The Encryption Standards

Appendix F

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-1

Outline

e Data Encryption Standard
e Algorithm

* Advanced Encryption Standard
* Background mathematics
e Algorithm

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-2

Data Encryption Standard (DES)

* Input: 64 bit blocks
e Key: 64 bits

* 8 bits are immediately discarded, so it is effectively 56 bits

e Output: 64 bit blocks

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-3

Main Algorithm

* Key permuted, split into 2 28-bit parts
* Each part rotated left by 1 or 2 bits
e Then the halves combined, permuted, and 48 bits output (round key)

* Input permuted, split into 2 32-bit parts
* Right half, round key fed into function f
* Result of this xor’ed with left half

* This left half becomes right half, right half becomes left half, as input to next
round (but in the last round, this does not occur)

» After 16 rounds, halves combined, then permuted and that is output
* Permutation here is inverse of initial input permutation

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-4

DES Algorithm: Rounds

Fm e m e m e m = - .|
input : v
|
‘, : | |
@ : L15=R14 Ris = L14 D f(R14, k15)
I P
y L : ‘L‘ U kis
LO RO : {
< I A \ 4
B \f/': k1 ! L1 = L15s D f(R1s, k1e) R1g
I | [
_ v I
|
L1=Ro R1= Lo @D f(Ro, k1) | @D
|
: | 16 rounds; only first
_______ . : and last are shown
e] output

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-5

DES Algorithm: f

R,‘ ki

32 bits
48 bits
48 bits

ALY
dwva

GO G) G GJ G Gy G
I]] L | 1

P

f(RiI kl)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-6

DES Algorithm: Round Key Generation

key O 1 16 round keys
64 bits | | ! generated
Cee1d = i
56 bits T T T T T T T s s T T T s s s s e
g 1 ,
C D !
0 0 1 CLSH(syg)
Y |
GHis) Cb =
! C: D,
I — 48 bits
PC-2 k
Cl Dl . : '©—_’ 1
5 PC-2 48 bits ks :
|
——————— e |
| |
e = = 1

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-7

How to Read the Tables

* The ith element of the table, t;, means that t; is the bit of input that is
output

* Example: first row of IP table is:
585042 342618102

so the first bit out output is bit 58 of the input; the second bit of
output is bit 50 of the input; and so forth

* LSH table: when generating the ith round key, the corresponding table
entry si is the number of bits to rotate left (note: rotate, not shift)

* Example: s;= 1 means rotate to the left 1 bit; s; = 2 means rotate to
the left 2 bits

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-8

Advanced Encryption Standard

 All take input of 128 bits and produce outputs of 128 bits
* AES-128: key length of 128 bits, 10 rounds
* AES-192: key length of 192 bits, 12 rounds
* AES-256: key length of 256 bits, 14 rounds

* In what follows:
* Nk number of 32 bit words in the key
* Nb number of 32 bit words in the block size
 Nr number of rounds
* w; the ith set of 32 bits (4 bytes) of key schedule
* Represent bytes as 2 hexadecimal digits or 8 binary digits

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-9

Background: Polynomials in GF(28)

* Manipulation of bytes treat them as polynomials in GF(28), each bit
being a coefficient

e Byte b5 (hex) is 10110101 (binary) and x” + x°> + x* + x2 + 1 (polynomial)
e Arithmetic involving coefficients is done modulo 2

* Addition: same as exclusive or of two bytes:

5b 01011011
@dad as,inbinary, 610101000
f3 11110011

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide F-10

Background: Polynomials in GF(28)

* To multiply a and b (aeb), convert them to polynomials, multiply them
mod x3+x*+x3+x+1

* Note multiplication of coefficients is done mod 2

* Example: multiply bytes 57 (hex; 01010111 binary), 83 (hex;
10000011 binary)

(XC+x*+x2+x+1) (X" +x+1)=xB+x1+x+x3+x0+x+x4+x3+1
=B +x*+ 3+ x+ 1)(x° +x3) + (X + x6 + 1)
Sotheresultis 11000001 (binary) orc1 (hex),so 57 e 83 =cl

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-11

AES: Input, State, Output

ing |ing |ing |inq, So0 |So1 [So2 |So3 out, |out, |outg |out,

iny |ins |ing |ing3 5 S10 |S11 [S12 |S13 N out, |outs; |outy |out

iny, |ing |iNyg |iNq4 S20 |S21 [S22 |S23 out, |outg |out,, |outy,

iny |iny |inqgg |iNngs S30 |S31 [S32 |S33 out; |out; |outy; |outs
input bytes state array output bytes

