

Noninterference and Policy Composition

Chapter 9

Overview

- Problem
 - Policy composition
- Noninterference
 - HIGH inputs affect LOW outputs
- Nondeducibility
 - HIGH inputs can be determined from LOW outputs
- Restrictiveness
 - When can policies be composed successfully

Composition of Policies

- Two organizations have two security policies
- They merge
 - How do they combine security policies to create one security policy?
 - Can they create a coherent, consistent security policy?

The Problem

- Single system with 2 users
 - Each has own virtual machine
 - Holly at system high, Lara at system low so they cannot communicate directly
- CPU shared between VMs based on load
 - Forms a *covert channel* through which Holly, Lara can communicate

SECOND EDITION

Example Protocol

- Holly, Lara agree:
 - Begin at noon
 - Lara will sample CPU utilization every minute
 - To send 1 bit, Holly runs program
 - Raises CPU utilization to over 60%
 - To send 0 bit, Holly does not run program
 - CPU utilization will be under 40%
- Not "writing" in traditional sense
 - But information flows from Holly to Lara

Policy vs. Mechanism

- Can be hard to separate these
- In the abstract: CPU forms channel along which information can be transmitted
 - Violates *-property
 - Not "writing" in traditional sense
- Conclusion:
 - Bell-LaPadula model does not give sufficient conditions to prevent communication, or
 - System is improperly abstracted; need a better definition of "writing"

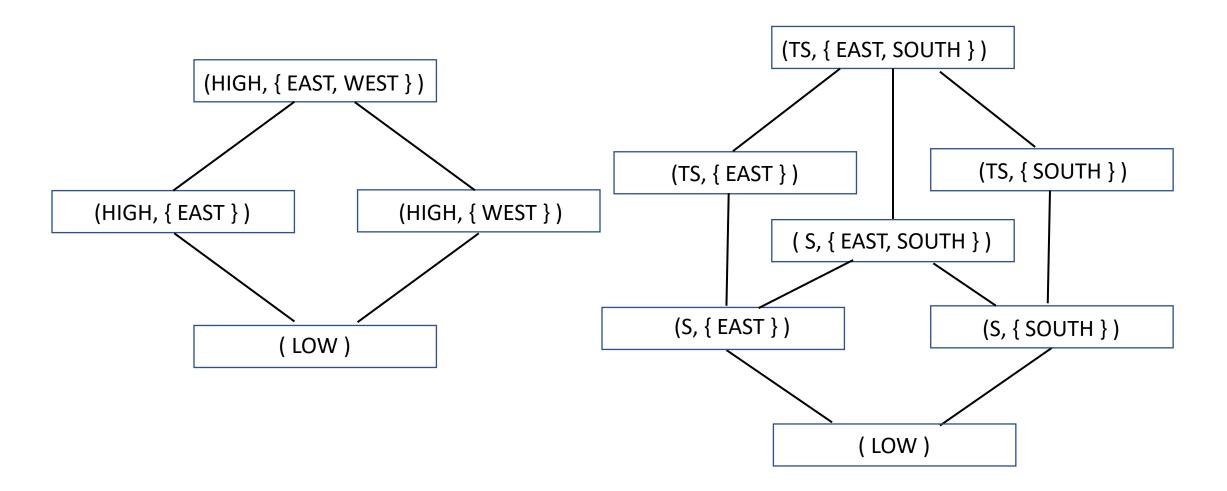
Composition of Bell-LaPadula

- Why?
 - Some standards require secure components to be connected to form secure (distributed, networked) system
- Question
 - Under what conditions is this secure?
- Assumptions
 - Implementation of systems precise with respect to each system's security policy

Issues

- Compose the lattices
- What is relationship among labels?
 - If the same, trivial
 - If different, new lattice must reflect the relationships among the levels

Example



Analysis

- Assume S < HIGH < TS
- Assume SOUTH, EAST, WEST different
- Resulting lattice has:
 - 4 clearances (LOW < S < HIGH < TS)
 - 3 categories (SOUTH, EAST, WEST)

Same Policies

- If we can change policies that components must meet, composition is trivial (as above)
- If we *cannot*, we must show composition meets the same policy as that of components; this can be very hard

Different Policies

- What does "secure" now mean?
- Which policy (components) dominates?
- Possible principles:
 - Any access allowed by policy of a component must be allowed by composition of components (*autonomy*)
 - Any access forbidden by policy of a component must be forbidden by composition of components (*security*)

Implications

- Composite system satisfies security policy of components as components' policies take precedence
- If something neither allowed nor forbidden by principles, then:
 - Allow it (Gong & Qian)
 - Disallow it (Fail-Safe Defaults)

Example

- System X: Bob can't access Alice's files
- System Y: Eve, Lilith can access each other's files
- Composition policy:
 - Bob can access Eve's files
 - Lilith can access Alice's files
- Question: can Bob access Lilith's files?

Solution (Gong & Qian)

- Notation:
 - (*a*, *b*): *a* can read *b*'s files
 - AS(x): access set of system x
- Set-up:
 - AS(X) = Ø
 - AS(Y) = { (Eve, Lilith), (Lilith, Eve) }
 - AS(X\U) = { (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) }

Solution (Gong & Qian)

- Compute transitive closure of AS(X∪Y):
 - $AS(X \cup Y)^+ = \{ (Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice), \}$

(Lilith, Eve), (Lilith, Alice) }

- Delete accesses conflicting with policies of components:
 - Delete (Bob, Alice)
- (Bob, Lilith) in set, so Bob can access Lilith's files

Idea

- Composition of policies allows accesses not mentioned by original policies
- Generate all possible allowed accesses
 - Computation of transitive closure
- Eliminate forbidden accesses
 - Removal of accesses disallowed by individual access policies
- Everything else is allowed
- Note: determining if access allowed is of polynomial complexity

