

Symbolic Logic

Appendix E

 $\begin{smallmatrix}&&1\\3&6&6&9&8&9&8&9&1&7&1&9&8\end{smallmatrix}$

Outline

- Propositional logic
	- Mathematical induction
- Predicate logic
- Temporal logic systems
	- CTL

Propositional Logic

- *Proposition* is an atomic, declarative sentence that can be shown to be true or false but not both
	- "There was not a cloud in the sky today"
- Represent as *p* or *q*, usually with subscripts
- Connectives:
	- \neg , or *negation* (not) [highest precedence]
	- ∨, or *disjunction* (and) [this and conjunction have the same precedence]
	- ∧, or *conjunction* (or) [this and disjunction have the same precedence]
	- \rightarrow , or *implication* (if ... then ...) [lowest precedence]
	- (,) group operands and operators in the usual way

Terms

- *Natural deduction*, a means of reasoning about propositions
- *Proof rules*, rules letting infer formulas from other formulas
- *Premises*, formulas we know or assume to be true to reach a conclusion (formula) we want to establish
- *Contradiction*, a formula that is always false; denoted by ⊥ (*bottom*)
- *Tautology*, a formula that is always true; denoted by ⊤ (*top*)

Examples

- *p* ∧ ¬ *p* = ⊥
	- A contradiction, as *p* and ¬*p* cannot both be true
- *p* ∨ ¬ *p* = ⊤
	- A tautology, as either p or $\neg p$ will be true

Rules of Natural Deduction

- 1. If *p* and *q* are true, so is *p* ∧ *q* (*conjunction introduction* rule)
- 2. If *p* ∧ *q* is true, so is *p* and so is *q* (*conjunction elimination* rule)
- 3. If *p* is true, so is *p* ∨ *q*; if *q* is true, so is *p* ∨ *q* (*disjunction introduction* rule)
- 4. If *p* ∨ *q* is true, and we want to conclude Q, we assume *p* and conclude *Q*; then we assume *q* and conclude *Q*. Given *p* ∨ *q* and these two proofs, we can infer *Q* (*disjunction elimination* rule)

Rules of Natural Deduction

- 5. Assume *p* is true temporarily and based on this assumption prove *q*. Then we can conclude $p \rightarrow q$ (*implication introduction*)
- 6. If we can conclude p and $p \rightarrow q$, then we can conclude q . (*modus ponens;* also *implication elimination*)
- 7. If we assume *p* and conclude ⊥, then we infer ¬ *p* (*negation introduction*)
- 8. If we assume p and $\neg p$, then we conclude \perp (*negation elimination*)

Rules of Natural Deduction

- 9. If we assume ⊥, then we can prove any *p*. (*bottom elimination*)
- 10. If we have concluded *p*, then we can also conclude ¬¬*p* (*double negation introduction*)
- 11. If we have concluded ¬¬*p*, then we can also conclude *p* (*double negation elimination*)

Derived Rules

- If we have concluded ¬*q* and *p*→*q*, we can also conclude ¬*p* (*modus tollens*)
- Assume ¬*q* is true. Suppose we assume *p* and we can then prove $p \rightarrow q$. Then *q* holds. But this is impossible, so our assumption (that *p* is true) must be false (*reductio ad absurdum* or *proof by contradiction*)
	- See the implication elimination rule above

Well-Formed Formulas

- A *word* is a set of symbols using symbols for propositions, connectors, parentheses
- Only some (*well-formed formulas* or *WFF*s) are meaningful; these are defined inductively
	- A propositional atom is a WFF
	- Negation of a WFF is a WFF
	- Conjunction of WFFs is a WFF
	- Disjunction of WFFs is a WFF
	- Implication between two WFFs is a WFF

Truth Tables

Equivalence of Formulas: Definitions

- *Sequent* is a set of formulas ϕ_1, \ldots, ϕ_n and a conclusion ψ ; denoted $\phi_1, \ldots \phi_n \vdash \psi$
- Sequent is *valid* if a proof of it can be found
- ϕ and ψ are *provably equivalent* if and only if both $\phi \vdash \psi$ and $\psi \vdash \phi$ hold
- Two formulas are *semantically equivalent* if they have the same truth table values. If ψ evaluates to true whenever ϕ_1, \ldots, ϕ_n evaluate to true, this is denoted $\phi_1, \ldots, \phi_n \models \psi$

Soundness and Completeness Theorems

Soundness Theorem: Let ϕ_1, \ldots, ϕ_n and ψ be propositional logic formulas. If $\phi_1, \ldots, \phi_n \vdash \psi$, then $\phi_1, \ldots, \phi_n \vDash \psi$.

