Availability Policies

Chapter 7

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-1

Outline

e Goals
e Deadlock

e Denial of service
 Constraint-based model
e State-based model

* Networks and flooding

* Amplification attacks

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-2

Goals

* Ensure a resource can be accessed in a timely fashion

e Called “quality of service”
* “Timely fashion” depends on nature of resource, the goals of using it

* Closely related to safety and liveness

» Safety: resource does not perform correctly the functions that client is
expecting
* Liveness: resource cannot be accessed

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-3

Key Difference

* Mechanisms to support availability in general
* Lack of availability assumes average case, follows a statistical model

* Mechanisms to support availability as security requirement

* Lack of availability assumes worst case, adversary deliberately makes resource
unavailable

* Failures are non-random, may not conform to any useful statistical model

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-4

Deadlock

* A state in which some set of processes block each waiting for another
process in set to take come action

* Mutual exclusion: resource not shared

* Hold and wait: process must hold resource and block, waiting other needed
resources to become available

* No preemption: resource being held cannot be released

 Circular wait: set of entities holding resources such that each process waiting
for another process in set to release resources

e Usually not due to an attack

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-5

Approaches to Solving Deadlocks

* Prevention: prevent 1 of the 4 conditions from holding
* Do not acquire resources until all needed ones are available
* When needing a new resource, release all held

* Avoidance: ensure process stays in state where deadlock cannot occur
* Safe state: deadlock can not occur
* Unsafe state: may lead to state in which deadlock can occur

* Detection: allow deadlocks to occur, but detect and recover

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-6

Denial of Service

* Occurs when a group of authorized users of a service make that
service unavailable to a (disjoint) group of authorized users for a
period of time exceeding a defined maximum waiting time

* First “group of authorized users” here is group of users with access to service,
whether or not the security policy grants them access

* Often abbreviated “DoS” or “D0OS”

* Assumes that, in the absence of other processes, there are enough
resources

e Otherwise problem is not solvable unless more resources created
* Inadequate resources is another type of problem

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-7

Components of DoS Model

* Waiting time policy: controls the time between a process requesting a
resource and being allocated that resource
* Denial of service occurs when this waiting time exceeded
* Amount of time depends on environment, goals

* User agreement: establishes constraints that process must meet in
order to access resource
* Here, “user” means a process
* These ensure a process will receive service within the waiting time

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-8

Constraint-Based Model (Yu-Gligor)

* Framed in terms of users accessing a server for some services
* User agreement: describes properties that users of servers must meet

* Finite waiting time policy: ensures no user is excluded from using
resource

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-9

User Agreement

 Set of constraints designed to prevent denial of service
* Sseqg S€quence of all possible invocations of a service
* U, set of sequences of all possible invocations by a user

* Ujiseq & Useq that user U, can invoke
* Cset of operations U; can perform to consume service
* P set of operations to produce service user U; consumes
* p <c means operation p € P must precede operationc € C
* A;set of operations allowed for user U,
* R;set of relations between every pair of allowed operations for U,

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-10

Example

Mutually exclusive resource

 C={acquire }

e P={release }

* For p,, p,, A; ={acquire, release; } fori=1, 2

* For p4, p,, Ri={(acquire;< release;) } fori=1, 2

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-11

Sequences of Operations

* U{k) initial subsequence of U, of length k
* n,(U(k)) number of times operation o occurs in U(k)

* U{k) safe if the following 2 conditions hold:

* ifo €U, theno €A; and
* That is, if U; executes o, it must be an allowed operation for U;
 forall k, if (0 <0’) € R, then n_ (U{k)) 2 n_(U,(k))
* That is, if one operation precedes another, the first one must occur more times than the
second

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-12

Resources of Services

* S € S, POssible sequence of invocations of services

* s blocks on condition ¢

* May be waiting for service to become available, or processing some response,
etc.