Interference

- Think of it as something used in communication
 - Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects it — communication
- Plays role of writing (interfering) and reading (detecting the interference)

Model

- System as state machine
 - Subjects $S = \{ s_i \}$
 - States $\Sigma = \{ \sigma_i \}$
 - Outputs *O* = { *o_i* }
 - Commands $Z = \{ z_i \}$
 - State transition commands *C* = *S* × *Z*
- Note: no inputs
 - Encode either as selection of commands or in state transition commands

Functions

- State transition function $T: C \times \Sigma \rightarrow \Sigma$
 - Describes effect of executing command \emph{c} in state σ
- Output function $P: C \times \Sigma \rightarrow O$
 - Output of machine when executing command \emph{c} in state σ
- Initial state is σ_{0}

Example: 2-Bit Machine

- Users Heidi (high), Lucy (low)
- 2 bits of state, H (high) and L (low)
 - System state is (*H*, *L*) where *H*, *L* are 0, 1
- 2 commands: *xor0, xor1* do xor with 0, 1
 - Operations affect *both* state bits regardless of whether Heidi or Lucy issues it

Example: 2-bit Machine

- *S* = { Heidi, Lucy }
- $\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$
- *C* = { *xor0*, *xor1* }

	Input States (H, L)			
	(0,0)	(0,1)	(1,0)	(1,1)
xor0	(0,0)	(0,1)	(1,0)	(1,1)
xor1	(1,1)	(1,0)	(0,1)	(0,0)

Outputs and States

- *T* is inductive in first argument, as $T(c_0, \sigma_0) = \sigma_1$; $T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i))$
- Let C* be set of possible sequences of commands in C
- $T^*: C^* \times \Sigma \to \Sigma$ and $c_s = c_0...c_n \Rightarrow T^*(c_s, \sigma_i) = T(c_n, ..., T(c_0, \sigma_i)...)$
- *P* similar; define *P* *: $C^* \times \Sigma \rightarrow O$ similarly

Projection

- $T^*(c_s, \sigma_i)$ sequence of state transitions
- *P**(*c_s*, σ_{*i*}) corresponding outputs
- *proj*(*s*, c_s , σ_i) set of outputs in $P^*(c_s, \sigma_i)$ that subject *s* authorized to see
 - In same order as they occur in $P^*(c_s, \sigma_i)$
 - Projection of outputs for s
- Intuition: list of outputs after removing outputs that *s* cannot see

Purge

- $G \subseteq S$, G a group of subjects
- $A \subseteq Z$, A a set of commands
- $\pi_G(c_s)$ subsequence of c_s with all elements $(s,z), s \in G$ deleted
- $\pi_A(c_s)$ subsequence of c_s with all elements $(s,z), z \in A$ deleted
- $\pi_{G,A}(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ and $z \in A$ deleted

SECOND EDITION

Example: 2-bit Machine

- Let $\sigma_0 = (0, 1)$
- 3 commands applied:
 - Heidi applies xor0
 - Lucy applies *xor1*
 - Heidi applies *xor1*
- $c_s = ($ (Heidi, xor0), (Lucy, xor1), (Heidi, xor1))
- Output is 011001
 - Shorthand for sequence (0,1) (1,0) (0,1)

Example

- *proj*(Heidi, c_s , σ_0) = 011001
- *proj*(Lucy, c_s , σ_0) = 101
- $\pi_{Lucy}(c_s) =$ (Heidi, *xor0*), (Heidi, *xor1*)
- $\pi_{Lucy,xor1}(c_s) =$ (Heidi, xor0), (Heidi, xor1)
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, xor1)$
- $\pi_{Lucy,xor0}(c_s) =$ (Heidi, xor0), (Lucy, xor1), (Heidi, xor1)
- $\pi_{\text{Heidi},xor0}(c_s) = \pi_{xor0}(c_s) = (\text{Lucy}, xor1), (\text{Heidi}, xor1)$
- $\pi_{\text{Heidi,xor1}}(c_s) = (\text{Heidi, xor0}), (\text{Lucy, xor1})$
- $\pi_{xor1}(c_s) = (\text{Heidi}, xor0)$

Noninterference

- Intuition: If set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference
- Formally: $G, G' \subseteq S, G \neq G'; A \subseteq Z$; users in G executing commands in A are *noninterfering* with users in G' iff for all $c_s \in C^*$, and for all $s \in G'$, $proj(s, c_s, \sigma_i) = proj(s, \pi_{G,A}(c_s), \sigma_i)$
 - Written *A*,*G* :| *G*'

Example: 2-Bit Machine

- Let c_s = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor1)) and σ₀ = (0, 1)
 As before
- Take $G = \{ \text{Heidi} \}, G' = \{ \text{Lucy} \}, A = \emptyset$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy, xor1})$
 - So *proj*(Lucy, $\pi_{\text{Heidi}}(c_s)$, σ_0) = 0
- *proj*(Lucy, c_s , σ_0) = 101
- So { Heidi } : | { Lucy } is false
 - Makes sense; commands issued to change *H* bit also affect *L* bit

Example

- Same as before, but Heidi's commands affect H bit only, Lucy's the L bit only
- Output is $0_H 0_L 1_H$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, xor1)$
 - So *proj*(Lucy, $\pi_{\text{Heidi}}(c_s)$, σ_0) = 0
- *proj*(Lucy, c_s , σ_0) = 0
- So { Heidi } : | { Lucy } is true
 - Makes sense; commands issued to change *H* bit now do not affect *L* bit

Security Policy

- Partitions systems into authorized, unauthorized states
- Authorized states have no forbidden interferences
- Hence a *security policy* is a set of noninterference assertions
 - See previous definition

Alternative Development

- System X is a set of protection domains $D = \{ d_1, ..., d_n \}$
- When command c executed, it is executed in protection domain dom(c)
- Give alternate versions of definitions shown previously

