
Noninterference and Policy
Composition

Chapter 9

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-1

Overview

• Problem
• Policy composition

• Noninterference
• HIGH inputs affect LOW outputs

• Nondeducibility
• HIGH inputs can be determined from LOW outputs

• Restrictiveness
• When can policies be composed successfully

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-2

Composition of Policies

• Two organizations have two security policies
• They merge
• How do they combine security policies to create one security policy?
• Can they create a coherent, consistent security policy?

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-3

The Problem

• Single system with 2 users
• Each has own virtual machine
• Holly at system high, Lara at system low so they cannot communicate directly

• CPU shared between VMs based on load
• Forms a covert channel through which Holly, Lara can communicate

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-4

Example Protocol

• Holly, Lara agree:
• Begin at noon
• Lara will sample CPU utilization every minute
• To send 1 bit, Holly runs program

• Raises CPU utilization to over 60%
• To send 0 bit, Holly does not run program

• CPU utilization will be under 40%

• Not “writing” in traditional sense
• But information flows from Holly to Lara

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-5

Policy vs. Mechanism

• Can be hard to separate these
• In the abstract: CPU forms channel along which information can be

transmitted
• Violates *-property
• Not “writing” in traditional sense

• Conclusion:
• Bell-LaPadula model does not give sufficient conditions to prevent

communication, or
• System is improperly abstracted; need a better definition of “writing”

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-6

Composition of Bell-LaPadula

• Why?
• Some standards require secure components to be connected to form secure

(distributed, networked) system

• Question
• Under what conditions is this secure?

• Assumptions
• Implementation of systems precise with respect to each system’s security

policy

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-7

Issues

• Compose the lattices
• What is relationship among labels?
• If the same, trivial
• If different, new lattice must reflect the relationships among the levels

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-8

Example

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-9

(HIGH, { EAST, WEST })

(HIGH, { EAST }) (HIGH, { WEST })

(LOW)

(TS, { EAST, SOUTH })

(TS, { EAST }) (TS, { SOUTH })

(S, { EAST, SOUTH })

(S, { EAST }) (S, { SOUTH })

(LOW)

Analysis

• Assume S < HIGH < TS
• Assume SOUTH, EAST, WEST different
• Resulting lattice has:
• 4 clearances (LOW < S < HIGH < TS)
• 3 categories (SOUTH, EAST, WEST)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-10

Same Policies

• If we can change policies that components must meet, composition is
trivial (as above)
• If we cannot, we must show composition meets the same policy as

that of components; this can be very hard

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-11

Different Policies

• What does “secure” now mean?
• Which policy (components) dominates?
• Possible principles:
• Any access allowed by policy of a component must be allowed by composition

of components (autonomy)
• Any access forbidden by policy of a component must be forbidden by

composition of components (security)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-12

Implications

• Composite system satisfies security policy of components as
components’ policies take precedence
• If something neither allowed nor forbidden by principles, then:
• Allow it (Gong & Qian)
• Disallow it (Fail-Safe Defaults)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-13

Example

• System X: Bob can’t access Alice’s files
• System Y: Eve, Lilith can access each other’s files
• Composition policy:
• Bob can access Eve’s files
• Lilith can access Alice’s files

• Question: can Bob access Lilith’s files?

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-14

Solution (Gong & Qian)

• Notation:
• (a, b): a can read b’s files
• AS(x): access set of system x

• Set-up:
• AS(X) = Æ
• AS(Y) = { (Eve, Lilith), (Lilith, Eve) }
• AS(XÈY) = { (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) }

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-15

Solution (Gong & Qian)

• Compute transitive closure of AS(XÈY):
• AS(XÈY)+ = { (Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice),

(Lilith, Eve), (Lilith, Alice) }

• Delete accesses conflicting with policies of components:
• Delete (Bob, Alice)

• (Bob, Lilith) in set, so Bob can access Lilith’s files

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-16

Idea

• Composition of policies allows accesses not mentioned by original
policies
• Generate all possible allowed accesses
• Computation of transitive closure

• Eliminate forbidden accesses
• Removal of accesses disallowed by individual access policies

• Everything else is allowed
• Note: determining if access allowed is of polynomial complexity

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-17

Interference

• Think of it as something used in communication
• Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects

it — communication

• Plays role of writing (interfering) and reading (detecting the
interference)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-18

Model

• System as state machine
• Subjects S = { si }
• States S = { si }
• Outputs O = { oi }
• Commands Z = { zi }
• State transition commands C = S ´ Z

• Note: no inputs
• Encode either as selection of commands or in state transition commands

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-19

Functions

• State transition function T: C ´ S® S
• Describes effect of executing command c in state s

• Output function P: C ´ S® O
• Output of machine when executing command c in state s

• Initial state is s0

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-20

Example: 2-Bit Machine

• Users Heidi (high), Lucy (low)
• 2 bits of state, H (high) and L (low)
• System state is (H, L) where H, L are 0, 1

