
Symbolic Logic
Appendix E

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-1

Outline

• Propositional logic
• Mathematical induction

• Predicate logic
• Temporal logic systems
• CTL

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-2

Propositional Logic

• Proposition is an atomic, declarative sentence that can be shown to
be true or false but not both
• “There was not a cloud in the sky today”

• Represent as p or q, usually with subscripts
• Connectives:
• ¬, or negation (not) [highest precedence]
• ∨, or disjunction (and) [this and conjunction have the same precedence]
• ∧, or conjunction (or) [this and disjunction have the same precedence]
• →, or implication (if … then …) [lowest precedence]
• (,) group operands and operators in the usual way

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-3

Terms

• Natural deduction, a means of reasoning about propositions
• Proof rules, rules letting infer formulas from other formulas
• Premises, formulas we know or assume to be true to reach a

conclusion (formula) we want to establish
• Contradiction, a formula that is always false; denoted by ⊥ (bottom)
• Tautology, a formula that is always true; denoted by ⊤ (top)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-4

Examples

• p ∧ ¬ p = ⊥
• A contradiction, as p and ¬p cannot both be true

• p ∨ ¬ p = ⊤
• A tautology, as either p or ¬p will be true

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-5

Rules of Natural Deduction

1. If p and q are true, so is p ∧ q (conjunction introduction rule)
2. If p ∧ q is true, so is p and so is q (conjunction elimination rule)
3. If p is true, so is p ∨ q; if q is true, so is p ∨ q (disjunction

introduction rule)
4. If p ∨ q is true, and we want to conclude Q, we assume p and

conclude Q; then we assume q and conclude Q. Given p ∨ q and
these two proofs, we can infer Q (disjunction elimination rule)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-6

Rules of Natural Deduction

5. Assume p is true temporarily and based on this assumption prove q.
Then we can conclude p → q (implication introduction)

6. If we can conclude p and p → q, then we can conclude q. (modus
ponens; also implication elimination)

7. If we assume p and conclude ⊥, then we infer ¬ p (negation
introduction)

8. If we assume p and ¬ p, then we conclude ⊥ (negation elimination)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-7

Rules of Natural Deduction

9. If we assume ⊥, then we can prove any p. (bottom elimination)
10. If we have concluded p, then we can also conclude¬¬p (double

negation introduction)
11. If we have concluded ¬¬p, then we can also conclude p (double

negation elimination)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-8

Derived Rules

• If we have concluded ¬q and p→q, we can also conclude ¬p (modus
tollens)
• Assume ¬q is true. Suppose we assume p and we can then prove

p→q. Then q holds. But this is impossible, so our assumption (that p is
true) must be false (reductio ad absurdum or proof by contradiction)
• See the implication elimination rule above

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-9

Well-Formed Formulas

• A word is a set of symbols using symbols for propositions, connectors,
parentheses
• Only some (well-formed formulas or WFFs) are meaningful; these are

defined inductively
• A propositional atom is a WFF
• Negation of a WFF is a WFF
• Conjunction of WFFs is a WFF
• Disjunction of WFFs is a WFF
• Implication between two WFFs is a WFF

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-10

Truth Tables

p q p ⋀ q p ⋁ q p → q ¬p
T T T T T T
T F F T F F
F T F T T T
F F F F T T

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-11

Equivalence of Formulas: Definitions

• Sequent is a set of formulas !1, . . . !n and a conclusion "; denoted
!1, . . . !n ⊢ "
• Sequent is valid if a proof of it can be found
• ! and " are provably equivalent if and only if both ! ⊢ " and " ⊢ !

hold
• Two formulas are semantically equivalent if they have the same truth

table values. If " evaluates to true whenever !1, . . . !n evaluate to
true, this is denoted !1, . . . !n ⊨ "

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-12

Soundness and Completeness Theorems

Soundness Theorem: Let !1, . . . !n and " be propositional logic
formulas. If !1, . . . !n ⊢ ", then !1, . . . !n ⊨ ".
• If, given a set of premises, there is a proof of a conclusion, then the

premises and conclusion are semantically equivalent

Completeness Theorem: Let !1, . . . !n and " be propositional logic
formulas. If !1, . . . !n ⊨ ", then !1, . . . !n ⊢ ".
• If a set of premises and a conclusion are semantically equivalent, then

there is a natural deduction proof for the sequent.