Security Policy

- $D = \{ d_1, ..., d_n \}, d_i$ a protection domain
- *r*: *D* × *D* a reflexive relation
- Then r defines a security policy
- Intuition: defines how information can flow around a system
 - $d_i r d_j$ means info can flow from d_i to d_j
 - *d_ird_i* as info can flow within a domain

Projection Function

- π' analogue of π , earlier
- Commands, subjects absorbed into protection domains
- $d \in D$, $c \in C$, $c_s \in C^*$
- $\pi'_d(v) = v$
- $\pi'_d(c_s c) = \pi'_d(c_s)c$ if dom(c)rd
- $\pi'_d(c_s c) = \pi'_d(c_s)$ otherwise
- Intuition: if executing *c* interferes with *d*, then *c* is visible; otherwise, as if *c* never executed

Noninterference-Secure

- System has set of protection domains D
- System is *noninterference-secure with respect to policy r* if

 $P^*(c,\,T^*(c_s,\,\sigma_0))=P^*(c,\,T^*(\pi'_d(c_s),\,\sigma_0))$

 Intuition: if executing c_s causes the same transitions for subjects in domain d as does its projection with respect to domain d, then no information flows in violation of the policy

Output-Consistency

- $c \in C$, $dom(c) \in D$
- ~^{dom(c)} equivalence relation on states of system X
- ~^{dom(c)} output-consistent if

$$\sigma_a \sim^{dom(c)} \sigma_b \Longrightarrow P(c, \sigma_a) = P(c, \sigma_b)$$

• Intuition: states are output-consistent if for subjects in *dom(c)*, projections of outputs for both states after *c* are the same

Lemma

- Let $T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$ for $c \in C$
- If ~^d output-consistent, then system is noninterference-secure with respect to policy r

Proof

- d = dom(c) for $c \in C$
- By definition of output-consistent,

$$T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$$

implies

$$P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))$$

• This is definition of noninterference-secure with respect to policy *r*

Unwinding Theorem

- Links security of sequences of state transition commands to security of individual state transition commands
- Allows you to show a system design is multilevel-secure by showing it matches specs from which certain lemmata derived
 - Says *nothing* about security of system, because of implementation, operation, *etc*. issues

Locally Respects

- *r* is a policy
- System X locally respects r if dom(c) being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
- Intuition: when X locally respects r, applying c under policy r to system X has no effect on domain d

Transition-Consistent

- r policy, $d \in D$
- If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X is transition-consistent under r
- Intuition: command c does not affect equivalence of states under policy r

Unwinding Theorem

- Links security of sequences of state transition commands to security of individual state transition commands
- Allows you to show a system design is ML secure by showing it matches specs from which certain lemmata derived
 - Says *nothing* about security of system, because of implementation, operation, *etc*. issues

Locally Respects

- *r* is a policy
- System X locally respects r if dom(c) being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
- Intuition: applying c under policy r to system X has no effect on domain d when X locally respects r

Transition-Consistent

- r policy, $d \in D$
- If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X transition-consistent under r
- Intuition: command c does not affect equivalence of states under policy r

Theorem

- r policy, X system that is output consistent, transition consistent, and locally respects r
- Then X noninterference-secure with respect to policy r
- Significance: basis for analyzing systems claiming to enforce noninterference policy
 - Establish conditions of theorem for particular set of commands, states with respect to some policy, set of protection domains
 - Noninterference security with respect to *r* follows

Proof

Must show $\sigma_a \sim^d \sigma_b \Rightarrow T^*(c_s, \sigma_a) \sim^d T^*(\pi'_d(c_s), \sigma_b)$

- Induct on length of c_s
- Basis: if $c_s = v$, then $T^*(c_s, \sigma_a) = \sigma_a$ and $\pi'_d(v) = v$; claim holds
- Hypothesis: for $c_s = c_1 \dots c_n$, $\sigma_a \sim^d \sigma_b \Rightarrow T^*(c_s, \sigma_a) \sim^d T^*(\pi'_d(c_s), \sigma_b)$

Induction Step

- Consider $c_s c_{n+1}$. Assume $\sigma_a \sim^d \sigma_b$ and look at $T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$
- 2 cases:
 - $dom(c_{n+1})rd$ holds
 - $dom(c_{n+1})rd$ does not hold

$dom(c_{n+1})rd$ Holds

- $T^*(\pi'_d(c_s c_{n+1}), \sigma_b) = T^*(\pi'_d(c_s) c_{n+1}, \sigma_b) = T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b))$
 - By definition of T^* and π'_d

$$\sigma_a \sim^d \sigma_b \Rightarrow T(c_{n+1}, \sigma_a) \sim^d T(c_{n+1}, \sigma_b)$$

- As X transition-consistent
- $T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b))$ By transition-consistency and IH
 - By transition-consistency and IH
- $T(c_{n+1},T^*(c_s,\sigma_a)) \sim^d T^*(\pi'_d(c_sc_{n+1}),\sigma_b)$
 - By substitution from earlier equality

$$T^*(c_s c_{n+1}, \sigma_a) \sim^d T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$$

• By definition of *T**

proving hypothesis

$dom(c_{n+1})rd$ Does Not Hold

- $T^{*}(\pi'_{d}(c_{s}c_{n+1}), \sigma_{b}) = T^{*}(\pi'_{d}(c_{s}), \sigma_{b})$
 - By definition of π'_d
- $T^*(c_s,\,\sigma_a)=T^*(\pi'_d(c_sc_{n+1}),\,\sigma_b)$
 - By above and IH
- $T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(c_s, \sigma_a)$
 - As X locally respects $r, \sigma \sim^d T(c_{n+1}, \sigma)$ for any σ
- $T(c_{n+1},T^*(c_s,\sigma_a)) \sim^d T^*(\pi'_d(c_s\,c_{n+1}\,),\,\sigma_b)$
 - Substituting back

proving hypothesis

Finishing Proof

- Take $\sigma_a = \sigma_b = \sigma_0$, so from claim proved by induction, $T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$
- By previous lemma, as X (and so ~^d) output consistent, then X is noninterference-secure with respect to policy r