• 2 commands: xor0, xor1 do xor with 0, 1
• Operations affect both state bits regardless of whether Heidi or Lucy issues it

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-21

Example: 2-bit Machine

• S = { Heidi, Lucy }
• S = { (0,0), (0,1), (1,0), (1,1) }
• C = { xor0, xor1 }

Input States (H, L)
(0,0) (0,1) (1,0) (1,1)

xor0 (0,0) (0,1) (1,0) (1,1)
xor1 (1,1) (1,0) (0,1) (0,0)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-22

Outputs and States

• T is inductive in first argument, as
T(c0, s0) = s1; T(ci+1, si+1) = T(ci+1,T(ci,si))

• Let C* be set of possible sequences of commands in C
• T*: C* ´ S® S and

cs = c0…cn Þ T*(cs,si) = T(cn,…,T(c0,si)…)

• P similar; define P *: C* ´ S® O similarly

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-23

Projection

• T*(cs,si) sequence of state transitions
• P*(cs,si) corresponding outputs
• proj(s, cs, si) set of outputs in P*(cs,si) that subject s authorized to see
• In same order as they occur in P*(cs,si)
• Projection of outputs for s

• Intuition: list of outputs after removing outputs that s cannot see

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-24

Purge

• G Í S, G a group of subjects
• A Í Z, A a set of commands
• pG(cs) subsequence of cs with all elements (s,z), s Î G deleted
• pA(cs) subsequence of cs with all elements (s,z), z Î A deleted
• pG,A(cs) subsequence of cs with all elements (s,z), s Î G and z Î A

deleted

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-25

Example: 2-bit Machine

• Let s0 = (0,1)
• 3 commands applied:
• Heidi applies xor0
• Lucy applies xor1
• Heidi applies xor1

• cs = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor1))
• Output is 011001
• Shorthand for sequence (0,1) (1,0) (0,1)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-26

Example

• proj(Heidi, cs, s0) = 011001
• proj(Lucy, cs, s0) = 101
• pLucy(cs) = (Heidi, xor0), (Heidi, xor1)
• pLucy,xor1(cs) = (Heidi, xor0), (Heidi, xor1)
• pHeidi (cs) = (Lucy, xor1)
• pLucy,xor0(cs) = (Heidi, xor0), (Lucy, xor1), (Heidi, xor1)
• pHeidi,xor0(cs) = pxor0(cs) = (Lucy, xor1), (Heidi, xor1)
• pHeidi,xor1(cs) = (Heidi, xor0), (Lucy, xor1)
• pxor1(cs) = (Heidi, xor0)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-27

Noninterference

• Intuition: If set of outputs Lucy can see corresponds to set of inputs
she can see, there is no interference
• Formally: G, G¢ Í S, G ≠ G¢; A Í Z; users in G executing commands in A

are noninterfering with users in G¢ iff for all cs Î C*, and for all s Î G¢,
proj(s, cs, si) = proj(s, pG,A(cs), si)

• Written A,G :| G¢

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-28

Example: 2-Bit Machine

• Let cs = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor1)) and s0 = (0, 1)
• As before

• Take G = { Heidi }, G¢ = { Lucy }, A = Æ
• pHeidi(cs) = (Lucy, xor1)
• So proj(Lucy, pHeidi(cs), s0) = 0

• proj(Lucy, cs, s0) = 101
• So { Heidi } :| { Lucy } is false
• Makes sense; commands issued to change H bit also affect L bit

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-29

Example

• Same as before, but Heidi’s commands affect H bit only, Lucy’s the L
bit only
• Output is 0H0L1H

• pHeidi(cs) = (Lucy, xor1)
• So proj(Lucy, pHeidi(cs), s0) = 0

• proj(Lucy, cs, s0) = 0
• So { Heidi } :| { Lucy } is true
• Makes sense; commands issued to change H bit now do not affect L bit

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-30

Security Policy

• Partitions systems into authorized, unauthorized states
• Authorized states have no forbidden interferences
• Hence a security policy is a set of noninterference assertions
• See previous definition

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-31

Alternative Development

• System X is a set of protection domains D = { d1, …, dn }
• When command c executed, it is executed in protection domain

dom(c)
• Give alternate versions of definitions shown previously

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-32

Security Policy

• D = { d1, …, dn }, di a protection domain
• r: D ´ D a reflexive relation
• Then r defines a security policy
• Intuition: defines how information can flow around a system
• dirdj means info can flow from di to dj
• dirdi as info can flow within a domain

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-33

Projection Function

• p¢ analogue of p, earlier
• Commands, subjects absorbed into protection domains
• d Î D, c Î C, cs Î C*
• p¢d(n) = n
• p¢d(csc) = p¢d(cs)c if dom(c)rd
• p¢d(csc) = p¢d(cs) otherwise
• Intuition: if executing c interferes with d, then c is visible; otherwise,

as if c never executed

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-34

Noninterference-Secure

• System has set of protection domains D
• System is noninterference-secure with respect to policy r if