* 0,"(c) represents operation o, blocked, waiting for ¢ to become true
* When execution results, o/(c) represents operation
* Note that when ¢ becomes true, 0,"(c) may not resume immediately

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-13

Resources of Services

* 5(0) initial subsequence of s up to operation o;(c)

* s(k) subsequence of operations between k-1, kt" time ¢ becomes
true after o,"(c)

* 0*(c) =) o/c): o; blocks waiting on ¢ at end of s(0), resumes
operation at end of s(k)

* Sieq live it for every 0,*(c) there is a set of subsequences s(0), ..., s(k)
such that it is initial subsequence of some s € S, and 0;*(c) =¥ o/(c)

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-14

Example

Mutually exclusive resource; consider sequence
(acquire;, release;, acquire;, acquire;, release:;)
with acquire, release; € A, (acquire;, release;) € R;; 0 = acquire;, 0’ = release;
* U{1) = (acquire;) = n,(U{1)) =1, n,(U(1)) =0
* U/(2) = (acquire,, release;) = n (U(2)) =1, n(U(2)) =1
* U{3) = (acquire, release;, acquire;) = n (U{(3)) =2, n,(U{(3)) =1
* U{(4) = (acquire;, release;, acquire;, acquire;) =
no(U(4)) =3, ny(Uf4)) =1
* U{(5) = (acquire, release; acquire; acquire;, release;) =
no(Ui(5)) = 3, ny(U(5)) = 2
As n (U{k)) 2 n(U(k)) fork=1, ..., 5, the sequence is safe

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-15

Example (con’t)

e Let c be true whenever resource can be released
* That is, initially and whenever a release; operation is performed

* Consider sequence: (acquire,, acquire,”(c), release,, release,, ...,
acquire,, acquire,,,(c), release,, release,,, ...)

* Forall k > 1, acquire*(c) =) acquire,,,(c), so this is live sequence
* Here, acquire,,(c) occurs between release, and release,,,

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-16

Expressing User Agreements

* Use temporal logics
* Symbols

e [1: henceforth (the predicate is true and will remain true)

« &:eventually (the predicate is either true now, or will become true in the
future)

* ~: will lead to (if the first part is true, the second part will eventually become
true); so A ~ Bis shorthand for A = ¢B

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-17

Example

* Acquiring and releasing mutually exclusive resource type

* User agreement: once a process is blocked on an acquire operation,
enough release operations will release enough resources of that type
to allow blocked process to proceed

service resource_allocator
User agreement
in(acquire) ~ ((J< (#active _release > 0) V (free = acquire.n))

* When a process issues an acquire request, at some later time at least
1 release operation occurs, and enough resources will be freed for the
requesting process to acquire the needed resources

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-18

Finite Waiting Time Policy

* Fairness policy: prevents starvation; ensures process using a resource
will not block indefinitely if given the opportunity to progress

* Simultaneity policy: ensures progress; provides opportunities process
needs to use resource

* User agreement: see earlier

* If these three hold, no process will wait an indefinite time before
accessing and using the resource

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-19

Example

e Continuing example ... these and above user agreement ensure no
indefinite blocking

sharing policies
fairness

(at(acquire) A

(at(release) N\

simultaneity
(in(acquire) A (

O ((free =2 acquire.n) A (#active = 0))) ~ after(acquire)

O (#active = 0)) ~ after(release)

(in(release) A

Version 1.1

O(free 2 acquire.n)) A (

O (#active = 0))) ~

((free = acquire.n) A (#active = 0))

O (#active release > 0)) ~ (free 2 acquire.n)

Computer Security: Art and Science, 2" Edition Slide 7-20

Service Specification

* Interface operations

* Private operations not available outside service
* Resource constraints

* Concurrency constraints

* Finite waiting time policy

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-21

Example:

* Interface operations of the resource allocation/deallocation example
interface operations
acquire(n: units)
exception conditions: guotalid] < ownlid] + n
effects: free’ =free —n
ownlid]’ = ownlid] + n
release(n: units)
exception conditions: n > ownlid]
effects: free’ =free +n
ownlid]’ = ownlid] — n