Access Control Matrix

- Example of interpretation
- Given: access control information
- Question: are given conditions enough to provide noninterference security?
- Assume: system in a particular state
 - Encapsulates values in ACM

ACM Model

- Objects $L = \{ I_1, ..., I_m \}$
 - Locations in memory
- Values *V* = { *v*₁, ..., *v_n* }
 - Values that L can assume
- Set of states $\Sigma = \{ \sigma_1, ..., \sigma_k \}$
- Set of protection domains $D = \{ d_1, ..., d_j \}$

Functions

- value: $L \times \Sigma \rightarrow V$
 - returns value v stored in location / when system in state σ
- read: $D \rightarrow 2^V$
 - returns set of objects observable from domain d
- write: $D \rightarrow 2^{V}$
 - returns set of objects observable from domain d

Interpretation of ACM

- Functions represent ACM
 - Subject *s* in domain *d*, object *o*
 - $r \in A[s, o]$ if $o \in read(d)$
 - $w \in A[s, o]$ if $o \in write(d)$
- Equivalence relation:

 $[\sigma_a \sim dom(c) \sigma_b] \Leftrightarrow [\forall I_i \in read(d) [value(I_i, \sigma_a) = value(I_i, \sigma_b)]]$

• You can read the *exactly* the same locations in both states

Enforcing Policy r

- 5 requirements
 - 3 general ones describing dependence of commands on rights over input and output
 - Hold for all ACMs and policies
 - 2 that are specific to some security policies
 - Hold for *most* policies

Enforcing Policy r: General Requirements

 Output of command c executed in domain dom(c) depends only on values for which subjects in dom(c) have read access

• $\sigma_a \sim^{dom(c)} \sigma_b \Longrightarrow P(c, \sigma_a) = P(c, \sigma_b)$

- If c changes I_i, then c can only use values of objects in read(dom(c)) to determine new value
 - $[\sigma_a \sim^{dom(c)} \sigma_b \land (value(I_i, T(c, \sigma_a)) \neq value(I_i, \sigma_a) \lor value(I_i, T(c, \sigma_b)) \neq value(I_i, \sigma_b))] \Rightarrow$ $value(I_i, T(c, \sigma_a)) = value(I_i, T(c, \sigma_b))$
- If c changes I_i, then dom(c) provides subject executing c with write access to I_i
 - $value(I_i, T(c, \sigma_a)) \neq value(I_i, \sigma_a) \Longrightarrow I_i \in write(dom(c))$

Enforcing Policies r: Specific to Policy

 If domain u can interfere with domain v, then every object that can be read in u can also be read in v; so if object o cannot be read in u, but can be read in v and object o' in u can be read in v, then info flows from o to o', then to v

$$[u, v \in D \land urv] \Rightarrow read(u) \subseteq read(v)$$

• Subject *s* can write object *o* in *v*, subject *s*' can read *o* in *u*, then domain *v* can interfere with domain *u*

$$[I_i \in read(u) \land I_i \in write(v)] \Rightarrow vru$$

Theorem

- Let X be a system satisfying these five conditions. Then X is noninterference-secure with respect to r
- Proof: must show X output-consistent, locally respects r, transitionconsistent
 - Then by unwinding theorem, this theorem holds

Output-Consistent

 Take equivalence relation to be ~^d, first condition is definition of output-consistent

Locally Respects r

- Proof by contradiction: assume $(dom(c),d) \notin r$ but $\sigma_a \sim^d T(c, \sigma_a)$ does not hold
- Some object has value changed by c:

 $\exists I_i \in read(d) [value(I_i, \sigma_a) \neq value(I_i, T(c, \sigma_a))]$

- Condition 3: $I_i \in write(d)$
- Condition 5: *dom(c)rd*, contradiction
- So $\sigma_a \sim^d T(c, \sigma_a)$ holds, meaning X locally respects r

Transition Consistency

- Assume $\sigma_a \sim^d \sigma_b$
- Must show $value(I_i, T(c, \sigma_a)) = value(I_i, T(c, \sigma_b))$ for $I_i \in read(d)$
- 3 cases dealing with change that c makes in I_i in states σ_a , σ_b
 - $value(I_i, T(c, \sigma_a)) \neq value(I_i, \sigma_a)$
 - $value(I_i, T(c, \sigma_b)) \neq value(I_i, \sigma_b)$
 - Neither of the above two hold

Case 1: $value(I_i, T(c, \sigma_a)) \neq value(I_i, \sigma_a)$

- Condition 3: $I_i \in write(dom(c))$
- As $I_i \in read(d)$, condition 5 says dom(c)rd
- Condition 4: $read(dom(c)) \subseteq read(d)$
- As $\sigma_a \sim^d \sigma_b$, $\sigma_a \sim^{dom(c)} \sigma_b$
- Condition 2: $value(I_i, T(c, \sigma_a)) = value(I_i, T(c, \sigma_b))$
- So $T(c, \sigma_a) \sim^{dom(c)} T(c, \sigma_b)$, as desired

Case 2: $value(I_i, T(c, \sigma_b)) \neq value(I_i, \sigma_b)$

- Condition 3: $I_i \in write(dom(c))$
- As $I_i \in read(d)$, condition 5 says dom(c)rd
- Condition 4: $read(dom(c)) \subseteq read(d)$
- As $\sigma_a \sim^d \sigma_b$, $\sigma_a \sim^{dom(c)} \sigma_b$
- Condition 2: $value(I_i, T(c, \sigma_a)) = value(I_i, T(c, \sigma_b))$
- So $T(c, \sigma_a) \sim^{dom(c)} T(c, \sigma_b)$, as desired