P*(c, T*(cs, s0)) = P*(c, T*(p¢d(cs), s0))
• Intuition: if executing cs causes the same transitions for subjects in

domain d as does its projection with respect to domain d, then no
information flows in violation of the policy

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-35

Output-Consistency

• c Î C, dom(c) Î D
• ~dom(c) equivalence relation on states of system X
• ~dom(c) output-consistent if

sa ~dom(c) sb Þ P(c, sa) = P(c, sb)
• Intuition: states are output-consistent if for subjects in dom(c),

projections of outputs for both states after c are the same

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-36

Lemma

• Let T*(cs, s0) ~d T*(p¢d(cs), s0) for c Î C
• If ~d output-consistent, then system is noninterference-secure with

respect to policy r

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-37

Proof

• d = dom(c) for c Î C
• By definition of output-consistent,

T*(cs, s0) ~d T*(p¢d(cs), s0)
implies

P*(c, T*(cs, s0)) = P*(c, T*(p¢d(cs), s0))
• This is definition of noninterference-secure with respect to policy r

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-38

Unwinding Theorem

• Links security of sequences of state transition commands to security
of individual state transition commands
• Allows you to show a system design is multilevel-secure by showing it

matches specs from which certain lemmata derived
• Says nothing about security of system, because of implementation, operation,

etc. issues

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-39

Locally Respects

• r is a policy
• System X locally respects r if dom(c) being noninterfering with d Î D

implies sa ~d T(c, sa)
• Intuition: when X locally respects r, applying c under policy r to

system X has no effect on domain d

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-40

Transition-Consistent

• r policy, d Î D
• If sa ~d sb implies T(c, sa) ~d T(c, sb), system X is transition-consistent

under r
• Intuition: command c does not affect equivalence of states under

policy r

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-41

Unwinding Theorem

• Links security of sequences of state transition commands to security
of individual state transition commands
• Allows you to show a system design is ML secure by showing it

matches specs from which certain lemmata derived
• Says nothing about security of system, because of implementation, operation,

etc. issues

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-42

Locally Respects

• r is a policy
• System X locally respects r if dom(c) being noninterfering with d Î D

implies sa ~d T(c, sa)
• Intuition: applying c under policy r to system X has no effect on

domain d when X locally respects r

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-43

Transition-Consistent

• r policy, d Î D
• If sa ~d sb implies T(c, sa) ~d T(c, sb), system X transition-consistent

under r
• Intuition: command c does not affect equivalence of states under

policy r

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-44

Theorem

• r policy, X system that is output consistent, transition consistent, and
locally respects r
• Then X noninterference-secure with respect to policy r
• Significance: basis for analyzing systems claiming to enforce

noninterference policy
• Establish conditions of theorem for particular set of commands, states with

respect to some policy, set of protection domains
• Noninterference security with respect to r follows

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-45

Proof

Must show sa ~d sb ⇒ T*(cs, sa) ~d T*(p¢d(cs), sb)
• Induct on length of cs

• Basis: if cs = n, then T*(cs, sa) = sa and p¢d(n) = n; claim holds
• Hypothesis: for cs = c1 … cn, sa ~d sb ⇒ T*(cs, sa) ~d T*(p¢d(cs), sb)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-46

Induction Step

• Consider cscn+1. Assume sa ~d sb and look at T*(p¢d(cscn+1), sb)
• 2 cases:
• dom(cn+1)rd holds
• dom(cn+1)rd does not hold

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-47

dom(cn+1)rd Holds

T*(p¢d(cscn+1), sb) = T*(p¢d(cs)cn+1, sb) = T(cn+1, T*(p¢d(cs), sb))
• By definition of T* and p¢d

sa ~d sb ⇒ T(cn+1, sa) ~d T(cn+1, sb)
• As X transition-consistent

T(cn+1, T*(cs, sa)) ~d T(cn+1, T*(p¢d(cs), sb))
• By transition-consistency and IH

T(cn+1,T*(cs,sa)) ~d T*(p¢d(cscn+1), sb)
• By substitution from earlier equality

T*(cscn+1,sa) ~d T*(p¢d(cscn+1), sb)
• By definition of T*

proving hypothesis

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-48

dom(cn+1)rd Does Not Hold

T*(p¢d(cscn+1), sb) = T*(p¢d(cs), sb)
• By definition of p¢d

T*(cs, sa) = T*(p¢d(cscn+1), sb)
• By above and IH

T(cn+1, T*(cs, sa)) ~d T*(cs, sa)
• As X locally respects r, s ~d T(cn+1, s) for any s