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-12

AES: Basic Encryption Transformations

Built up from 4 of these:
* SubBytes

* ShiftRows

* MixColumns

* AddRoundKey

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-13

AES: SubBytes

* A substitution table: takes 1 byte of input, produces 1 byte of output
* First 4 bits give the row, next 4 the column

e Table constructed as follows:

* Map byte 00 to itself, other bytes to their multiplicative inverse in GF(28); call
the result b, with bits byb,b,b3b,b:bcb-

* Let ¢; be the ith bit of 01100011

* Construct b’, with bits by'b,’b,’b5’b,’bs'b;'b;’, where fori=0, ..., 7:

b/ =b; + Bj14y mod 8 + Bis5) mod 8 + Di+6) mod 8 T P(i+7) mod 8 * Ci

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-14

AES: ShiftRows

* Rotate (shift cyclically) to the left by the number of the row

500 |S01 [502 |503 500 [S01 |S02 |503
510 |S1,1 [|S512 |3913 N 511 (512 [513 |S10
520 |S21 [522 |923 522 1523 [|520 |S21
530 |53,1 [532 |3933 533 (530 |[S531 |93
state array before state array after

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-15

AES: MixColumns

letc=0,1,2,3and sy, 1,5, and s3 ' the outputs of this

*Soc =(02 05,)D(03 05,)DS, PS5,
*S1c =So,c,D (0205,) (035,)Ds;,
*Syc =S D S D(02°e5,)D (03¢5
*S3, =(03 s,)Ds, DS, D(02 55

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-16

AES: AddRoundKey

* Let r be the current round
* Remember w; is ith set of 32 bits of key schedule
*letc=0,1,2,3and sy, s1, S, and s; . the outputs of this

[SO,C” Sl,c’t 52,c’i 53,c’] = [SO,cr Sl,c' 52,cr 53,c] D [W4r+c]

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-17

AES: Encryption Algorithm

encrypt(byte in[4*Nb], byte out[4*NB], word w[Nb*(Nr+l)])
begin

byte state[4,Nb]; state := in;
AddRoundKey (state, w[0, Nb-1]);
for round := 1 to Nr-1 do begin

SubBytes(state);
ShiftRows (state);
MixColumns (state);
AddRoundKey (state, w[round*Nb, (round+1l)*Nb-1]);
end
SubBytes(state);
ShiftRows (state);
AddRoundKey(state, w[Nr*Nb, (Nr+l)*Nb-1]);
out := state;
end

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-18

AES: Basic Encryption Transformations

Built up from 4 of these:
* SubBytes

* ShiftRows

* MixColumns

* AddRoundKey

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-19

AES: SubBytes

* A substitution table: takes 1 byte of input, produces 1 byte of output
* First 4 bits give the row, next 4 the column

e Table constructed as follows:

* Map byte 00 to itself, other bytes to their multiplicative inverse in GF(28); call
the result b, with bits byb,b,b3b,b:bcb-

* Let ¢; be the ith bit of 01100011

* Construct b’, with bits by'b,’b,’b5’b,’bs'b;'b;’, where fori=0, ..., 7:

b/ =b; + Bj14y mod 8 + Bis5) mod 8 + Di+6) mod 8 T P(i+7) mod 8 * Ci

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-20

AES: ShiftRows

* Rotate (shift cyclically) to the left by the number of the row

500 |S01 [502 |503 500 [S01 |S02 |503
510 |S1,1 [|S512 |3913 N 511 (512 [513 |S10
520 |S21 [522 |923 522 1523 [|520 |S21
530 |53,1 [532 |3933 533 (530 |[S531 |93
state array before state array after

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-21

AES: MixColumns

letc=0,1,2,3and sy, 1,5, and s3 ' the outputs of this

*Soc =(02 05,)D(03 05,)DS, PS5,
*S1c =So,c,D (0205,) (035,)Ds;,
*Syc =S D S D(02°e5,)D (03¢5
*S3, =(03 s,)Ds, DS, D(02 55

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-22

AES: AddRoundKey

* Let r be the current round
* Remember w; is ith set of 32 bits of key schedule
*letc=0,1,2,3and sy, s1, S, and s; . the outputs of this