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-22

Example (con’t)

* Resource constrains of the resource allocation/deallocation example
resource constraints

1. U((free = 0) A (free < size))

2. (Vid) [L(ownlid] 2 0) A (ownlid] £ quotalid]))]

3. (free = N) = ((free = N) UNTIL (after(acquire) V after(release)))
4. (Vid) [(ownlid] = M) = ((ownlid] = M) UNTIL (after(acquire) V

after(release)))]

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-23

Example (con’t)

* Concurrency constraints of the resource allocation/deallocation
example

concurrency constraints
1. O(#active < 1)
2. (#active = 1) ~ (#active = 1)

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-24

Denial of Service

* Service specification policies, user agreements prevent denial of
service if enforced

* These do not prevent a long wait time; they simply ensure the wait
time is finite

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-25

State-Based Model (Millen)

* Unlike constraint-based model, allows a maximum waiting time to be
specified

e Based on resource allocation system, denial of service base that
enforces its policies

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-26

Resource Allocation System Model

* R set of resource types

* For each r € R, number of resource units (capacity, c(r)) is constant; a
process can hold a unit for a maximum holding time m(r)

* P set of processes

* For each p € P, state is running or sleeping
* When allocated a resource, process is running
* Multiple process can be in running state simultaneously

e Each p has upper bound it can be in running state before being interrupted, if
only by CPU quantum q

* Example: if CPU considered a resource, m(CPU) = g

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-27

Allocation Matrix

* Rows represent Processes, columns represent resources
* A: Px R — N is matrix
* Forp € P,r € R, A,(r) is number of resource units of type r acquired by p

* As at most c(r) of resource type r exist, at most that many can be allocated at
any time

R1: The system cannot allocate more instances of a resource type than
it has:

(Vr € R)[2pepAplr) < clr)]

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-28

More About Resources

e T: P = N is system time when resource assignment was last changed
* Think of it as a time vector, each element belonging to one process

* Q: P xR — N is matrix of required resources for each process, not
including the resources it already holds

* So Qsp(r) means the number of units of resource type r that process p may need to
complete

* Q": Px R — N is matrix of how much longer each process p needs the units
of resource r

* Predicates running(p) true if p is in running state; asleep(p) true otherwise
R2: A currently running process must not require additional resources to run
running(p) => (Vr € R)[Q°,(r) = O]

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-29

States, State Transitions

 Current state of systemiis (A, T, Q>, Q')
e State transition (A, T, Q5, Q") = (A, T, Q%, Q")

* We only care about treansitions due to allocation, deallocation of resources

* Three relevant types of transitions
* Deactivation transition: running(p) — asleep’(p); process stops execution

e Activation transition: asleep(p) — running’(p); process starts or resumes
execution

* Reallocation transition: transition in which p has resource allocation changed;
can only occur when asleep(p)

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-30

Constraints

R3: Resource allocation does not affect allocations of a running
process:

(running(p) A running’(p)) = (A" =A,)
R4: T(p) changes only when resource allocation of p changes:
(A, (CPU) = A,(CPU)) = (T'(p) = T(p))
R5: Updates in time vector increase value of element being updated:
(A, (CPU) = A,(CPU)) => (T (p) > T(p))

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-31

Constraints

R6: When p reallocated resources, allocation matrix updated before p
resumes execution:

asleep(p) > Q) =Q,+A,— A

R7: When a process is not running, the time it needs resources does
not change:

asleep(p) = Q") = Q',

R8: when a process ceases to execute, the only resource it must
surrender is the CPU:

(running(p) A asleep’(p)) = A, (r) = A,(r)-1 if r=CPU
(running(p) A asleep’(p)) = A,’(r) = A,(r) otherwise

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-32

Resource Allocation System

* A system in a state (A, T, Q°, Q') such that:

 State satisfies constraints R1, R2
e All state transitions constrained to meet R3-RS8

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-33

Denial of Service Protection Base (DPB)