Case 3: Neither of the Previous Two Hold

- This means the two conditions below hold:
 - $value(I_i, T(c, \sigma_a)) = value(I_i, \sigma_a)$
 - $value(I_i, T(c, \sigma_b)) = value(I_i, \sigma_b)$
- Interpretation of $\sigma_a \sim^d \sigma_b$ is:

for $I_i \in read(d)$, $value(I_i, \sigma_a) = value(I_i, \sigma_b)$

• So $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, as desired

In all 3 cases, X transition-consistent

Policies Changing Over Time

- Problem: previous analysis assumes static system
 - In real life, ACM changes as system commands issued
- Example: $w \in C^*$ leads to current state
 - cando(w, s, z) holds if s can execute z in current state
 - Condition noninterference on *cando*
 - If ¬cando(w, Lara, "write f"), Lara can't interfere with any other user by writing file f

Generalize Noninterference

- $G \subseteq S$ set of subjects, $A \subseteq Z$ set of commands, p predicate over elements of C^*
- $c_s = (c_1, ..., c_n) \in C^*$
- $\pi''(v) = v$
- $\pi''((c_1, ..., c_n)) = (c_1', ..., c_n')$, where
 - $c_i' = v$ if $p(c_1', ..., c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
 - $c_i' = c_i$ otherwise

Intuition

- $\pi''(c_s) = c_s$
- But if p holds, and element of c_s involves both command in A and subject in G, replace corresponding element of c_s with empty command v
 - Just like deleting entries from c_s as $\pi_{A,G}$ does earlier

Noninterference

- G, G' \subseteq S sets of subjects, $A \subseteq Z$ set of commands, p predicate over C^*
- Users in *G* executing commands in *A* are *noninterfering with users in G'* under condition *p* iff, for all $c_s \in C^*$ and for all $s \in G'$, $proj(s, c_s, \sigma_i) = proj(s, \pi''(c_s), \sigma_i)$
 - Written *A*,*G* :| *G*′ **if** *p*

Example

- From earlier one, simple security policy based on noninterference: $\forall (s \in S) \ \forall (z \in Z) [\{z\}, \{s\} : | S \text{ if } \neg cando(w, s, z)]$
- If subject can't execute command (the ¬cando part) in any state, subject can't use that command to interfere with another subject

SECOND EDITION

Another Example

- Consider system in which rights can be passed
 - *pass(s, z)* gives *s* right to execute *z*
 - $w_n = v_1, ..., v_n$ sequence of $v_i \in C^*$
 - $prev(w_n) = w_{n-1}; last(w_n) = v_n$

Policy

if $[\neg cando(prev(w), s, z) \land [cando(prev(w), s', pass(s, z)) \Rightarrow \neg last(w) = (s', pass(s, z))]$

Effect

- Suppose $s_1 \in S$ can execute $pass(s_2, z)$
- For all $w \in C^*$, cando(w, s_1 , pass(s_2 , z)) holds
- Initially, $cando(v, s_2, z)$ false
- Let $z' \in Z$ be such that (s_3, z') noninterfering with (s_2, z)
 - So for each w_n with $v_n = (s_3, z')$, $cando(w_n, s_2, z) = cando(w_{n-1}, s_2, z)$

Effect

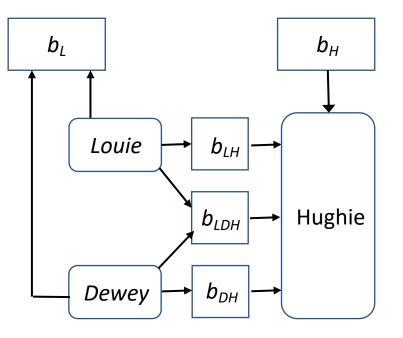
- Then policy says for all s ∈ S proj(s, ((s₂, z), (s₁, pass(s₂, z)), (s₃, z'), (s₂, z)), σ_i) = proj(s, ((s₁, pass(s₂, z)), (s₃, z'), (s₂, z)), σ_i)
- So s₂'s first execution of z does not affect any subject's observation of system

Policy Composition I

- Assumed: Output function of input
 - Means deterministic (else not function)
 - Means uninterruptability (differences in timings can cause differences in states, hence in outputs)
- This result for deterministic, noninterference-secure systems

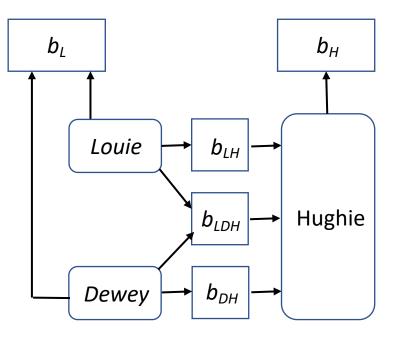
Compose Systems

- Louie, Dewey LOW
- Hughie HIGH
- b_L output buffer
 - Anyone can read it
- b_H input buffer
 - From HIGH source
- Hughie reads from:
 - *b*_{LH} (Louie writes)
 - *b*_{LDH} (Louie, Dewey write)
 - *b*_{DH} (Dewey writes)



Systems Secure

- All noninterference-secure
 - Hughie has no output
 - So inputs don't interfere with it
 - Louie, Dewey have no input
 - So (nonexistent) inputs don't interfere with outputs



Security of Composition

- Buffers finite, sends/receives blocking: composition *not* secure!
 - Example: assume b_{DH} , b_{LH} have capacity 1
- Algorithm:
 - 1. Louie (Dewey) sends message to b_{LH} (b_{DH})
 - Fills buffer
 - 2. Louie (Dewey) sends second message to b_{LH} (b_{DH})
 - 3. Louie (Dewey) sends a 0 (1) to b_L
 - 4. Louie (Dewey) sends message to b_{LDH}
 - Signals Hughie that Louie (Dewey) completed a cycle

