
The Encryption Standards
Appendix F

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-1



Outline

• Data Encryption Standard
• Algorithm

• Advanced Encryption Standard
• Background mathematics
• Algorithm

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-2



Data Encryption Standard (DES)

• Input: 64 bit blocks
• Key: 64 bits
• 8 bits are immediately discarded, so it is effectively 56 bits

• Output: 64 bit blocks

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-3



Main Algorithm

• Key permuted, split into 2 28-bit parts
• Each part rotated left by 1 or 2 bits
• Then the halves combined, permuted, and 48 bits output (round key)

• Input permuted, split into 2 32-bit parts
• Right half, round key fed into function f
• Result of this xor’ed with left half
• This left half becomes right half, right half becomes left half, as input to next 

round (but in the last round, this does not occur)

• After 16 rounds, halves combined, then permuted and that is output
• Permutation here is inverse of initial input permutation

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-4



DES Algorithm: Rounds

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-5

input

IP

L0 R0

R1 = L0 ⊕ f(R0, k1)L1 = R0

f k1⊕

L15 = R14

L16 = L15 ⊕ f(R15, k16)

f k16⊕

R15 = L14 ⊕ f(R14, k15)

R16

IP-1

output

16 rounds; only first 
and last are shown



DES Algorithm: f

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-6

Ri ki

E

⊕

32 bits

48 bits
48 bits

S1 S2 S3 S4 S5 S6 S7 S8

P

f(Ri, ki)



DES Algorithm: Round Key Generation

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-7

key

PC-1

C0

64 bits

56 bits

D0

LSH(s1) LSH(s1)

PC-2 48 bits k1

C1 D1

LSH(s16)

PC-2 48 bits k1

C1 D1

LSH(s16)

16 round keys
generated



How to Read the Tables

• The ith element of the table, ti, means that ti is the bit of input that is 
output
• Example: first row of IP table is:

58 50 42 34 26 18 10 2
so the first bit out output is bit 58 of the input; the second bit of 
output is bit 50 of the input; and so forth
• LSH table: when generating the ith round key, the corresponding table 

entry si is the number of bits to rotate left (note: rotate, not shift)
• Example: si = 1 means rotate to the left 1 bit; si = 2 means rotate to 

the left 2 bits

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-8



Advanced Encryption Standard

• All take input of 128 bits and produce outputs of 128 bits
• AES-128: key length of 128 bits, 10 rounds
• AES-192: key length of 192 bits, 12 rounds
• AES-256: key length of 256 bits, 14 rounds

• In what follows:
• Nk number of 32 bit words in the key
• Nb number of 32 bit words in the block size
• Nr number of rounds
• wi the ith set of 32 bits (4 bytes) of key schedule
• Represent bytes as 2 hexadecimal digits or 8 binary digits

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-9



Background: Polynomials in GF(28)

• Manipulation of bytes treat them as polynomials in GF(28), each bit 

being a coefficient

• Byte b5 (hex) is 10110101 (binary) and x7 + x5 + x4 + x2 + 1 (polynomial)

• Arithmetic involving coefficients is done modulo 2

• Addition: same as exclusive or of two bytes:

5b 01011011
⊕a4 as, in binary, ⊕10101000
f3 11110011

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-10



Background: Polynomials in GF(28)

• To multiply a and b (a•b), convert them to polynomials, multiply them 
mod x8 + x4 + x3 + x + 1
• Note multiplication of coefficients is done mod 2

• Example: multiply bytes 57 (hex; 01010111 binary), 83 (hex; 
10000011 binary)

(x6 + x4 + x2 + x + 1)(x7 + x + 1) = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= (x8 + x4 + x3 + x + 1)(x5 + x3) + (x7 + x6 + 1)

So the result is 11000001 (binary) or c1 (hex), so 57 • 83 = c1

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-11



AES: Input, State, Output

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-12

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

input bytes

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

state array

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

output bytes

→ →



AES: Basic Encryption Transformations

Built up from 4 of these:
• SubBytes
• ShiftRows
• MixColumns
• AddRoundKey

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-13



AES: SubBytes

• A substitution table: takes 1 byte of input, produces 1 byte of output

• First 4 bits give the row, next 4 the column

• Table constructed as follows:

• Map byte 00 to itself, other bytes to their multiplicative inverse in GF(28); call 

the result b, with bits b0b1b2b3b4b5b6b7

• Let ci be the ith bit of 01100011

• Construct b’, with bits b0’b1’b2’b3’b4’b5’b6’b7’, where for i = 0, …, 7:

bi’ = bi + b(i+4) mod 8 + b(i+5) mod 8 + b(i+6) mod 8 + b(i+7) mod 8 + ci

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-14



AES: ShiftRows

• Rotate (shift cyclically) to the left by the number of the row

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-15

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

state array before

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

state array after

→



AES: MixColumns

Let c = 0, 1, 2, 3 and s0,c’, s1,c’, s2,c’ and s3,c’ the outputs of this

• s0,c’ = (02 • s0,c) ⨁ (03 • s1,c) ⨁ s2,c ⨁ s3,c

• s1,c’ = s0,c ⨁ (02 • s1,c) ⨁ (03 • s2,c) ⨁ s3,c

• s2,c’ = s0,c ⨁ s1,c ⨁ (02 • s2,c) ⨁ (03 • s3,c)
• s3,c’ = (03 • s0,c) ⨁ s1,c ⨁ s2,c ⨁ (02 • s3,c)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-16



AES: AddRoundKey

• Let r be the current round
• Remember wi is ith set of 32 bits of key schedule
• Let c = 0, 1, 2, 3 and s0,c’, s1,c’, s2,c’ and s3,c’ the outputs of this

[s0,c’, s1,c’, s2,c’, s3,c’] = [s0,c, s1,c, s2,c, s3,c] ⨁ [w4r+c]

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-17



AES: Encryption Algorithm

encrypt(byte in[4*Nb], byte out[4*NB], word w[Nb*(Nr+1)])
begin 

byte state[4,Nb]; state := in; 
AddRoundKey(state, w[0, Nb-1]); 
for round := 1 to Nr-1 do begin 

SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1]); 

end 
SubBytes(state);
ShiftRows(state);
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1]); 
out := state; 

end 

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-18



AES: Basic Encryption Transformations

Built up from 4 of these:
• SubBytes
• ShiftRows
• MixColumns
• AddRoundKey

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-19



AES: SubBytes

• A substitution table: takes 1 byte of input, produces 1 byte of output

• First 4 bits give the row, next 4 the column

• Table constructed as follows:

• Map byte 00 to itself, other bytes to their multiplicative inverse in GF(28); call 

the result b, with bits b0b1b2b3b4b5b6b7

• Let ci be the ith bit of 01100011

• Construct b’, with bits b0’b1’b2’b3’b4’b5’b6’b7’, where for i = 0, …, 7:

bi’ = bi + b(i+4) mod 8 + b(i+5) mod 8 + b(i+6) mod 8 + b(i+7) mod 8 + ci

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-20



AES: ShiftRows

• Rotate (shift cyclically) to the left by the number of the row

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-21

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

state array before

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

state array after

→



AES: MixColumns

Let c = 0, 1, 2, 3 and s0,c’, s1,c’, s2,c’ and s3,c’ the outputs of this

• s0,c’ = (02 • s0,c) ⨁ (03 • s1,c) ⨁ s2,c ⨁ s3,c

• s1,c’ = s0,c ⨁ (02 • s1,c) ⨁ (03 • s2,c) ⨁ s3,c

• s2,c’ = s0,c ⨁ s1,c ⨁ (02 • s2,c) ⨁ (03 • s3,c)
• s3,c’ = (03 • s0,c) ⨁ s1,c ⨁ s2,c ⨁ (02 • s3,c)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-22



AES: AddRoundKey

• Let r be the current round
• Remember wi is ith set of 32 bits of key schedule
• Let c = 0, 1, 2, 3 and s0,c’, s1,c’, s2,c’ and s3,c’ the outputs of this

