
Availability Policies
Chapter 7

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-1

Outline

• Goals
• Deadlock
• Denial of service
• Constraint-based model
• State-based model

• Networks and flooding
• Amplification attacks

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-2

Goals

• Ensure a resource can be accessed in a timely fashion
• Called “quality of service”
• “Timely fashion” depends on nature of resource, the goals of using it

• Closely related to safety and liveness
• Safety: resource does not perform correctly the functions that client is

expecting
• Liveness: resource cannot be accessed

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-3

Key Difference

• Mechanisms to support availability in general
• Lack of availability assumes average case, follows a statistical model

• Mechanisms to support availability as security requirement
• Lack of availability assumes worst case, adversary deliberately makes resource

unavailable
• Failures are non-random, may not conform to any useful statistical model

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-4

Deadlock

• A state in which some set of processes block each waiting for another
process in set to take come action
• Mutual exclusion: resource not shared
• Hold and wait: process must hold resource and block, waiting other needed

resources to become available
• No preemption: resource being held cannot be released
• Circular wait: set of entities holding resources such that each process waiting

for another process in set to release resources

• Usually not due to an attack

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-5

Approaches to Solving Deadlocks

• Prevention: prevent 1 of the 4 conditions from holding
• Do not acquire resources until all needed ones are available
• When needing a new resource, release all held

• Avoidance: ensure process stays in state where deadlock cannot occur
• Safe state: deadlock can not occur
• Unsafe state: may lead to state in which deadlock can occur

• Detection: allow deadlocks to occur, but detect and recover

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-6

Denial of Service

• Occurs when a group of authorized users of a service make that
service unavailable to a (disjoint) group of authorized users for a
period of time exceeding a defined maximum waiting time
• First “group of authorized users” here is group of users with access to service,

whether or not the security policy grants them access
• Often abbreviated “DoS” or “DOS”

• Assumes that, in the absence of other processes, there are enough
resources
• Otherwise problem is not solvable unless more resources created
• Inadequate resources is another type of problem

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-7

Components of DoS Model

• Waiting time policy: controls the time between a process requesting a
resource and being allocated that resource
• Denial of service occurs when this waiting time exceeded
• Amount of time depends on environment, goals

• User agreement: establishes constraints that process must meet in
order to access resource
• Here, “user” means a process
• These ensure a process will receive service within the waiting time

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-8

Constraint-Based Model (Yu-Gligor)

• Framed in terms of users accessing a server for some services
• User agreement: describes properties that users of servers must meet
• Finite waiting time policy: ensures no user is excluded from using

resource

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-9

User Agreement

• Set of constraints designed to prevent denial of service
• Sseq sequence of all possible invocations of a service
• Useq set of sequences of all possible invocations by a user
• UIi,seq ⊆ Useq that user Ui can invoke
• C set of operations Ui can perform to consume service
• P set of operations to produce service user Ui consumes
• p < c means operation p ∈ P must precede operation c ∈ C
• Ai set of operations allowed for user Ui

• Ri set of relations between every pair of allowed operations for Ui

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-10

Example

Mutually exclusive resource
• C = { acquire }
• P = { release }
• For p1, p2, Ai = { acquirei, releasei } for i = 1, 2
• For p1, p2, Ri = { (acquirei < releasei) } for i = 1, 2

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-11

Sequences of Operations

• Ui(k) initial subsequence of Ui of length k
• no(Ui(k)) number of times operation o occurs in Ui(k)

• Ui(k) safe if the following 2 conditions hold:
• if o ∈ Ui,seq, then o ∈ Ai; and

• That is, if Ui executes o, it must be an allowed operation for Ui

• for all k, if (o < o’) ∈ Ri, then no(Ui(k)) ≥ no’(Ui(k))
• That is, if one operation precedes another, the first one must occur more times than the

second

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-12

Resources of Services

• s ∈ Sseq possible sequence of invocations of services
• s blocks on condition c
• May be waiting for service to become available, or processing some response,

etc.