• If, given a set of premises, there is a proof of a conclusion, then the premises and conclusion are semantically equivalent

Completeness Theorem: Let ϕ_1, \ldots, ϕ_n and ψ be propositional logic formulas. If $\phi_1, \ldots, \phi_n \models \psi$, then $\phi_1, \ldots, \phi_n \models \psi$.

• If a set of premises and a conclusion are semantically equivalent, then there is a natural deduction proof for the sequent.

Mathematical Induction

We want to prove a property *M*(*n*) holds for all natural numbers n We proceed as follows:

- BASIS: prove that *M*(1) holds
- INDUCTION HYPOTHESIS: assert that $M(n)$ holds for $n = 1, \ldots, k$
- INDUCTION STEP: prove that if *M*(*k*) holds, then *M*(*k*+1) holds Then *M*(*n*) is true for all natural numbers n.

Example

• Prove the sum of the first *n* natural numbers is $\frac{n(n+1)}{2}$ $\frac{1}{2}$. BASIS: M(1) = $\frac{1(1+1)}{2}$ & = $1(2)$ & = & $\frac{2}{2}$ = 1, which is clearly true INDUCTION HYPOTHESIS: For $n = 1, \ldots, k$, $M(k)$ is true INDUCTION STEP: Consider $M(k+1) = 1 + ... + k + (k+1)$ $1 + ... + k + (k+1) = \frac{k(k+1)}{2}$ $\frac{1+11}{2}$ + (k+1) induction hypothesis

(*continued on next slide*)

Example (con't)

$$
1 + ... + k + (k+1) = \frac{k(k+1)}{2} + (k+1)
$$

$$
= \frac{k^2}{2} + \frac{k}{2} + \frac{2k}{2} + \frac{2}{2}
$$

$$
= \frac{k^2 + 3k + 2}{2}
$$

$$
= \frac{(k+1)(k+2)}{2}
$$

which is *M*(*k*+1). Completing the pro

induction hypothesis

expanding terms

combining terms

factoring the numerator

combining terms

ch is $M(k+1)$, completing the proof

Predicate Logic

- Logic using predicates and quantifiers
- Predicates describe something; quantifiers say what the description applies to
- Quantifiers
	- There exists an *x*: ∃*x*
	- For all *x*: ∀*x*
	- Can combine with \neg for negation
- Variables
	- *Bound* if quantified with either ∃ or ∀
	- *Unbound* or *free* if not bound

Examples

• Define:

- $F(x)$: *x* is a file
- *D*(*y*): *y* is a directory
- *C*(*x*, *y*): directory *y* contains file *x*
- Then:

```
∀ xF(x) -> (∃ y (D(y) ∧ C(x, y)))
```
says that "every file is contained in a directory"

Formula in Predicate Logic

- If *p* is a predicate of *n* arguments (1 ≤ *n*) and the arguments are terms t_1, \ldots, t_n defined over the set of functions, then $p(t_1, \ldots, t_n)$ is a formula
- If ϕ is a formula, then $\neg \phi$ is also a formula
- If ϕ and φ are formulas, then $\phi \land \varphi$, $\phi \lor \varphi$, and $\phi \to \varphi$ are also formulas
- If ϕ is a formula and *x* a variable, then ∀*x* ϕ and $\exists x \phi$ are also formulas

Rules for Natural Deduction in Predicate Logic

- *Equality*: A term t is equal to itself
- *Substitution*: If $t_1 = t_2$ and x is a free variable in $\phi(x)$, then $f(t_1) = f(t_2)$
- *Universal quantifier elimination*: If you have $\forall x \phi(x)$, then you can replace the *x* in $\phi(x)$ by any term *t* that is free in $\phi(x)$
- *Universal quantifier introduction*: If you can prove some formula $\phi(x)$ with *x* a free variable, then you can derive $\forall x \phi(x)$

Temporal Logic Systems

Introduce notion of time into logic system

- *Linear time logic systems*: events are sequential
- *Branching time logic systems*: events are concurrent ("alternative universes")

Systems view time as:

- *continuous* flow of events
- *discrete* events

Example: Control Tree Logic (CTL)

- Begin with propositional logic
- Add temporal connectives; each uses 2 symbols
	- First symbol: "A", along all paths; "E": along at least one path
	- Second symbol: "X", the next state; "F", some next state; "G", all future states; "U", until some future state
- Precedence rules (high to low)
	- ¬, AG, EG, AF, EF, AX, EX
	- ∧, ∨
	- \bullet \rightarrow
	- AU, EU

Well-Formed Formulas in CTL

- T (top), \perp (bottom) are formulas
- All atomic descriptions are formulas
- If ϕ and φ are formulas, then $\phi \land \varphi$, $\phi \lor \varphi$, $\phi \rightarrow \varphi$, $\neg \phi$, AX ϕ , EX ϕ , $A[\phi \cup \varphi]$, E $[\phi \cup \varphi]$, AG ϕ , EG ϕ , AF ϕ , and EF ϕ are also formulas