Hughie

- Reads bit from b_H
 - If 0, receive message from b_{LH}
 - If 1, receive message from b_{DH}
- Receive on b_{LDH}
 - To wait for buffer to be filled

Example

- Hughie reads 0 from b_H
 - Reads message from b_{LH}
- Now Louie's second message goes into b_{LH}
 - Louie completes setp 2 and writes 0 into *b*_L
- Dewey blocked at step 1
 - Dewey cannot write to b_L
- Symmetric argument shows that Hughie reading 1 produces a 1 in b_L
- So, input from b_H copied to output b_L

Nondeducibility

- Noninterference: do state transitions caused by high level commands interfere with sequences of state transitions caused by low level commands?
- Really case about inputs and outputs:
 - Can low level subject deduce *anything* about high level outputs from a set of low level outputs?

Example: 2-Bit System

- High operations change only High bit
 - Similar for *Low*
- $\sigma_0 = (0, 0)$
- Sequence of commands:
 - (Heidi, xor1), (Lara, xor0), (Lara, xor1), (Lara, xor0), (Heidi, xor1), (Lara, xor0)
 - Both bits output after each command
- Output is: 00101011110101

Security

- Not noninterference-secure w.r.t. Lara
 - Lara sees output as 0001111
 - Delete *High* outputs and she sees 00111
- But Lara still cannot deduce the commands deleted
 - Don't affect values; only lengths
- So it is deducibly secure
 - Lara can't deduce the commands Heidi gave

Event System

- 4-tuple (*E*, *I*, *O*, *T*)
 - E set of events
 - $I \subseteq E$ set of input events
 - $O \subseteq E$ set of output events
 - *T* set of all finite sequences of events legal within system
- *E* partitioned into *H*, *L*
 - *H* set of *High* events
 - L set of Low events

More Events ...

- $H \cap I$ set of *High* inputs
- $H \cap O$ set of *High* outputs
- $L \cap I$ set of *Low* inputs
- *L* \cap *O* set of *Low* outputs
- T_{Low} set of all possible sequences of Low events that are legal within system
- $\pi_L: T \rightarrow T_{Low}$ projection function deleting all *High* inputs from trace
 - Low observer should not be able to deduce anything about High inputs from trace $t_{Low} \in T_{low}$

Deducibly Secure

- System deducibly secure if for all traces $t_{Low} \in T_{Low}$, the corresponding set of high level traces contains every possible trace $t \in T$ for which $\pi_L(t) = t_{Low}$
 - Given any t_{Low} , the trace $t \in T$ producing that t_{Low} is equally likely to be any trace with $\pi_L(t) = t_{Low}$

Example: 2-Bit Machine

- Let *xor0, xor1* apply to both bits, and both bits output after each command
- Initial state: (0, 1)
- Inputs: $1_H 0_L 1_L 0_H 1_L 0_L$
- Outputs: 10 10 01 01 10 10
- Lara (at *Low*) sees: 001100
 - Does not know initial state, so does not know first input; but can deduce fourth input is 0
- Not deducibly secure

Example: 2-Bit Machine

- Now *xor0, xor1* apply only to state bit with same level as user
- Inputs: $1_H 0_L 1_L 0_H 1_L 0_L$
- Outputs: 1011111011
- Lara sees: 01101
- She cannot deduce *anything* about input
 - Could be $0_H 0_L 1_L 0_H 1_L 0_L$ or $0_L 1_H 1_L 0_H 1_L 0_L$ for example
- Deducibly secure

Security of Composition

- In general: deducibly secure systems not composable
- Strong noninterference: deducible security + requirement that no High output occurs unless caused by a High input
 - Systems meeting this property are composable

Example

- 2-bit machine done earlier does not exhibit strong noninterference
 - Because it puts out *High* bit even when there is no *High* input
- Modify machine to output only state bit at level of latest input
 - *Now* it exhibits strong noninterference

Problem

- Too restrictive; it bans some systems that are *obviously* secure
- Example: System *upgrade* reads *Low* inputs, outputs those bits at *High*
 - Clearly deducibly secure: low level user sees no outputs
 - Clearly does not exhibit strong noninterference, as no high level inputs!

Remove Determinism

- Previous assumption
 - Input, output synchronous
 - Output depends only on commands triggered by input
 - Sometimes absorbed into commands ...
 - Input processed one datum at a time
- Not realistic
 - In real systems, lots of asynchronous events

Generalized Noninterference

- Nondeterministic systems meeting noninterference property meet generalized noninterference-secure property
 - More robust than nondeducible security because minor changes in assumptions affect whether system is nondeducibly secure

Example

- System with High Holly, Low Lucy, text file at High
 - File fixed size, symbol <> marks empty space
 - Holly can edit file, Lucy can run this program:

```
while true do begin
    n := read_integer_from_user;
    if n > file_length or char_in_file[n] = $ then
        print random_character;
    else
        print char_in_file[n];
end;
```


Security of System

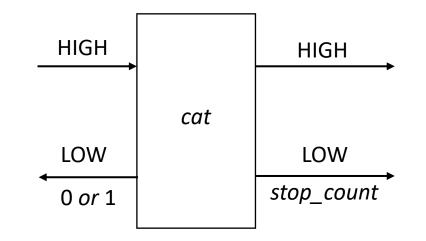
- Not noninterference-secure
 - High level inputs—Holly's changes—affect low level outputs
- *May* be deducibly secure
 - Can Lucy deduce contents of file from program?
 - If output meaningful ("This is right") or close ("Thes is right"), yes
 - Otherwise, no
- So deducibly secure depends on which inferences are allowed

Composition of Systems

- Does composing systems meeting generalized noninterference-secure property give you a system that also meets this property?
- Define two systems (*cat, dog*)
- Compose them

First System: cat

- Inputs, outputs can go left or right
- After some number of inputs, cat sends two outputs
 - First *stop_count*
 - Second parity of *High* inputs, outputs

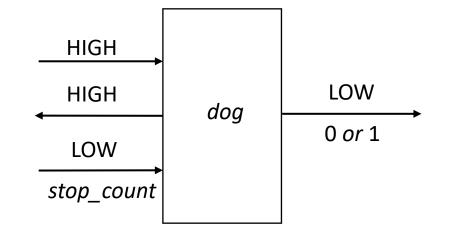


Noninterference-Secure?