* A mechanism that is tamperproof, cannot be prevented from
operating, and guarantees authorized access to resources it controls

* Four parts:
* Resource allocation system (see earlier)
* Resource monitor
* Waiting time policy
* User agreement (see earlier; constraints apply to changes in allocation when
process transitions from running(p) to asleep(p)

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-34

Resource Monitor

e Controls allocation, deallocation of resources and the timing
* Q°, is feasible if (Vi)[Q°,(r;) + A,(r;) < c(r)] A Q°,(CPU) <1

* |f the total number of resources it will be allocated will always be no more
than the capacity of that resource, and no more than 1 CPU is requested

* T,is feasible if (Vi)[T,(r;) < max(r;)]
* Here, max(r;) max time a process must wait for its needed allocation of units
of resource type i

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-35

Waiting Time Policy

leto=(A, T, Q, Q"
* Example finite waiting time policy:
(Vp, o)(30°)[running’(p) A (T'(p) 2 T(p))]

* For every process and state, there is a future state in which p is executing and
has been allocated resources

* Example maximum waiting time policy:
(IM)(Vp, o)(3a’)[running’(p) A (0 < T'(p) — T(p) < M)]

* There is an upper bound M to how long it takes every process to reach a
future state in which it is executing and has been allocated resources

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-36

Two Additional Constraints

In addition to all these, a DPB must satisfy these constraints:

1. Each process satisfying user agreement constraints will progress in a
way that satisfies the waiting time policy

2. No resource other than the CPU is deallocated from a process
unless that resource is no longer needed

(Vi)[r;#CPUAA(r)Z0ANAS(r)=0]= Q')(r) =0

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-37

Example: DPB

* Assume system has 1 CPU
* Assume maximum waiting time policy in place

e 3 parts to user agreement:
* Q°, T,are feasible

* Process in running state executes for a minimum amount of time before it
transitions to a non-running state

* |f process requires resource type, and enters a non-running state, the time it
needs the resource for is decreased by the amount of time it was in the
previous running state; that is,

Q’, # 0 A running(p) A asleep’(p) = (VreR)[Q’,(r) < max(0, max, Q",(r)—(T' (p)-T(p)))]

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-38

Example: System

* n processes, round robin scheduler with quantum g
* Initially no process has any resources

e Resource monitor selects process p to give resources to
* p executes until Q", = 0 or monitor concludes @Q°, or T, is not feasible

* Goal: show there will be no denial of service in this system because

a) no resource r;is deallocated from p for which @°, is feasible until Q", = 0;
and

b) there is a maximum time for each round robin cycle

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-39

Claim (a)

» Before p selected, no process has any resources allocated to it
* So next process with Qsp and T,feasible is selected
It runs until it enters the asleep state or g, whichever is shorter
 If in asleep state, process is done

* If g, monitor gives p another quantum of running time; this repeats until QTp =0, and
then p needs no more resources

e Let m(r) be maximum time any process will hold resources of type r
* Let M(r) = max, m(r)

* As @, and T, feasible, M upper bound for all elements of Q'

* d = min(g, minimum time before p transitions to asleep state); exists because a

process in running state executes for a minimum amount of time before it transitions
to a non-running state

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-40

Claim (a) (con’t)

* As Q°, and T, feasible, M upper bound for all elements of Q’,
p p p

* d = min(g, minimum time before p transitions to asleep state)

* Exists because a process in running state executes for a minimum amount of
time before it transitions to a non-running state

* At end of each quantum, m’(r) = m(r) — d
* By third part of user agreement

* So after floor(M/d + 1) quanta, Q", =0

* So no resources deallocated until (Vi) Q")(r;) =0

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-41

Claim (b)

* t is time between resource monitor beginning cycle and when it has
allocated required resources to p

* Resource monitor then allocates CPU resource to p; call this time tp
* Done between each quantum

* When p completes, all its resources deallocated; this takes time t,

* As @, and T, feasible, time needed to run p, including time to
deallocate aﬁ resources, is:

t, + floor(M/d + 1)(q + tcpy) + t4
* So for n processes, maximum time cycle will take is n times this
* Thus, there is a maximum time for each round robin cycle

