EAG@ if and only if, for all pathss; =@ s, = s; = ..., where s =s; and
Vs;on the path, [M, s, E @]
e A state satisfies a formula in some next state if and only if every state implied by the
original state also satisfies the formula

* M, s E EG@ if and only if there exists a paths; = s, = s; = ..., wheres=
s; and Vs; on the path, [M, s; E @]

* A path with all states satisfying a formula exists if and only if every state on the path
beginning at the original state satisfies the formula

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-27

Rules of CTL

* M, s E AFg® if and only if for all paths s; s, > s; = ..., wheres=s;
and 3s; [M, s; E @]

* On all paths, there will be a state satisfying the formula if and only if every
path of transitions beginning at the original state contains at least one state
that satisfies the formula

* M, s E EF® if and only for all pathss; = s, @ s; = ..., wheres=s,
and 3s; on the path [M, s, E @]

* There is a path with one state satisfying the formula if and only if a state on a
path of transitions beginning at the original state satisfies the formula

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-28

Rules of CTL

* M, s EA[¢pU@] if and only if for all pathss; 2?5, =2 s; = ...,

i[iZ0As;FE¢yand [Vj[0<j<i— s E ¢py]]

* On all paths, there will be a state satisfying the formula if and only if every
path of transitions beginning at the original state has a state satisfying the
second formula and all previous states in that path satisfy the first formula

* M, s E E[pUg] if and only if for some paths; =5, > s; = ...,

i[iZ0As;FE¢yand [Vj[0<j<i— s E ¢py]]

* There is a path on which there is a state satisfying the formula if and only if
every path of transitions beginning at the original state has a state satisfying
the second formula and all previous states in that path satisfy the first
formula

Version 1.1 Computer Security: Art and Science, 2" Edition Slide E-29