- If even number of *High* inputs, output could be:
 - 0 (even number of outputs)
 - 1 (odd number of outputs)
- If odd number of *High* inputs, output could be:
 - 0 (odd number of outputs)
 - 1 (even number of outputs)
- High level inputs do not affect output
 - So noninterference-secure

Second System: dog

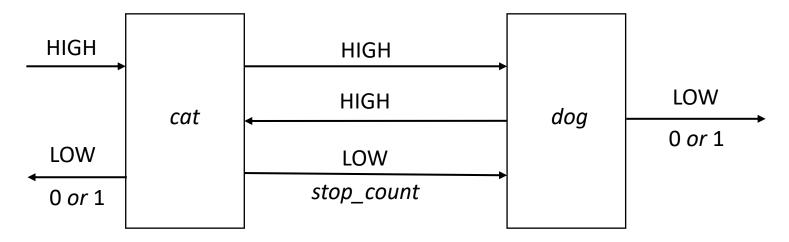
- High outputs to left
- Low outputs of 0 or 1 to right
- *stop_count* input from the left
 - When it arrives, dog emits 0 or 1



Noninterference-Secure?

- When *stop_count* arrives:
 - May or may not be inputs for which there are no corresponding outputs
 - Parity of *High* inputs, outputs can be odd or even
 - Hence *dog* emits 0 or 1
- High level inputs do not affect low level outputs
 - So noninterference-secure

Compose Them



- Once sent, message arrives
 - But stop_count may arrive before all inputs have generated corresponding outputs
 - If so, even number of *High* inputs and outputs on *cat*, but odd number on *dog*
- Four cases arise

The Cases

- *cat*, odd number of inputs, outputs; *dog*, even number of inputs, odd number of outputs
 - Input message from *cat* not arrived at *dog*, contradicting assumption
- *cat*, even number of inputs, outputs; *dog*, odd number of inputs, even number of outputs
 - Input message from *dog* not arrived at *cat*, contradicting assumption

The Cases

- cat, odd number of inputs, outputs; dog, odd number of inputs, even number of outputs
 - dog sent even number of outputs to cat, so cat has had at least one input from left
- cat, even number of inputs, outputs; dog, even number of inputs, odd number of outputs
 - dog sent odd number of outputs to cat, so cat has had at least one input from left

The Conclusion

- Composite system *catdog* emits 0 to left, 1 to right (or 1 to left, 0 to right)
 - Must have received at least one input from left
- Composite system *catdog* emits 0 to left, 0 to right (or 1 to left, 1 to right)
 - Could not have received any from left (i.e., no HIGH inputs)
- So, *High* inputs affect *Low* outputs
 - Not noninterference-secure

Feedback-Free Systems

- System has *n* distinct components
- Components c_i , c_j are connected if any output of c_i is input to c_j
- System is *feedback-free* if for all c_i connected to c_j , c_j not connected to any c_i
 - Intuition: once information flows from one component to another, no information flows back from the second to the first

Feedback-Free Security

• *Theorem*: A feedback-free system composed of noninterference-secure systems is itself noninterference-secure

Some Feedback

- Lemma: A noninterference-secure system can feed a HIGH output o to a HIGH input i if the arrival of o at the input of the next component is delayed until after the next LOW input or output
- *Theorem*: A system with feedback as described in the above lemma and composed of noninterference-secure systems is itself noninterference-secure

Why Didn't They Work?

- For compositions to work, machine must act same way regardless of what precedes LOW input (HIGH, LOW, nothing)
- *dog* does not meet this criterion
 - If first input is *stop_count, dog* emits 0
 - If high level input precedes *stop_count*, *dog* emits 0 or 1

State Machine Model: 2-Bit Machine

Levels *High*, *Low*, meet 4 properties:

1. For every input i_k , state σ_j , there is an element $c_m \in C^*$ such that $T^*(c_m, \sigma_j) = \sigma_n$, where $\sigma_n \neq \sigma_j$

T* is total function, inputs and commands always move system to a different state

Property 2

- 2. There is an equivalence relation \equiv such that:
 - a. If system in state σ_i and HIGH sequence of inputs causes transition from σ_i to σ_j , then $\sigma_i \equiv \sigma_j$
 - 2 states equivalent if either reachable from the other state using only HIGH commands
 - b. If $\sigma_i \equiv \sigma_j$ and LOW sequence of inputs $i_1, ..., i_n$ causes system in state σ_i to transition to σ'_i , then there is a state σ'_j such that $\sigma'_i \equiv \sigma'_j$ and inputs $i_1, ..., i_n$ cause system in state σ_j to transition to σ'_j
 - States resulting from giving same LOW commands to the two equivalent original states have same LOW projection
- \equiv holds if LOW projections of both states are same
 - If 2 states equivalent, HIGH commands do not affect LOW projections

Property 3

- Let $\sigma_i \equiv \sigma_j$. If sequence of HIGH outputs $o_1, ..., o_n$ indicate system in state σ_i transitioned to state σ_i' , then for some state σ_j' with $\sigma_j' \equiv \sigma_i'$, sequence of HIGH outputs $o_1', ..., o_m'$ indicates system in σ_j transitioned to σ_j'
 - HIGH outputs do not indicate changes in LOW projection of states