Semantics of CTL

- A *model* is $M = (S, \Rightarrow, L)$, where S is a set of states, \Rightarrow is the transition operator on *S* such that $\forall s \in S$ (∃*s* ∈ *S* [*s* \Rightarrow *s*']), *L* is a labeling function, and $L: S \rightarrow \mathcal{P}(atoms)$
	- $P(atoms)$ power set of the defined atoms
- Let *M* = (*S*, ⇒, *L*) be a model for CTL. Given any *s* ∈ *S*, if a CTL formula ϕ holds in state *s*, we write this as M , $s \vDash \phi$, and say that state *s* of model *M* satisfies formula ϕ .
	- *M*,*s* $\not\models$ ϕ means state *s* in model *M* does not satisfy ϕ

M model, *s*, s_1 , ... states of *M*, *p* atomic proposition of *M*, ϕ , ϕ_1 , ϕ_2 CTL formulas

- ∀*s* ∈ *S* [*M*, *s* ⊨ ⊤]
	- Tautologies hold in all states of M
- ∀*s* ∈ *S* [*M*, *s* ⊭ ⊥]
	- Tautologies hold in all states of M
- *M*, $s \models p$ if and only if $p \in L(s)$
	- *P* holds in state *s* of *M* whenever *p* is in the set of atoms that hold in state *s*; conversely, if *p* not in that set, then *p* does not hold in state *s*

- If *M*, $s \not\models \phi$, then *M*, $s \models \neg \phi$
	- If a state does not satisfy a formula in the model then it satisfies the negation of the formula
- *M*, $s \models \phi_1 \land \phi_2$ if and only if *M*, $s \models \phi_1$ and *M*, $s \models \phi_2$
- *M*, $s \vDash \phi_1 \vee \phi_2$ if and only if *M*, $s \vDash \phi_1$ or *M*, $s \vDash \phi_2$
	- A state in M satisfies the {and, or} of two formulas if and only if it satisfies {both formulas, either formula} on the right
- *M*, $s \models \phi_1 \rightarrow \phi_2$ if and only if *M*, $s \not\models \phi_1$ or *M*, $s \models \phi_2$
	- A state in M satisfies the implication of two formulas if and only if it satisfies the second formula, or neither formula

- *M*, $s \vDash AX\phi$ if and only if $\forall s_1$ such that $s \rightarrow s_1$ then *M*, $s_1 \vDash \phi$
- *M*, $s \vDash EX\phi$ if and only if $\exists s_1$ such that $s \rightarrow s_1$ then *M*, $s_1 \vDash \phi$
	- A state satisfies a formula in some next state if and only if {every, at least one} state implied by the original state also satisfies the formula
- *M*, $s \vDash AG\phi$ if and only if, for all paths $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$, where $s = s_1$ and $\forall s_i$ on the path, $[M, s_i \vDash \phi]$
	- A state satisfies a formula in some next state if and only if every state implied by the original state also satisfies the formula
- *M*, $s \vDash EG\phi$ if and only if there exists a path $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$, where $s =$ *s*₁ and \forall *s*_{*i*} on the path, $[M, s] \models \phi$
	- A path with all states satisfying a formula exists if and only if every state on the path beginning at the original state satisfies the formula

- *M*, $s \vDash AF\phi$ if and only if for all paths $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$, where $s = s_1$ and $\exists s_i$ $[M, s_i \models \phi]$
	- On all paths, there will be a state satisfying the formula if and only if every path of transitions beginning at the original state contains at least one state that satisfies the formula
- *M*, $s \vDash \text{EF}\phi$ if and only for all paths $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$, where $s = s_1$ and $\exists s_i$ on the path $[M, s_i \models \phi]$
	- There is a path with one state satisfying the formula if and only if a state on a path of transitions beginning at the original state satisfies the formula

- *M*, $s \vDash A[\phi \cup \phi]$ if and only if for all paths $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$, $\exists i$ [$i \ge 0 \land s_i \vDash \phi_2$ and $[\forall j$ [$0 \le j < i \rightarrow s_j \vDash \phi_1]$]
	- On all paths, there will be a state satisfying the formula if and only if every path of transitions beginning at the original state has a state satisfying the second formula and all previous states in that path satisfy the first formula
- *M*, $s \vDash E[\phi \cup \phi]$ if and only if for some path $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$,

 $\exists i$ [$i \ge 0$ \wedge $s_i \vDash \phi_2$ and $[\forall j$ [$0 \le j < i \rightarrow s_j \vDash \phi_1]$]

• There is a path on which there is a state satisfying the formula if and only if every path of transitions beginning at the original state has a state satisfying the second formula and all previous states in that path satisfy the first formula