• oi
*(c) represents operation oi blocked, waiting for c to become true
• When execution results, oi(c) represents operation
• Note that when c becomes true, oi

*(c) may not resume immediately

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-13

Resources of Services

• s(0) initial subsequence of s up to operation oi
*(c)

• s(k) subsequence of operations between k-1st, kth time c becomes
true after oi

*(c)
• oi*(c) ➝s(k) oi(c): oi blocks waiting on c at end of s(0), resumes

operation at end of s(k)
• Sseq live if for every oi*(c) there is a set of subsequences s(0), ..., s(k)

such that it is initial subsequence of some s ∈ Sseq and oi*(c) ➝s(k) oi(c)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-14

Example

• Mutually exclusive resource; consider sequence
(acquirei, releasei, acquirei, acquirei, releasei)

with acquirei, releasei ∈ Ai, (acquirei, releasei) ∈ Ri; o = acquirei, o’ = releasei

• Ui(1) = (acquirei) ⇒ no(Ui(1)) = 1, no’(Ui(1)) = 0
• Ui(2) = (acquirei, releasei) ⇒ no(Ui(2)) = 1, no’(Ui(2)) = 1
• Ui(3) = (acquirei, releasei, acquirei) ⇒ no(Ui(3)) = 2, no’(Ui(3)) = 1
• Ui(4) = (acquirei, releasei, acquirei, acquirei) ⇒

no(Ui(4)) = 3, no’(Ui(4)) = 1
• Ui(5) = (acquirei, releasei, acquirei, acquirei, releasei) ⇒

no(Ui(5)) = 3, no’(Ui(5)) = 2
• As no(Ui(k)) ≥ no’(Ui(k)) for k = 1, ..., 5, the sequence is safe

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-15

Example (con’t)

• Let c be true whenever resource can be released
• That is, initially and whenever a releasei operation is performed

• Consider sequence: (acquire1, acquire2
*(c), release1, release2, ... ,

acquirek, acquirek+1(c), releasek, releasek+1, ...)
• For all k ≥ 1, acquirei*(c) ➝s(1) acquirek+1(c), so this is live sequence
• Here, acquirek+1(c) occurs between releasek and releasek+1

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-16

Expressing User Agreements

• Use temporal logics
• Symbols
• ☐: henceforth (the predicate is true and will remain true)
• ◇: eventually (the predicate is either true now, or will become true in the

future)
• ⤳: will lead to (if the first part is true, the second part will eventually become

true); so A ⤳ B is shorthand for A ⇒◇B

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-17

Example

• Acquiring and releasing mutually exclusive resource type
• User agreement: once a process is blocked on an acquire operation,

enough release operations will release enough resources of that type
to allow blocked process to proceed

service resource_allocator
User agreement

in(acquire) ⤳ ((☐◇(#active_release > 0) ∨ (free ≥ acquire.n))
• When a process issues an acquire request, at some later time at least

1 release operation occurs, and enough resources will be freed for the
requesting process to acquire the needed resources

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-18

Finite Waiting Time Policy

• Fairness policy: prevents starvation; ensures process using a resource
will not block indefinitely if given the opportunity to progress
• Simultaneity policy: ensures progress; provides opportunities process

needs to use resource
• User agreement: see earlier
• If these three hold, no process will wait an indefinite time before

accessing and using the resource

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-19

Example

• Continuing example ... these and above user agreement ensure no
indefinite blocking

sharing policies
fairness

(at(acquire) ∧☐◇((free ≥ acquire.n) ∧ (#active = 0))) ⤳ after(acquire)
(at(release) ∧☐◇(#active = 0)) ⤳ after(release)

simultaneity
(in(acquire) ∧ (☐◇(free ≥ acquire.n)) ∧ (☐◇(#active = 0))) ⤳

((free ≥ acquire.n) ∧ (#active = 0))
(in(release) ∧☐◇(#active_release > 0)) ⤳ (free ≥ acquire.n)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-20

Service Specification

• Interface operations
• Private operations not available outside service
• Resource constraints
• Concurrency constraints
• Finite waiting time policy

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-21

Example:

• Interface operations of the resource allocation/deallocation example
interface operations

acquire(n: units)
exception conditions: quota[id] < own[id] + n
effects: free’ = free – n

own[id]’ = own[id] + n
release(n: units)

exception conditions: n > own[id]
effects: free’ = free + n

own[id]’ = own[id] – n

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-22

Example (con’t)