T(cn+1,T*(cs,sa)) ~d T*(p¢d(cs cn+1), sb)
• Substituting back

proving hypothesis

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-49

Finishing Proof

• Take sa = sb = s0, so from claim proved by induction,
T*(cs, s0) ~d T*(p¢d(cs), s0)

• By previous lemma, as X (and so ~d) output consistent, then X is
noninterference-secure with respect to policy r

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-50

Access Control Matrix

• Example of interpretation
• Given: access control information
• Question: are given conditions enough to provide noninterference

security?
• Assume: system in a particular state
• Encapsulates values in ACM

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-51

ACM Model

• Objects L = { l1, …, lm }
• Locations in memory

• Values V = { v1, …, vn }
• Values that L can assume

• Set of states S = { s1, …, sk }
• Set of protection domains D = { d1, …, dj }

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-52

Functions

• value: L ´ S® V
• returns value v stored in location l when system in state s

• read: D®2V

• returns set of objects observable from domain d

• write: D®2V

• returns set of objects observable from domain d

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-53

Interpretation of ACM

• Functions represent ACM
• Subject s in domain d, object o
• r Î A[s, o] if o Î read(d)
• w Î A[s, o] if o Î write(d)

• Equivalence relation:
[sa ~dom(c) sb]Û["li Î read(d) [value(li, sa) = value(li, sb)]]

• You can read the exactly the same locations in both states

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-54

Enforcing Policy r

• 5 requirements
• 3 general ones describing dependence of commands on rights over input and

output
• Hold for all ACMs and policies

• 2 that are specific to some security policies
• Hold for most policies

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-55

Enforcing Policy r: General Requirements

• Output of command c executed in domain dom(c) depends only on
values for which subjects in dom(c) have read access
• sa ~dom(c) sb Þ P(c, sa) = P(c, sb)

• If c changes li, then c can only use values of objects in read(dom(c)) to
determine new value
• [sa ~dom(c) sb ∧

(value(li, T(c, sa)) ≠ value(li, sa) ∨ value(li, T(c, sb)) ≠ value(li, sb))] Þ
value(li, T(c, sa)) = value(li, T(c, sb)

• If c changes li, then dom(c) provides subject executing c with write
access to li
• value(li, T(c, sa)) ≠ value(li, sa) Þ li Î write(dom(c))

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-56

Enforcing Policies r: Specific to Policy

• If domain u can interfere with domain v, then every object that can be
read in u can also be read in v; so if object o cannot be read in u, but
can be read in v and object o¢ in u can be read in v, then info flows
from o to o¢, then to v

[u, v Î D ∧ urv] Þ read(u) Í read(v)
• Subject s can write object o in v, subject s¢ can read o in u, then

domain v can interfere with domain u
[li Î read(u) ∧ li Î write(v)] Þ vru

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-57

Theorem

• Let X be a system satisfying these five conditions. Then X is
noninterference-secure with respect to r
• Proof: must show X output-consistent, locally respects r, transition-

consistent
• Then by unwinding theorem, this theorem holds

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-58

Output-Consistent

• Take equivalence relation to be ~d, first condition is definition of
output-consistent

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-59

Locally Respects r

• Proof by contradiction: assume (dom(c),d) ∉ r but sa ~d T(c, sa) does not hold
• Some object has value changed by c:

$ li Î read(d) [value(li, sa) ≠ value(li, T(c, sa))]
• Condition 3: li Î write(d)
• Condition 5: dom(c)rd, contradiction
• So sa ~d T(c, sa) holds, meaning X locally respects r

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-60

Transition Consistency

• Assume sa ~d sb

• Must show value(li, T(c, sa)) = value(li, T(c, sb)) for li Î read(d)
• 3 cases dealing with change that c makes in li in states sa, sb
• value(li, T(c, sa)) ≠ value(li, sa)
• value(li, T(c, sb)) ≠ value(li, sb)
• Neither of the above two hold

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-61

Case 1: value(li, T(c, sa)) ≠ value(li, sa)

• Condition 3: li Î write(dom(c))
• As li Î read(d), condition 5 says dom(c)rd
• Condition 4: read(dom(c)) Í read(d)
• As sa ~d sb, sa ~dom(c) sb

• Condition 2: value(li, T(c, sa)) = value(li, T(c, sb))
• So T(c, sa) ~dom(c) T(c, sb), as desired

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-62

Case 2: value(li, T(c, sb)) ≠ value(li, sb)

• Condition 3: li Î write(dom(c))
• As li Î read(d), condition 5 says dom(c)rd
• Condition 4: read(dom(c)) Í read(d)
• As sa ~d sb, sa ~dom(c) sb

• Condition 2: value(li, T(c, sa)) = value(li, T(c, sb))
• So T(c, sa) ~dom(c) T(c, sb), as desired

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-63

Case 3: Neither of the Previous Two Hold

• This means the two conditions below hold:
• value(li, T(c, sa)) = value(li, sa)
• value(li, T(c, sb)) = value(li, sb)