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-13

Mathematical Induction

We want to prove a property M(n) holds for all natural numbers n

We proceed as follows:

• BASIS: prove that M(1) holds

• INDUCTION HYPOTHESIS: assert that M(n) holds for n = 1, . . ., k
• INDUCTION STEP: prove that if M(k) holds, then M(k+1) holds

Then M(n) is true for all natural numbers n.

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-14

Example

• Prove the sum of the first n natural numbers is !(!#$)& .

BASIS: M(1) = $($#$)& = $(&)& = && = 1, which is clearly true

INDUCTION HYPOTHESIS: For n = 1, . . ., k, M(k) is true
INDUCTION STEP: Consider M(k+1) = 1 + . . . + k + (k+1)

1 + . . . + k + (k+1) = '('#$)& + (k+1) induction hypothesis

(continued on next slide)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-15

Example (con’t)

1 + . . . + k + (k+1) = !(!#$)& + (k+1) induction hypothesis

= !
'

& + !& + &!& + && expanding terms

= !
'#(!#&
& combining terms

= (!#$)(!#&)& factoring the numerator

= !#$ [!#$ #$]
& combining terms

which is M(k+1), completing the proof

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-16

Predicate Logic

• Logic using predicates and quantifiers
• Predicates describe something; quantifiers say what the description

applies to
• Quantifiers
• There exists an x: ∃x
• For all x: ∀x
• Can combine with ¬ for negation

• Variables
• Bound if quantified with either ∃ or ∀
• Unbound or free if not bound

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-17

Examples

• Define:
• F(x): x is a file
• D(y): y is a directory
• C(x, y): directory y contains file x

• Then:
∀ xF(x) -> (∃ y (D(y) ∧ C(x, y)))

says that “every file is contained in a directory”

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-18

Formula in Predicate Logic

• If p is a predicate of n arguments (1 ≤ n) and the arguments are terms
t1, . . . , tn defined over the set of functions, then p(t1, . . . , tn) is a
formula
• If ! is a formula, then ¬! is also a formula
• If ! and " are formulas, then ! ∧ ", ! ∨ ", and !➝ " are also

formulas
• If ! is a formula and x a variable, then ∀x! and ∃x! are also formulas

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-19

Rules for Natural Deduction in Predicate Logic

• Equality: A term t is equal to itself
• Substitution: If t1 = t2 and x is a free variable in !(x), then f(t1) = f(t2)
• Universal quantifier elimination: If you have ∀x !(x), then you can

replace the x in !(x) by any term t that is free in !(x)
• Universal quantifier introduction: If you can prove some formula !(x)

with x a free variable, then you can derive ∀x !(x)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-20

Temporal Logic Systems

Introduce notion of time into logic system
• Linear time logic systems: events are sequential
• Branching time logic systems: events are concurrent (“alternative

universes”)
Systems view time as:
• continuous flow of events
• discrete events

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-21

Example: Control Tree Logic (CTL)

• Begin with propositional logic
• Add temporal connectives; each uses 2 symbols
• First symbol: “A”, along all paths; “E”: along at least one path
• Second symbol: ”X”, the next state; “F”, some next state; “G”, all future states;

“U”, until some future state
• Precedence rules (high to low)
• ¬, AG, EG, AF, EF, AX, EX
• ∧, ∨
• ➝
• AU, EU

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-22

Well-Formed Formulas in CTL

• ⊤ (top), ⊥ (bottom) are formulas
• All atomic descriptions are formulas
• If # and $ are formulas, then # ∧ $, # ∨ $, #➝ $, ¬#, AX#, EX#,

A[#U$], E[#U$], AG#, EG#, AF#, and EF# are also formulas

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-23

Semantics of CTL

• A model is M = (S, ⇒, L), where S is a set of states, ⇒ is the transition
operator on S such that ∀s ∈ S (∃s ∈ S [s ⇒ s’]), L is a labeling
function, and L : S ➝ %(atoms)
• %(atoms) power set of the defined atoms