• Resource constrains of the resource allocation/deallocation example
resource constraints
1. ☐((free ≥ 0) ∧ (free ≤ size))
2. (∀ id) [☐(own[id] ≥ 0) ∧ (own[id] ≤ quota[id]))]
3. (free = N) ⇒ ((free = N) UNTIL (after(acquire) ∨ after(release)))
4. (∀ id) [(own[id] = M) ⇒ ((own[id] = M) UNTIL (after(acquire) ∨

after(release)))]

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-23

Example (con’t)

• Concurrency constraints of the resource allocation/deallocation
example

concurrency constraints
1. ☐(#active ≤ 1)
2. (#active = 1) ⤳ (#active = 1)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-24

Denial of Service

• Service specification policies, user agreements prevent denial of
service if enforced
• These do not prevent a long wait time; they simply ensure the wait

time is finite

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-25

State-Based Model (Millen)

• Unlike constraint-based model, allows a maximum waiting time to be
specified
• Based on resource allocation system, denial of service base that

enforces its policies

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-26

Resource Allocation System Model

• R set of resource types
• For each r ∈ R, number of resource units (capacity, c(r)) is constant; a

process can hold a unit for a maximum holding time m(r)
• P set of processes
• For each p ∈ P, state is running or sleeping
• When allocated a resource, process is running
• Multiple process can be in running state simultaneously
• Each p has upper bound it can be in running state before being interrupted, if

only by CPU quantum q
• Example: if CPU considered a resource, m(CPU) = q

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-27

Allocation Matrix

• Rows represent processes; columns represent resources
• A: P × R ➝ ℕ is matrix
• For p ∈ P, r ∈ R, Ap(r) is number of resource units of type r acquired by p
• As at most c(r) of resource type r exist, at most that many can be allocated at

any time

R1: The system cannot allocate more instances of a resource type than
it has:

(∀r ∈ R)[∑p∈P Ap(r) ≤ c(r)]

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-28

More About Resources

• T: P ➝ ℕ is system time when resource assignment was last changed
• Think of it as a time vector, each element belonging to one process

• QS: P × R ➝ ℕ is matrix of required resources for each process, not
including the resources it already holds
• So QS

p(r) means the number of units of resource type r that process p may need to
complete

• QT: P × R ➝ ℕ is matrix of how much longer each process p needs the units
of resource r
• Predicates running(p) true if p is in running state; asleep(p) true otherwise
R2: A currently running process must not require additional resources to run

running(p) => (∀r ∈ R)[QS
p(r) = 0]

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-29

States, State Transitions

• Current state of system is (A, T, QS, QT)
• State transition (A, T, QS, QT) ➝ (A’, T’, QS’, QT’)
• We only care about treansitions due to allocation, deallocation of resources

• Three relevant types of transitions
• Deactivation transition: running(p) ➝ asleep’(p); process stops execution
• Activation transition: asleep(p) ➝ running’(p); process starts or resumes

execution
• Reallocation transition: transition in which p has resource allocation changed;

can only occur when asleep(p)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-30

Constraints

R3: Resource allocation does not affect allocations of a running
process:

(running(p) ∧ running’(p)) ⇒ (Ap’ = Ap)
R4: T(p) changes only when resource allocation of p changes:

(Ap’(CPU) = Ap(CPU)) ⇒ (T’(p) = T(p))
R5: Updates in time vector increase value of element being updated:

(Ap’(CPU) ≠ Ap(CPU)) => (T’(p) > T(p))

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-31

Constraints

R6: When p reallocated resources, allocation matrix updated before p
resumes execution:

asleep(p) ⇒ QS
p’ = QS

p + Ap – Ap’
R7: When a process is not running, the time it needs resources does
not change:

asleep(p) ⇒ QT
p’ = QT

p
R8: when a process ceases to execute, the only resource it must
surrender is the CPU:
(running(p) ∧ asleep’(p)) ⇒ Ap’(r) = Ap(r)–1 if r = CPU
(running(p) ∧ asleep’(p)) ⇒ Ap’(r) = Ap(r) otherwise