• Interpretation of sa ~d sb is:
for li Î read(d), value(li, sa) = value(li, sb)

• So T(c, sa) ~d T(c, sb), as desired
In all 3 cases, X transition-consistent

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-64

Policies Changing Over Time

• Problem: previous analysis assumes static system
• In real life, ACM changes as system commands issued

• Example: w Î C* leads to current state
• cando(w, s, z) holds if s can execute z in current state
• Condition noninterference on cando
• If ¬cando(w, Lara, “write f”), Lara can’t interfere with any other user by

writing file f

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-65

Generalize Noninterference

• G Í S set of subjects, A Í Z set of commands, p predicate over elements of C*
• cs = (c1, …, cn) Î C*
• p¢¢(n) = n
• p¢¢((c1, …, cn)) = (c1¢, …, cn¢), where

• ci¢ = n if p(c1¢, …, ci–1¢) and ci = (s, z) with s Î G and z Î A
• ci¢ = ci otherwise

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-66

Intuition

• p¢¢(cs) = cs

• But if p holds, and element of cs involves both command in A and
subject in G, replace corresponding element of cs with empty
command n
• Just like deleting entries from cs as pA,G does earlier

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-67

Noninterference

• G, G¢ Í S sets of subjects, A Í Z set of commands, p predicate over C*
• Users in G executing commands in A are noninterfering with users in

G¢ under condition p iff, for all cs Î C* and for all s Î G¢, proj(s, cs, si) =
proj(s, p¢¢(cs), si)
• Written A,G :| G¢ if p

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-68

Example

• From earlier one, simple security policy based on noninterference:
"(s Î S) "(z Î Z) [{z}, {s} :| S if ¬cando(w, s, z)]

• If subject can’t execute command (the ¬cando part) in any state,
subject can’t use that command to interfere with another subject

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-69

Another Example

• Consider system in which rights can be passed
• pass(s, z) gives s right to execute z
• wn = v1, …, vn sequence of vi Î C*
• prev(wn) = wn–1; last(wn) = vn

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-70

Policy

• No subject s can use z to interfere if, in previous state, s did not have
right to z, and no subject gave it to s
{ z }, { s } :| S

if [¬cando(prev(w), s, z) Ù [cando(prev(w), s¢, pass(s, z)) Þ
¬last(w) = (s¢, pass(s, z))]]

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-71

Effect

• Suppose s1 Î S can execute pass(s2, z)
• For all w Î C*, cando(w, s1, pass(s2, z)) holds
• Initially, cando(n, s2, z) false
• Let z¢ Î Z be such that (s3, z¢) noninterfering with (s2, z)
• So for each wn with vn = (s3, z¢), cando(wn, s2, z) = cando(wn–1, s2, z)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-72

Effect

• Then policy says for all s Î S
proj(s, ((s2, z), (s1, pass(s2, z)), (s3, z¢), (s2, z)), si) =

proj(s, ((s1, pass(s2, z)), (s3, z¢), (s2, z)), si)

• So s2’s first execution of z does not affect any subject’s observation of
system

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-73

Policy Composition I

• Assumed: Output function of input
• Means deterministic (else not function)
• Means uninterruptability (differences in timings can cause differences in

states, hence in outputs)

• This result for deterministic, noninterference-secure systems

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-74

Compose Systems

• Louie, Dewey LOW
• Hughie HIGH
• bL output buffer
• Anyone can read it

• bH input buffer
• From HIGH source

• Hughie reads from:
• bLH (Louie writes)
• bLDH (Louie, Dewey write)
• bDH (Dewey writes)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-75

bL bH

Louie

Dewey

bLH

bLDH

bDH

Hughie

Systems Secure

• All noninterference-secure
• Hughie has no output

• So inputs don’t interfere with it
• Louie, Dewey have no input

• So (nonexistent) inputs don’t
interfere with outputs

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-76

bL bH

Louie

Dewey

bLH

bLDH

bDH

Hughie

Security of Composition

• Buffers finite, sends/receives blocking: composition not secure!
• Example: assume bDH, bLH have capacity 1

• Algorithm:
1. Louie (Dewey) sends message to bLH (bDH)

– Fills buffer
2. Louie (Dewey) sends second message to bLH (bDH)
3. Louie (Dewey) sends a 0 (1) to bL

4. Louie (Dewey) sends message to bLDH
– Signals Hughie that Louie (Dewey) completed a cycle

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-77

Hughie

• Reads bit from bH
• If 0, receive message from bLH

• If 1, receive message from bDH

• Receive on bLDH
• To wait for buffer to be filled

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-78

Example

• Hughie reads 0 from bH
• Reads message from bLH

• Now Louie’s second message goes into bLH
• Louie completes setp 2 and writes 0 into bL

• Dewey blocked at step 1
• Dewey cannot write to bL

• Symmetric argument shows that Hughie reading 1 produces a 1 in bL

• So, input from bH copied to output bL

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-79

Nondeducibility

• Noninterference: do state transitions caused by high level commands
interfere with sequences of state transitions caused by low level
commands?
• Really case about inputs and outputs:
• Can low level subject deduce anything about high level outputs from a set of

low level outputs?