• Let M = (S, ⇒, L) be a model for CTL. Given any s ∈ S, if a CTL formula
& holds in state s, we write this as M,s ⊨ &, and say that state s of
model M satisfies formula &.
• M,s ⊭ & means state s in model M does not satisfy &

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-24

Rules of CTL

M model, s, s1, . . . states of M, p atomic proposition of M, !, !1, !2 CTL
formulas
• ∀s ∈ S [M, s ⊨ ⊤]
• Tautologies hold in all states of M

• ∀s ∈ S [M, s ⊭ ⊥]
• Tautologies hold in all states of M

• M, s ⊨ p if and only if p ∈ L(s)
• P holds in state s of M whenever p is in the set of atoms that hold in state s;

conversely, if p not in that set, then p does not hold in state s

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-25

Rules of CTL

• If M, s ⊭ ", then M, s ⊨ ¬"
• If a state does not satisfy a formula in the model then it satisfies the negation

of the formula
• M, s ⊨ "1 ∧ "2 if and only if M, s ⊨ "1 and M, s ⊨ "2

• M, s ⊨ "1 ∨ "2 if and only if M, s ⊨ "1 or M, s ⊨ "2
• A state in M satisfies the {and, or} of two formulas if and only if it satisfies

{both formulas, either formula} on the right
• M, s ⊨ "1 ➝ "2 if and only if M, s ⊭ "1 or M, s ⊨ "2
• A state in M satisfies the implication of two formulas if and only if it satisfies

the second formula, or neither formula

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-26

Rules of CTL

• M, s ⊨ AX" if and only if ∀s1 such that s ➝ s1 then M, s1 ⊨ "
• M, s ⊨ EX" if and only if ∃s1 such that s ➝ s1 then M, s1 ⊨ "

• A state satisfies a formula in some next state if and only if {every, at least one} state
implied by the original state also satisfies the formula

• M, s ⊨ AG" if and only if, for all paths s1 ➝ s2 ➝ s3 ➝ . . ., where s = s1 and
∀si on the path, [M, si ⊨ "]
• A state satisfies a formula in some next state if and only if every state implied by the

original state also satisfies the formula
• M, s ⊨ EG" if and only if there exists a path s1 ➝ s2 ➝ s3 ➝ . . ., where s =

s1 and ∀si on the path, [M, si ⊨ "]
• A path with all states satisfying a formula exists if and only if every state on the path

beginning at the original state satisfies the formula

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-27

Rules of CTL

• M, s ⊨ AF" if and only if for all paths s1 ➝ s2 ➝ s3 ➝ . . ., where s = s1
and ∃si [M, si ⊨ "]
• On all paths, there will be a state satisfying the formula if and only if every

path of transitions beginning at the original state contains at least one state
that satisfies the formula

• M, s ⊨ EF" if and only for all paths s1 ➝ s2 ➝ s3 ➝ . . ., where s = s1
and ∃si on the path [M, si ⊨ "]
• There is a path with one state satisfying the formula if and only if a state on a

path of transitions beginning at the original state satisfies the formula

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-28

Rules of CTL

• M, s ⊨ A["U"] if and only if for all paths s1 ➝ s2 ➝ s3 ➝ . . . ,

∃i [i ≥ 0 ∧ si ⊨ "2 and [∀j [0 ≤ j < i ➝ sj ⊨ "1]]
• On all paths, there will be a state satisfying the formula if and only if every

path of transitions beginning at the original state has a state satisfying the
second formula and all previous states in that path satisfy the first formula

• M, s ⊨ E["U"] if and only if for some path s1 ➝ s2 ➝ s3 ➝ . . . ,

∃i [i ≥ 0 ∧ si ⊨ "2 and [∀j [0 ≤ j < i ➝ sj ⊨ "1]]
• There is a path on which there is a state satisfying the formula if and only if

every path of transitions beginning at the original state has a state satisfying
the second formula and all previous states in that path satisfy the first
formula

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide E-29