Property 4

- Let $\sigma_i \equiv \sigma_j$, let *c*, *d* be HIGH output sequences, *e* a LOW output. If output sequence *ced* indicates system in state σ_i transitions to σ_i' , then there are HIGH output sequences *c'* and *d'* and state σ_j' such that *c'ed'* indicates system in state σ_i transitions to state σ_i'
 - Intermingled LOW, HIGH outputs cause changes in LOW state reflecting LOW outputs only

Restrictiveness

• System is *restrictive* if it meets the preceding 4 properties

Composition

 Intuition: by 3 and 4, HIGH output followed by LOW output has same effect as the LOW input, so composition of restrictive systems should be restrictive

Composite System

- System M_1 's outputs are acceptable as M_2 's inputs
- μ_{1i} , μ_{2i} states of M_1 , M_2
- States of composite system pairs of M_1 , M_2 states (μ_{1i} , μ_{2i})
- e event causing transition
- *e* causes transition from state (μ_{1a} , μ_{2a}) to state (μ_{1b} , μ_{2b}) if any of 3 conditions hold

Conditions

- 1. M_1 in state μ_{1a} and *e* occurs, M_1 transitions to μ_{1b} ; *e* not an event for M_2 ; and $\mu_{2a} = \mu_{2b}$
- 2. M_2 in state μ_{2a} and e occurs, M_2 transitions to μ_{2b} ; e not an event for M_1 ; and $\mu_{1a} = \mu_{1b}$
- 3. M_1 in state μ_{1a} and e occurs, M_1 transitions to μ_{1b} ; M_2 in state μ_{2a} and e occurs, M_2 transitions to μ_{2b} ; e is input to one machine, and output from other

Intuition

- Event causing transition in composite system causes transition in at least 1 of the components
- If transition occurs in exactly 1 component, event must not cause transition in other component when not connected to the composite system

Equivalence for Composite

• Equivalence relation for composite system

$$(\sigma_a, \sigma_b) \equiv_C (\sigma_c, \sigma_d) \text{ iff } \sigma_a \equiv \sigma_c \text{ and } \sigma_b \equiv \sigma_d$$

 Corresponds to equivalence relation in property 2 for component system

Theorem

The system resulting from the composition of two restrictive systems is itself restrictive

Side Channels

A *side channel* is set of characteristics of a system, from which adversary can deduce confidential information about system or a competition

- Consider information to be derived as HIGH
- Consider information obtained from set of characteristics as LOW
- Attack is to deduce HIGH values from LOW values only
- Implication: attack works on systems not deducibly secure

Types of Side Channel Attacks

- Passive: Only observe system; deduce results from observations
- Active: Disrupt system in some way, causing it to react; deduce results from measurements of disruption

Example: Passive Attack

• Fast modular exponentiation:

```
x := 1; atmp := a;
for i := 0 to k-1 do begin
    if z<sub>i</sub> = 1 then
        x := (x * atmp) mod n;
        atmp := (atmp * atmp) mod n;
end;
result := x;
```

- If bit is 1, there are 2 multiplications; if it is 0, only one
- Extra multiplication takes time
- Can determine bits of the confidential exponent by measuring computation time

Example: Active Attack

Background

- Derive information from characteristics of memory accesses in chip
- Intel x86 caches
 - Each core has 2 levels, L1 and KL2
 - Chip itself has third cache (L3 or LLC)
 - These are hierarchical: miss in L1 goes to L2, miss in L2 goes to L3, miss in L3 goes to memory
 - Caches are inclusive (so L3 has copies of data in L2 and L1)
- Processes share pages

Example: Active Attack

Phase 1

- Flush a set of bytes (called a *line*) from cache to clear it from all 3 caches
 - The disruption
- Phase 2
- Wait until victim has chance to access that memory line Phase 3
- Reload the line
 - If victim did this already, time is short as data comes from L3 cache
 - Otherwise time is longer as memory fetch is required

Example: Active Attack

What happened

- Used to trace execution of GnuPG on a physical machine
- Derived bits of a 2048 bit private key; max of 190 bits incorrect
- Repeated experiment on virtual machine
- Error rates increased
 - On one system, average error rate increased from 1.41 bits to 26.55 bits
 - On another system, average error rate increased from 25.12 bits to 66.12 bits

Model

Components

- Primitive: instantiation of computation
- Device: system doing the computation
- Physical observable: output being observed
- Leakage function: captures characteristics of side channel and mechanism to monitor the physical observables
- *Implementation function*: instantiation of both device, leakage function
- *Side channel adversary*: algorithm that queries implementation to get outputs from leakage function

Example

- First one (passive attack) divided leakage function into two parts
 - Signal was variations in output due to bit being derived
 - Noise was variations due to other factors (imprecisions in measurements, etc.)
- Second one (active attack) had leakage function acting in different ways
 - Physical machine: one chip used more advanced optimizations, thus more noise
 - Virtual machine: more variations due to extra computations running the virtual machines, hence more noise

Example: Electromagnetic Radiation

- CRT video display produces radiation that can be measured
- Using various equipment and a black and white TV, van Eck could reconstruct the images
 - Reconstructed pictures on video display units in buildings
- E-voting system with audio activated (as it would be for visually impaired voters) produced interference with sound from a nearby transistor radio
 - Testers believed changes in the sound due to the interference could be used to determine how voter was vioting

Key Points

- Composing secure policies does not always produce a secure policy
 - The policies must be restrictive
- Noninterference policies prevent HIGH inputs from affecting LOW outputs
 - Prevents "writes down" in broadest sense
- Nondeducibility policies prevent the inference of HIGH inputs from LOW outputs
 - Prevents "reads up" in broadest sense
- Side channel attacks exploit deducability