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-80

Example: 2-Bit System

• High operations change only High bit
• Similar for Low

• s0 = (0, 0)
• Sequence of commands:
• (Heidi, xor1), (Lara, xor0), (Lara, xor1), (Lara, xor0), (Heidi, xor1), (Lara, xor0)
• Both bits output after each command

• Output is: 00101011110101

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-81

Security

• Not noninterference-secure w.r.t. Lara
• Lara sees output as 0001111
• Delete High outputs and she sees 00111

• But Lara still cannot deduce the commands deleted
• Don’t affect values; only lengths

• So it is deducibly secure
• Lara can’t deduce the commands Heidi gave

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-82

Event System

• 4-tuple (E, I, O, T)
• E set of events
• I Í E set of input events
• O Í E set of output events
• T set of all finite sequences of events legal within system

• E partitioned into H, L
• H set of High events
• L set of Low events

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-83

More Events …

• H Ç I set of High inputs
• H Ç O set of High outputs
• L Ç I set of Low inputs
• L Ç O set of Low outputs
• TLow set of all possible sequences of Low events that are legal within

system
• pL:T®TLow projection function deleting all High inputs from trace
• Low observer should not be able to deduce anything about High inputs from

trace tLow Î Tlow

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-84

Deducibly Secure

• System deducibly secure if for all traces tLow Î TLow, the corresponding
set of high level traces contains every possible trace t Î T for which
pL(t) = tLow
• Given any tLow, the trace t Î T producing that tLow is equally likely to be any

trace with pL(t) = tLow

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-85

Example: 2-Bit Machine

• Let xor0, xor1 apply to both bits, and both bits output after each
command
• Initial state: (0, 1)
• Inputs: 1H0L1L0H1L0L

• Outputs: 10 10 01 01 10 10
• Lara (at Low) sees: 001100
• Does not know initial state, so does not know first input; but can deduce

fourth input is 0

• Not deducibly secure

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-86

Example: 2-Bit Machine

• Now xor0, xor1 apply only to state bit with same level as user
• Inputs: 1H0L1L0H1L0L

• Outputs: 1011111011
• Lara sees: 01101
• She cannot deduce anything about input
• Could be 0H0L1L0H1L0L or 0L1H1L0H1L0L for example

• Deducibly secure

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-87

Security of Composition

• In general: deducibly secure systems not composable
• Strong noninterference: deducible security + requirement that no

High output occurs unless caused by a High input
• Systems meeting this property are composable

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-88

Example

• 2-bit machine done earlier does not exhibit strong noninterference
• Because it puts out High bit even when there is no High input

• Modify machine to output only state bit at level of latest input
• Now it exhibits strong noninterference

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-89

Problem

• Too restrictive; it bans some systems that are obviously secure
• Example: System upgrade reads Low inputs, outputs those bits at

High
• Clearly deducibly secure: low level user sees no outputs
• Clearly does not exhibit strong noninterference, as no high level inputs!

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-90

Remove Determinism

• Previous assumption
• Input, output synchronous
• Output depends only on commands triggered by input

• Sometimes absorbed into commands …
• Input processed one datum at a time

• Not realistic
• In real systems, lots of asynchronous events

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-91

Generalized Noninterference

• Nondeterministic systems meeting noninterference property meet
generalized noninterference-secure property
• More robust than nondeducible security because minor changes in

assumptions affect whether system is nondeducibly secure

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-92

Example

• System with High Holly, Low Lucy, text file at High
• File fixed size, symbol ✧ marks empty space
• Holly can edit file, Lucy can run this program:

while true do begin
n := read_integer_from_user;
if n > file_length or char_in_file[n] = ✧ then

print random_character;
else

print char_in_file[n];
end;

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-93

Security of System

• Not noninterference-secure
• High level inputs—Holly’s changes—affect low level outputs

• May be deducibly secure
• Can Lucy deduce contents of file from program?
• If output meaningful (“This is right”) or close (“Thes is riqht”), yes
• Otherwise, no

• So deducibly secure depends on which inferences are allowed

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-94

Composition of Systems

• Does composing systems meeting generalized noninterference-secure
property give you a system that also meets this property?
• Define two systems (cat, dog)
• Compose them

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-95

First System: cat

• Inputs, outputs can go left or
right
• After some number of inputs,

cat sends two outputs
• First stop_count
• Second parity of High inputs,

outputs

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-96

cat

HIGH HIGH

LOW
stop_count

LOW

0 or 1

Noninterference-Secure?