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-42

Availability and Network Flooding

* Access over Internet must be unimpeded

* Context: flooding attacks, in which attackers try to overwhelm system
resources

* If many sources flood a target, it’s a distributed denial of service
attack

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-43

TCP 3-Way Handshake and Availability

* Normal three-way handshake to

SYN(s) initiate connection

source » destination
e Suppose source never sends

SYN(t)ACK(s+1) third message (the last ACK)

source < destination
e Destination holds information
ACK(t+1) about pending connection for a
source > destination period of time before the space is
released

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-44

Analysis

e Consumption of bandwidth

* |f flooding overwhelms capacity of physical network medium, SYNs from
legitimate handshake attempts may not be able to reach the target

* Absorption of resources on destination host

* Flooding fills up memory space for pending connections, causing SYNs from
legitimate handshake attempts to be discarded

* In terms of the models:
* Waiting time is the time that destination waits for ACK from source

 Fairness policy must assure host waiting for ACK (resource) will receive
(acquire) it

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-45

Analysis in Terms of Model

* Waiting time is the time that destination waits for ACK from source

* Fairness policy must assure host waiting for ACK (resource) will
receive (acquire) it
* But goal of attack is to make sure it never arrives

* Yu-Gligor model: finite wait time does not hold
* So model says denial of service can occur

* Millen model: T,(ACK) > max(ACK)

* max(ACK) is the time-out period for pending connections
* So model says denial of service can occur

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-46

Countermeasures

* Focus on ensuring resources needed for legitimate handshakes to
complete are available
* So every legitimate client gets access to server

* First approach: manipulate opening of connection at end point

* |f focus is to ensure connection attempts will succeed at some time, focus is
really on waiting time

e Otherwise, focus is on user agreement

* Second approach: control which packets, or rate at which packets,
sent to destination
* Focus is on implicit user agreements

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-47

Intermediate Systems

* Approach is to reduce consumption of resources on destination by
diverting or eliminating illegitimate traffic so only legitimate traffic
reaches destination

* Done at infrastructure level

e Example: Cisco routers try to establish connection with source (TCP
intercept mode)
* On success, router does same with intended destination, merges the two

* On failure, short time-out protects router resources and target never sees
flood

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-48

Track Connection Status

e Use network monitor to track status of handshake

* Example: synkill monitors traffic on network

 Classifies IP addresses as not flooding (good), flooding (bad), unknown (new)
* Checks IP address of SYN

* If good, packet ignored

* If bad, send RST to destination; ends handshake, releasing resources

* If new, look for ACK or RST from same source; if seen, change to good; if not seen,
change to bad

* Periodically discard stale good addresses

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-49

Intermediate Systems near Sources

e D-WARD relies on routers close to the sources to block attack
* Reduces congestion in network without interfering with legitimate traffic

* Placed at gateways of possible sources to examine packets leaving
(internal) network and going to Internet

* Deployed on systems in research lab for 4 months
* First month: large number of false alerts
* Tuning D-WARD parameters reduced this number

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-50

D-WARD: Observation Component

* Has set of legitimate internal addresses

* Gathers statistics on packets leaving network, discarding packets
without legitimate addresses

* Tracks number of simultaneous connections to each remote
destination

* Unusually large number may indicate attack from this network

* Examines connections with large amount of outgoing traffic but little
incoming (response) traffic

* May indicate destination host is overwhelmed

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-51

D-WARD: Observation Component

* Also aggregates traffic statistics to each remote address

* Classifies flows as attack, suspicious, normal

* Normal: statistics match legitimate traffic model
* Attack: if not

* Once traffic classified as attack begins to match legitimate traffic
model, indicates attack has ended, so flow reclassified as suspicious