[s0,c’, s1,c’, s2,c’, s3,c’] = [s0,c, s1,c, s2,c, s3,c] ⨁ [w4r+c]

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-23



AES: Encryption Algorithm

encrypt(byte in[4*Nb], byte out[4*NB], word w[Nb*(Nr+1)])
begin 

byte state[4,Nb];
state := in; 
AddRoundKey(state, w[0, Nb-1]); 
for round := 1 to Nr-1 do begin 

SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1]); 

end 
SubBytes(state);
ShiftRows(state);
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1]); 
out := state; 

end 

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-24



AES: Basic Decryption Transformations

Built up from 4 of these:
• InvSubBytes is the inverse transformation of SubBytes
• InvShiftRows is the inverse of ShiftRows (cyclic shift to the 

right by the number of the row)
• InvMixColumns
• AddRoundKey

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-25



AES: InvMixColumns

Let c = 0, 1, 2, 3 and s0,c’, s1,c’, s2,c’ and s3,c’ the outputs of this

• s0,c’ = (0e • s0,c) ⨁ (0b • s1,c) ⨁ (0d • s2,c) ⨁ (09 • s3,c)
• s1,c’ = (09 • s0,c) ⨁ (0e • s1,c) ⨁ (0b • s2,c) ⨁ (0d • s3,c)
• s2,c’ = (0d • s0,c) ⨁ (09 • s1,c) ⨁ (0e • s2,c) ⨁ (0b • s3,c)
• s3,c’ = (0b • s0,c) ⨁ (0d • s1,c) ⨁ (09 • s2,c) ⨁ (0e • s3,c)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-26



AES: Decryption Algorithm

decrypt(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin 

byte state[4,Nb];
state := in; 
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1]); 
for round := 1 to Nr-1 do begin 

InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1]); 
InvMixColumns(state);

end 
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(state, w[0, Nb-1]); 
out := state; 

end 

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-27



AES: Basic Round Key Generation. 
Transformations
Two transformations:
• SubWord takes 4 bytes as input, applies SubByte to each byte individually, 

and outputs the result
• RotWord takes a 4-byte word as input, rotates it right by 1 byte, and 

outputs the result
And a round constant word array:
• For i-th round, Rcon[i] = [xi-1,00,00,00] where x = 02 and xi uses 

multiplication as described before
• Example: Rcon[1] = 01000000; Rcon[2] = 02000000;

Rcon[3] = 04000000; Rcon[4] = 08000000;
Rcon[5] = 10000000; . . .

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-28



AES: Round Key Generation Algorithm

roundkeys(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin 

word temp; 
for i:= 0 to Nk-1 do

w[i] = word(key[4*i], key[4*i+1],
key[4*i+2], key[4*i+3]);

for i := Nk to (Nr+1)*Nb-1 do begin 
temp := w[i-1];
if (i mod Nk = 0) 

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]; 
else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp); 
w[i] = w[i-Nk] xor temp; 

end
end 

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-29



AES: Equivalent Inverse Cipher 
Implementation
• Add these to the end of the Round Key Generation algorithm:

for i = 0 to (Nr+1)*Nb-1 do 
dw[i] = w[i]; 

for round = 1 to Nr-1 do
InvMixColumns(dw[round*Nb, (round+1)*Nb-1]) 

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-30



AES: Alternate Decryption Algorithm

equivdecrypt(byte in[4*Nb], byte out[4*NB], word dw[Nb*(Nr+1)])
begin 

byte state[4,Nb];
state := in; 
AddRoundKey(state, dw[Nr*Nb, (Nr+1)*Nb-1]); 
for round := Nr-1 downto Nr-1 do begin 

InvSubBytes(state);
InvShiftRows(state);
InvMixColumns(state);
AddRoundKey(state, dw[round*Nb, (round+1)*Nb-1]); 

end 
InvSubBytes(state);
InvShiftRows(state);
AddRoundKey(state, dw[0b, Nb-1]); 
out := state; 

end 

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-31