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-32

Resource Allocation System

• A system in a state (A, T, QS, QT) such that:
• State satisfies constraints R1, R2
• All state transitions constrained to meet R3-R8

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-33

Denial of Service Protection Base (DPB)

• A mechanism that is tamperproof, cannot be prevented from
operating, and guarantees authorized access to resources it controls
• Four parts:
• Resource allocation system (see earlier)
• Resource monitor
• Waiting time policy
• User agreement (see earlier; constraints apply to changes in allocation when

process transitions from running(p) to asleep(p)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-34

Resource Monitor

• Controls allocation, deallocation of resources and the timing
• QS

p is feasible if (∀i)[QS
p(ri) + Ap(ri) ≤ c(ri)] ∧ QS

p(CPU) ≤ 1
• If the total number of resources it will be allocated will always be no more

than the capacity of that resource, and no more than 1 CPU is requested

• Tp is feasible if (∀i)[Tp(ri) ≤ max(ri)]
• Here, max(ri) max time a process must wait for its needed allocation of units

of resource type i

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-35

Waiting Time Policy

• Let σ = (A, T, QS, QT)
• Example finite waiting time policy:

(∀p, σ)(∃σ’)[running’(p) ∧ (T’(p) ≥ T(p))]
• For every process and state, there is a future state in which p is executing and

has been allocated resources

• Example maximum waiting time policy:
(∃M)(∀p, σ)(∃σ’)[running’(p) ∧ (0 < T’(p) – T(p) ≤ M)]

• There is an upper bound M to how long it takes every process to reach a
future state in which it is executing and has been allocated resources

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-36

Two Additional Constraints

In addition to all these, a DPB must satisfy these constraints:
1. Each process satisfying user agreement constraints will progress in a

way that satisfies the waiting time policy
2. No resource other than the CPU is deallocated from a process

unless that resource is no longer needed
(∀i)[ri ≠ CPU ∧ Ap(ri) ≠ 0 ∧ Ap’(ri) = 0] ⇒ QT

p(ri) = 0

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-37

Example: DPB

• Assume system has 1 CPU
• Assume maximum waiting time policy in place
• 3 parts to user agreement:
• QS

p, Tp are feasible
• Process in running state executes for a minimum amount of time before it

transitions to a non-running state
• If process requires resource type, and enters a non-running state, the time it

needs the resource for is decreased by the amount of time it was in the
previous running state; that is,

QT
p ≠ 0 ∧ running(p) ∧ asleep’(p) ⇒ (∀r∈R)[QT

p(r) ≤ max(0, maxr QT
p(r)–(T’(p)–T(p)))]

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-38

Example: System

• n processes, round robin scheduler with quantum q
• Initially no process has any resources
• Resource monitor selects process p to give resources to
• p executes until QT

p = 0 or monitor concludes QS
p or Tp is not feasible

• Goal: show there will be no denial of service in this system because
a) no resource ri is deallocated from p for which QS

p is feasible until QT
p = 0;

and
b) there is a maximum time for each round robin cycle

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-39

Claim (a)

• Before p selected, no process has any resources allocated to it
• So next process with QS

p and Tp feasible is selected
• It runs until it enters the asleep state or q, whichever is shorter
• If in asleep state, process is done
• If q, monitor gives p another quantum of running time; this repeats until QT

p = 0, and
then p needs no more resources

• Let m(r) be maximum time any process will hold resources of type r
• Let M(r) = maxr m(r)

• As QS
p and Tp feasible, M upper bound for all elements of QT

p
• d = min(q, minimum time before p transitions to asleep state); exists because a

process in running state executes for a minimum amount of time before it transitions
to a non-running state

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-40

Claim (a) (con’t)

• As QS
p and Tp feasible, M upper bound for all elements of QT

p

• d = min(q, minimum time before p transitions to asleep state)
• Exists because a process in running state executes for a minimum amount of

time before it transitions to a non-running state

• At end of each quantum, m’(r) = m(r) – d
• By third part of user agreement

• So after floor(M/d + 1) quanta, QT
p = 0

• So no resources deallocated until (∀i) QT
p(ri) = 0

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-41

Claim (b)