* |f it stays suspicious for predetermined time, reclassified as normal

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-52

D-WARD: Rate-Limiting Component

* When attack detected, this component limits amount of packets that
can be sent

* This reduces volume of traffic going from this network to destination

* How it limits rate is based on D-WARD’s best guess of amount of
traffic destination can handle

* When flow reclassified as normal, D-WARD raises rate limit until sending rate
is as before

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-53

D-WARD: Traffic-Policing Component

 Component obtains information from other 2 components

* Based on this, decides whether to drop packets
* Packets for normal connections always forwarded

* Packets for other flows may be forwarded provided doing so does not exceed
rate limit associated with flow

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-54

Endpoint Protection

e Control how TCP state is stored

* When SYN received, entry in queue of pending connections created
e Remains until an ACK received or time-out
* In first case, entry moved to different queue
* In second case, entry made available for next SYN

* In SYN flood, queue is always full
* So, assure legitimate connections space in queue to some level of probability
* Two approaches: SYN cookies or adaptive time-outs

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-55

SYN Cache

» Space allocated for each pending connection
* But much less than for a full connection

* How it works on FreeBSD
* On initialization, hash table (syncache) created

* When SYN packet arrives, system generates hash from header and uses that
to determine which bucket to store enough information to be able to send
SYN/ACK on the pending connection (and does so)

* If bucket full, oldest element dropped

* If peer returns ACK, entry removed and connection created
* |f peer returns RST, entry removed
* If no response, repeat fixed number of times; if no responses, remove entry

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-56

SYN Cookies

 Source keeps state

e How it works

 When SYN arrives, generate number (syncookie) from header data and
random data; use as ACK sequence number in SYN/ACK packet

 Random data changes periodically
 When reply ACK arrives, recompute syncookie from information in header

* FreeBSD uses this technique when pending connection cannot be
inserted into syncache

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-57

Adaptive Time-Out

* Change time-out time as space available for pending connections
decreases

* Example: modified SunOS kernel
* Time-out period shortened from 75 to 15 sec

* Formula for queueing pending connections changed:

Process allows up to b pending connections on port
a number of completed connections but awaiting process

p total number of pending connections

c tunable parameter
Whenever a + p > cb, drop current SYN message

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-58

Other Flooding Attacks

* These use reflectors (typically, infrastructure systems) to augment
traffic, creating flooding
e Attacker need only send small amount of traffic; reflectors create the rest

* Called amplification attack
* Hides origin of attack, which appears to come from reflectors

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-59

Smurf Attack

* Relies on router forwarding ICMP packets to all hosts on network

* Attacker sends ICMP packet to router with destination address set to
broadcast address of network

* Router sends copy of packet to each host on network

* |f attacker sends steady stream of packets, has the effect of sending that
stream to all hosts on network

* Example of an amplification attack

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-60

DNS Amplification Attack

* Uses DNS resolvers that are configured to accept queries from any
host rather than only hosts on their own network

 Attacker sends packet with source address set to that of target
* Packet has query that causes DNS resolver to send large amount of
information to target

* Example: zone transfer query is a small query, but typically sends large
amount of data to target, typically in multiple packets, each larger than a
qguery packet

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-61

Pulse Denial of Service Attack

* Like flooding, but packets sent in pulses
* May only degrade target’s performance, but that may be enough of a denial
of service
* Induces 3 anomalies in traffic to target

* Ratio of incoming TCP packets to outgoing ACKs increases dramatically
* Rate of incoming packets much higher than system can send ACKs
 When attacker reduces number of packets to target, number of ACKS drop

 Distribution of incoming packet interarrival time will be anomalous

* Vanguard detection scheme uses these 3 anomalies to detect pulse
denial-of-service attack

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-62

Key Points

* Availability in security context deals with malicious denial of service

* Models of denial of service have waiting time policy and user
agreement as key components

 Network denial-of-service attacks, and countermeasures, instantiate
these models

 Amplification attacks usually hide origin of attacks, and enable
flooding by an attacker that sends a relatively small number of
packets

Version 1.1 Computer Security: Art and Science, 2" Edition Slide 7-63