• If even number of High inputs, output could be:
• 0 (even number of outputs)
• 1 (odd number of outputs)

• If odd number of High inputs, output could be:
• 0 (odd number of outputs)
• 1 (even number of outputs)

• High level inputs do not affect output
• So noninterference-secure

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-97

Second System: dog

• High outputs to left
• Low outputs of 0 or 1 to right
• stop_count input from the left
• When it arrives, dog emits 0 or 1

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-98

dog

HIGH

HIGH LOW

stop_count

LOW
0 or 1

Noninterference-Secure?

• When stop_count arrives:
• May or may not be inputs for which there are no corresponding outputs
• Parity of High inputs, outputs can be odd or even
• Hence dog emits 0 or 1

• High level inputs do not affect low level outputs
• So noninterference-secure

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-99

Compose Them

• Once sent, message arrives
• But stop_count may arrive before all inputs have generated corresponding

outputs
• If so, even number of High inputs and outputs on cat, but odd number on

dog

• Four cases arise
Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-100

cat

HIGH

LOW

0 or 1

dog

HIGH

HIGH LOW

stop_count
LOW

0 or 1

The Cases

• cat, odd number of inputs, outputs; dog, even number of inputs, odd number of
outputs
• Input message from cat not arrived at dog, contradicting assumption

• cat, even number of inputs, outputs; dog, odd number of inputs, even number of
outputs
• Input message from dog not arrived at cat, contradicting assumption

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-101

The Cases

• cat, odd number of inputs, outputs; dog, odd number of inputs, even number of
outputs
• dog sent even number of outputs to cat, so cat has had at least one input from left

• cat, even number of inputs, outputs; dog, even number of inputs, odd number of
outputs
• dog sent odd number of outputs to cat, so cat has had at least one input from left

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-102

The Conclusion

• Composite system catdog emits 0 to left, 1 to right (or 1 to left, 0 to right)
• Must have received at least one input from left

• Composite system catdog emits 0 to left, 0 to right (or 1 to left, 1 to right)
• Could not have received any from left (i.e., no HIGH inputs)

• So, High inputs affect Low outputs
• Not noninterference-secure

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-103

Feedback-Free Systems

• System has n distinct components
• Components ci, cj are connected if any output of ci is input to cj

• System is feedback-free if for all ci connected to cj, cj not connected to any ci
• Intuition: once information flows from one component to another, no information flows back

from the second to the first

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-104

Feedback-Free Security

• Theorem: A feedback-free system composed of noninterference-
secure systems is itself noninterference-secure

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-105

Some Feedback

• Lemma: A noninterference-secure system can feed a HIGH output o to a HIGH
input i if the arrival of o at the input of the next component is delayed until after
the next LOW input or output
• Theorem: A system with feedback as described in the above lemma and

composed of noninterference-secure systems is itself noninterference-secure

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-106

Why Didn’t They Work?

• For compositions to work, machine must act same way regardless of
what precedes LOW input (HIGH, LOW, nothing)
• dog does not meet this criterion
• If first input is stop_count, dog emits 0
• If high level input precedes stop_count, dog emits 0 or 1

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-107

State Machine Model: 2-Bit Machine

Levels High, Low, meet 4 properties:
1. For every input ik, state sj, there is an element cm Î C* such that

T*(cm, sj) = sn, where sn ≠ sj

T* is total function, inputs and commands always move system to a
different state

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-108

Property 2

2. There is an equivalence relation º such that:
a. If system in state si and HIGH sequence of inputs causes transition

from si to sj, then si º sj
• 2 states equivalent if either reachable from the other state using only HIGH

commands
b. If si º sj and LOW sequence of inputs i1, …, in causes system in state si

to transition to si¢, then there is a state sj¢ such that si¢ º sj¢ and
inputs i1, …, in cause system in state sj to transition to sj¢
• States resulting from giving same LOW commands to the two equivalent original

states have same LOW projection
ºholds if LOW projections of both states are same

• If 2 states equivalent, HIGH commands do not affect LOW projections

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-109

Property 3

• Let si º sj. If sequence of HIGH outputs o1, …, on indicate system in
state si transitioned to state si¢, then for some state sj¢ with sj¢ º si¢,
sequence of HIGH outputs o1¢, …, om¢ indicates system in sj
transitioned to sj¢
• HIGH outputs do not indicate changes in LOW projection of states

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-110

Property 4

• Let si º sj, let c, d be HIGH output sequences, e a LOW output. If output
sequence ced indicates system in state si transitions to si¢, then there are HIGH
output sequences c’ and d’ and state sj¢ such that c¢ed¢ indicates system in state
sj transitions to state sj¢
• Intermingled LOW, HIGH outputs cause changes in LOW state reflecting LOW outputs only

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-111

Restrictiveness

• System is restrictive if it meets the preceding 4 properties

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-112

Composition

• Intuition: by 3 and 4, HIGH output followed by LOW output has same
effect as the LOW input, so composition of restrictive systems should
be restrictive