• ta is time between resource monitor beginning cycle and when it has
allocated required resources to p
• Resource monitor then allocates CPU resource to p; call this time tCPU
• Done between each quantum

• When p completes, all its resources deallocated; this takes time td

• As QS
p and Tp feasible, time needed to run p, including time to

deallocate all resources, is:
ta + floor(M/d + 1)(q + tCPU) + td

• So for n processes, maximum time cycle will take is n times this
• Thus, there is a maximum time for each round robin cycle

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-42

Availability and Network Flooding

• Access over Internet must be unimpeded
• Context: flooding attacks, in which attackers try to overwhelm system

resources

• If many sources flood a target, it’s a distributed denial of service
attack

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-43

TCP 3-Way Handshake and Availability

• Normal three-way handshake to
initiate connection
• Suppose source never sends

third message (the last ACK)
• Destination holds information

about pending connection for a
period of time before the space is
released

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-44

source destination
SYN(s)

source destination
SYN(t)ACK(s+1)

source destination
ACK(t+1)

Analysis

• Consumption of bandwidth
• If flooding overwhelms capacity of physical network medium, SYNs from

legitimate handshake attempts may not be able to reach the target

• Absorption of resources on destination host
• Flooding fills up memory space for pending connections, causing SYNs from

legitimate handshake attempts to be discarded

• In terms of the models:
• Waiting time is the time that destination waits for ACK from source
• Fairness policy must assure host waiting for ACK (resource) will receive

(acquire) it

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-45

Analysis in Terms of Model

• Waiting time is the time that destination waits for ACK from source
• Fairness policy must assure host waiting for ACK (resource) will

receive (acquire) it
• But goal of attack is to make sure it never arrives

• Yu-Gligor model: finite wait time does not hold
• So model says denial of service can occur

• Millen model: Tp(ACK) > max(ACK)
• max(ACK) is the time-out period for pending connections
• So model says denial of service can occur

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-46

Countermeasures

• Focus on ensuring resources needed for legitimate handshakes to
complete are available
• So every legitimate client gets access to server

• First approach: manipulate opening of connection at end point
• If focus is to ensure connection attempts will succeed at some time, focus is

really on waiting time
• Otherwise, focus is on user agreement

• Second approach: control which packets, or rate at which packets,
sent to destination
• Focus is on implicit user agreements

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-47

Intermediate Systems

• Approach is to reduce consumption of resources on destination by
diverting or eliminating illegitimate traffic so only legitimate traffic
reaches destination
• Done at infrastructure level

• Example: Cisco routers try to establish connection with source (TCP
intercept mode)
• On success, router does same with intended destination, merges the two
• On failure, short time-out protects router resources and target never sees

flood

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-48

Track Connection Status

• Use network monitor to track status of handshake
• Example: synkill monitors traffic on network
• Classifies IP addresses as not flooding (good), flooding (bad), unknown (new)
• Checks IP address of SYN

• If good, packet ignored
• If bad, send RST to destination; ends handshake, releasing resources
• If new, look for ACK or RST from same source; if seen, change to good; if not seen,

change to bad
• Periodically discard stale good addresses

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-49

Intermediate Systems near Sources

• D-WARD relies on routers close to the sources to block attack
• Reduces congestion in network without interfering with legitimate traffic

• Placed at gateways of possible sources to examine packets leaving
(internal) network and going to Internet
• Deployed on systems in research lab for 4 months
• First month: large number of false alerts
• Tuning D-WARD parameters reduced this number

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-50

D-WARD: Observation Component

• Has set of legitimate internal addresses
• Gathers statistics on packets leaving network, discarding packets

without legitimate addresses
• Tracks number of simultaneous connections to each remote

destination
• Unusually large number may indicate attack from this network

• Examines connections with large amount of outgoing traffic but little
incoming (response) traffic
• May indicate destination host is overwhelmed

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-51

D-WARD: Observation Component

• Also aggregates traffic statistics to each remote address
• Classifies flows as attack, suspicious, normal
• Normal: statistics match legitimate traffic model
• Attack: if not