[SO,C” Sl,c’t 52,c’i 53,c’] = [SO,cr Sl,c' 52,cr 53,c] D [W4r+c]

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-23

AES: Encryption Algorithm

encrypt(byte in[4*Nb], byte out[4*NB], word w[Nb*(Nr+l)])

begin
byte state[4,Nb];
state := in;
AddRoundKey (state, w[0, Nb-11]);
for round := 1 to Nr-1 do begin

SubBytes(state);
ShiftRows(state);
MixColumns (state);
AddRoundKey (state, w[round*Nb, (round+1l)*Nb-1]);
end
SubBytes(state);
ShiftRows(state);
AddRoundKey (state, w[Nr*Nb, (Nr+l)*Nb-1]);
out := state;
end

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-24

AES: Basic Decryption Transformations

Built up from 4 of these:
* InvSubBytes is the inverse transformation of SubBytes

e TnvShiftRows is the inverse of ShiftRows (cyclic shift to the
right by the number of the row)

e TnvMixColumns
* AddRoundKey

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-25

AES: InvMixColumns

letc=0,1,2,3and sy, 1,5, and s3 ' the outputs of this

*Soc =(0ees,)®(0bes,)b (0des,)d(09es;)
*S; . =(09es,)®(0ees,)d(0bes,)b (0des;)
*s,/=(0des,)®(09es,)D(0ees,)d(0bes;)
*S3, =(0bes,) (0des,) (09es,)d(0ees;)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-26

AES: Decryption Algorithm

decrypt (byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+l)])

begin
byte state[4,Nb];
state := in;
AddRoundKey (state, w[Nr*Nb, (Nr+1)*Nb-11]);
for round := 1 to Nr-1 do begin

InvShiftRows (state);
InvSubBytes(state);
AddRoundKey (state, w[round*Nb, (round+1l)*Nb-1]);
InvMixColumns (state);

end

InvShiftRows (state);

InvSubBytes(state);

AddRoundKey (state, w[0, Nb-1]);

out := state;

end

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-27

AES: Basic Round Key Generation.
Transformations

Two transformations:

* SubWord takes 4 bytes as input, applies SubByte to each byte individually,
and outputs the result

* RotWord takes a 4-byte word as input, rotates it right by 1 byte, and
outputs the result

And a round constant word array:

* For j-th round, Rcon[i] =[x,00,00,00] where x=02 and x' uses
multiplication as described before
* Example: Rcon[1]=01000000; Rcon[2]=02000000;
Rcon[3]=04000000; Rcon[4]=08000000;
Rcon[5]=10000000;. ..

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-28

AES: Round Key Generation Algorithm

roundkeys (byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin
word temp;
for i:= 0 to Nk-1 do
w[i] = word(key[4*i], key[4*i+1],
key[4*i+2], key[4*i+3]);
for i := Nk to (Nr+l)*Nb-1 do begin
temp := w[i-1];
if (1 mod Nk = 0)
temp = SubWord(RotWord(temp)) xor Rcon[i/Nk];
else if (Nk > 6 and 1 mod Nk = 4)
temp = SubWord(temp);
w[i] = w[i-Nk] xor temp;
end
end

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-29

AES: Equivalent Inverse Cipher
Implementation

* Add these to the end of the Round Key Generation algorithm:

for 1 = 0 to (Nr+l1l)*Nb-1 do
dw[i] = w[i];
for round = 1 to Nr-1 do

InvMixColumns (dw[round*Nb, (round+1)*Nb-1])

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-30

AES: Alternate Decryption Algorithm

equivdecrypt(byte in[4*Nb], byte out[4*NB], word dw[Nb*(Nr+l)])
begin
byte state[4,Nb];
state := in;
AddRoundKey (state, dw[Nr*Nb, (Nr+1l)*Nb-1]);
for round := Nr-1 downto Nr-1 do begin
InvSubBytes(state);
InvShiftRows (state);
InvMixColumns (state);
AddRoundKey (state, dw[round*Nb, (round+1l)*Nb-1]);
end
InvSubBytes(state);
InvShiftRows (state);
AddRoundKey (state, dw[0Ob, Nb-1]);
out := state;
end

Version 1.0 Computer Security: Art and Science, 2" Edition Slide F-31