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-113

Composite System

• System M1’s outputs are acceptable as M2’s inputs
• µ1i, µ2i states of M1, M2

• States of composite system pairs of M1, M2 states (µ1i, µ2i)
• e event causing transition
• e causes transition from state (µ1a, µ2a) to state (µ1b, µ2b) if any of 3

conditions hold

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-114

Conditions

1. M1 in state µ1a and e occurs, M1 transitions to µ1b; e not an event for M2; and
µ2a = µ2b

2. M2 in state µ2a and e occurs, M2 transitions to µ2b; e not an event for M1; and
µ1a = µ1b

3. M1 in state µ1a and e occurs, M1 transitions to µ1b; M2 in state µ2a and e occurs,
M2 transitions to µ2b; e is input to one machine, and output from other

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-115

Intuition

• Event causing transition in composite system causes transition in at
least 1 of the components
• If transition occurs in exactly 1 component, event must not cause

transition in other component when not connected to the composite
system

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-116

Equivalence for Composite

• Equivalence relation for composite system
(sa, sb) ºC (sc, sd) iff sa º sc and sb º sd

• Corresponds to equivalence relation in property 2 for component
system

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-117

Theorem

The system resulting from the composition of two restrictive systems is
itself restrictive

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-118

Side Channels

A side channel is set of characteristics of a system, from which
adversary can deduce confidential information about system or a
competition

• Consider information to be derived as HIGH
• Consider information obtained from set of characteristics as LOW
• Attack is to deduce HIGH values from LOW values only
• Implication: attack works on systems not deducibly secure

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-119

Types of Side Channel Attacks

• Passive: Only observe system; deduce results from observations
• Active: Disrupt system in some way, causing it to react; deduce results

from measurements of disruption

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-120

Example: Passive Attack

• Fast modular exponentiation:
x := 1; atmp := a;
for i := 0 to k-1 do begin

if zi = 1 then
x := (x * atmp) mod n;

atmp := (atmp * atmp) mod n;
end;
result := x;

• If bit is 1, there are 2 multiplications; if it is 0, only one
• Extra multiplication takes time
• Can determine bits of the confidential exponent by measuring

computation time

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-121

Example: Active Attack

Background
• Derive information from characteristics of memory accesses in chip
• Intel x86 caches
• Each core has 2 levels, L1 and KL2
• Chip itself has third cache (L3 or LLC)
• These are hierarchical: miss in L1 goes to L2, miss in L2 goes to L3, miss in L3

goes to memory
• Caches are inclusive (so L3 has copies of data in L2 and L1)

• Processes share pages

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-122

Example: Active Attack

Phase 1
• Flush a set of bytes (called a line) from cache to clear it from all 3

caches
• The disruption

Phase 2
• Wait until victim has chance to access that memory line
Phase 3
• Reload the line
• If victim did this already, time is short as data comes from L3 cache
• Otherwise time is longer as memory fetch is required

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-123

Example: Active Attack

What happened
• Used to trace execution of GnuPG on a physical machine
• Derived bits of a 2048 bit private key; max of 190 bits incorrect
• Repeated experiment on virtual machine
• Error rates increased
• On one system, average error rate increased from 1.41 bits to 26.55 bits
• On another system, average error rate increased from 25.12 bits to 66.12 bits

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-124

Model

Components
• Primitive: instantiation of computation
• Device: system doing the computation
• Physical observable: output being observed
• Leakage function: captures characteristics of side channel and

mechanism to monitor the physical observables
• Implementation function: instantiation of both device, leakage

function
• Side channel adversary: algorithm that queries implementation to get

outputs from leakage function

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-125

Example

• First one (passive attack) divided leakage function into two parts
• Signal was variations in output due to bit being derived
• Noise was variations due to other factors (imprecisions in measurements,

etc.)

• Second one (active attack) had leakage function acting in different
ways
• Physical machine: one chip used more advanced optimizations, thus more

noise
• Virtual machine: more variations due to extra computations running the

virtual machines, hence more noise

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-126

Example: Electromagnetic Radiation

• CRT video display produces radiation that can be measured
• Using various equipment and a black and white TV, van Eck could

reconstruct the images
• Reconstructed pictures on video display units in buildings

• E-voting system with audio activated (as it would be for visually
impaired voters) produced interference with sound from a nearby
transistor radio
• Testers believed changes in the sound due to the interference could be used

to determine how voter was vioting

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-127

Key Points

• Composing secure policies does not always produce a secure policy
• The policies must be restrictive

• Noninterference policies prevent HIGH inputs from affecting LOW
outputs
• Prevents “writes down” in broadest sense

• Nondeducibility policies prevent the inference of HIGH inputs from
LOW outputs
• Prevents “reads up” in broadest sense

• Side channel attacks exploit deducability

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 9-128