• Once traffic classified as attack begins to match legitimate traffic
model, indicates attack has ended, so flow reclassified as suspicious
• If it stays suspicious for predetermined time, reclassified as normal

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-52

D-WARD: Rate-Limiting Component

• When attack detected, this component limits amount of packets that
can be sent
• This reduces volume of traffic going from this network to destination
• How it limits rate is based on D-WARD’s best guess of amount of

traffic destination can handle
• When flow reclassified as normal, D-WARD raises rate limit until sending rate

is as before

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-53

D-WARD: Traffic-Policing Component

• Component obtains information from other 2 components
• Based on this, decides whether to drop packets
• Packets for normal connections always forwarded
• Packets for other flows may be forwarded provided doing so does not exceed

rate limit associated with flow

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-54

Endpoint Protection

• Control how TCP state is stored
• When SYN received, entry in queue of pending connections created

• Remains until an ACK received or time-out
• In first case, entry moved to different queue
• In second case, entry made available for next SYN

• In SYN flood, queue is always full
• So, assure legitimate connections space in queue to some level of probability
• Two approaches: SYN cookies or adaptive time-outs

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-55

SYN Cache

• Space allocated for each pending connection
• But much less than for a full connection

• How it works on FreeBSD
• On initialization, hash table (syncache) created
• When SYN packet arrives, system generates hash from header and uses that

to determine which bucket to store enough information to be able to send
SYN/ACK on the pending connection (and does so)
• If bucket full, oldest element dropped

• If peer returns ACK, entry removed and connection created
• If peer returns RST, entry removed
• If no response, repeat fixed number of times; if no responses, remove entry

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-56

SYN Cookies

• Source keeps state
• How it works
• When SYN arrives, generate number (syncookie) from header data and

random data; use as ACK sequence number in SYN/ACK packet
• Random data changes periodically

• When reply ACK arrives, recompute syncookie from information in header

• FreeBSD uses this technique when pending connection cannot be
inserted into syncache

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-57

Adaptive Time-Out

• Change time-out time as space available for pending connections
decreases
• Example: modified SunOS kernel
• Time-out period shortened from 75 to 15 sec
• Formula for queueing pending connections changed:

• Process allows up to b pending connections on port
• a number of completed connections but awaiting process
• p total number of pending connections
• c tunable parameter
• Whenever a + p > cb, drop current SYN message

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-58

Other Flooding Attacks

• These use reflectors (typically, infrastructure systems) to augment
traffic, creating flooding
• Attacker need only send small amount of traffic; reflectors create the rest
• Called amplification attack

• Hides origin of attack, which appears to come from reflectors

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-59

Smurf Attack

• Relies on router forwarding ICMP packets to all hosts on network
• Attacker sends ICMP packet to router with destination address set to

broadcast address of network
• Router sends copy of packet to each host on network
• If attacker sends steady stream of packets, has the effect of sending that

stream to all hosts on network

• Example of an amplification attack

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-60

DNS Amplification Attack

• Uses DNS resolvers that are configured to accept queries from any
host rather than only hosts on their own network
• Attacker sends packet with source address set to that of target
• Packet has query that causes DNS resolver to send large amount of

information to target
• Example: zone transfer query is a small query, but typically sends large

amount of data to target, typically in multiple packets, each larger than a
query packet

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-61

Pulse Denial of Service Attack

• Like flooding, but packets sent in pulses
• May only degrade target’s performance, but that may be enough of a denial

of service

• Induces 3 anomalies in traffic to target
• Ratio of incoming TCP packets to outgoing ACKs increases dramatically

• Rate of incoming packets much higher than system can send ACKs
• When attacker reduces number of packets to target, number of ACKS drop
• Distribution of incoming packet interarrival time will be anomalous

• Vanguard detection scheme uses these 3 anomalies to detect pulse
denial-of-service attack

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-62

Key Points

• Availability in security context deals with malicious denial of service
• Models of denial of service have waiting time policy and user

agreement as key components
• Network denial-of-service attacks, and countermeasures, instantiate

these models
• Amplification attacks usually hide origin of attacks, and enable

flooding by an attacker that sends a relatively small number of
packets

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 7-63

