
Access Control Mechanisms
Chapter 16

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-1



Overview

• Access control lists
• Capability lists
• Locks and keys
• Secret sharing

• Rings-based access control
• Propagated access control lists

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-2



Access Control Lists

• Columns of access control matrix
file1 file2 file3

Andy rx r rwo
Betty rwxo r
Charlie rx rwo w

ACLs:
• file1: { (Andy, rx) (Betty, rwxo) (Charlie, rx) }
• file2: { (Andy, r) (Betty, r) (Charlie, rwo) }
• file3: { (Andy, rwo) (Charlie, w) }

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-3



Default Permissions

• Normal: if not named, no rights over file
• Principle of Fail-Safe Defaults

• If many subjects, may use groups or wildcards in ACL
• UNICOS: entries are (user, group, rights)

• If user is in group, has rights over file
• �*� is wildcard for user, group

• (holly, *, r): holly can read file regardless of her group
• (*, gleep, w): anyone in group gleep can write file

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-4



Abbreviations

• ACLs can be long … so combine users
• UNIX: 3 classes of users: owner, group, rest
• rwx rwx rwx

rest
group
owner

• Ownership assigned based on creating process
• Most UNIX-like systems: if directory has setgid permission, file group 

owned by group of directory (Solaris, Linux)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-5



ACLs + Abbreviations

• Augment abbreviated lists with ACLs

• Intent is to shorten ACL

• ACLs override abbreviations

• Exact method varies

• Example: Extended permissions (Linux, FreeBSD, others)

• Minimal ACLs are abbreviations, extended ACLs give specific users, groups 

permissions

• Extended ACL entries give rights provided those rights are in mask

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-6



Minimal and Extended ACL

user heidi, group family owns file with 
permissions:

user::rw-
user:skyler:rwx
group::rw-
group:child:r--
mask::rw-
other::r--

• heidi can read, write file (first line)
• matt, not in group child, can read 

file (last line)
• skyler can read, write file (second 

line masked by fifth line)
• sage, in group family, can read, 

write the file (third line masked by 
fifth line)
• steven, in group child, can read file 

(fourth line masked by fifth line)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-7



ACL Modification

• Who can do this?
• Creator is given own right that allows this
• System R provides a grant modifier (like a copy flag) allowing a right to be 

transferred, so ownership not needed
• Transferring right to another modifies ACL

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-8



Privileged Users

• Do ACLs apply to privileged users (root)?
• Solaris: abbreviated lists do not, but full-blown ACL entries do
• Other vendors: varies

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-9



Groups and Wildcards

• Classic form: no; in practice, usually
• UNICOS:
• holly : gleep : r

user holly in group gleep can read file
• holly : * : r

user holly in any group can read file
• * : gleep : r

any user in group gleep can read file

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-10



Conflicts

• Deny access if any entry would deny access
• AIX: if any entry denies access, regardless or rights given so far, access is 

denied

• Apply first entry matching subject
• Cisco routers: run packet through access control rules (ACL entries) in order; 

on a match, stop, and forward the packet; if no matches, deny
• Note default is deny so honors principle of fail-safe defaults

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-11



Handling Default Permissions

• Apply ACL entry, and if none use defaults
• Cisco router: apply matching access control rule, if any; otherwise, use default 

rule (deny)

• Augment defaults with those in the appropriate ACL entry
• AIX: extended permissions augment base permissions

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-12



Revocation Question

• How do you remove subject’s rights to a file?
• Owner deletes subject’s entries from ACL, or rights from subject’s entry in ACL

• What if ownership not involved?
• Depends on system
• System R: restore protection state to what it was before right was given

• May mean deleting descendent rights too …

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-13



Windows 10 NTFS ACLs

• Different sets of rights
• Basic: read, write, execute, delete, change permission, take ownership
• Generic: no access, read (read/execute), change (read/write/execute/delete), 

full control (all), special access (assign any of the basics)
• Directory: no access, read (read/execute files in directory), list, add, add and 

read, change (create, add, read, execute, write files; delete subdirectories), 
full control, special access

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-14



Accessing Files

• User not in file’s ACL nor in any group named in file’s ACL: deny access
• ACL entry denies user access: deny access
• Take union of rights of all ACL entries giving user access: user has this 

set of rights over file

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-15



Example

• Paul, Quentin in group students
• Quentin, Regina in group staff
• ACL entries for e:\stuff

1. staff, create files/write data, allow
2. Quentin, delete subfolders and files, allow
3. students, delete subfolders and files, deny

• Regina can create files or subfolders (1)
• Quentin cannot delete subfolders and files
• Even with 2; Quentin in students, and explicit deny in 3 overrides allow in 2

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-16



Example (con’t)

• Regina wants to create folder e:\stuff\plugh and set it up so:
• Paul doesn’t have delete subfolders and files access
• Quentin has delete subfolders and files access

• How does she do this?

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-17



How She Does It

staff, create files/write data, allow
Quentin, delete subfolder and files, allow
students, delete subfolder and files, deny

Inherited from e:\stuff:

Paul, delete subfolders and files, deny

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-18



Capability Lists

• Columns of access control matrix
file1 file2 file3

Andy rx r rwo
Betty rwxo r
Charlie rx rwo w

C-Lists:
• Andy: { (file1, rx) (file2, r) (file3, rwo) }
• Betty: { (file1, rwxo) (file2, r) }
• Charlie: { (file1, rx) (file2, rwo) (file3, w) }

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-19



Semantics

• Like a bus ticket
• Mere possession indicates rights that subject has over object
• Object identified by capability (as part of the token)

• Name may be a reference, location, or something else
• Architectural construct in capability-based addressing; this just focuses on 

protection aspects

• Must prevent process from altering capabilities
• Otherwise subject could change rights encoded in capability or object to 

which they refer

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-20



Implementation

• Tagged architecture
• Bits protect individual words

• B5700: tag was 3 bits and indicated how word was to be treated (pointer, type, 
descriptor, etc.)

• Paging/segmentation protections
• Like tags, but put capabilities in a read-only segment or page

• EROS does this
• Programs must refer to them by pointers

• Otherwise, program could use a copy of the capability—which it could modify

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-21



Implementation (con’t)

• Cryptography
• Associate with each capability a cryptographic checksum enciphered using a 

key known to OS
• When process presents capability, OS validates checksum
• Example: Amoeba, a distributed capability-based system

• Capability is (name, creating_server, rights, check_field) and is given to owner of object
• check_field is 48-bit random number; also stored in table corresponding to 

creating_server
• To validate, system compares check_field of capability with that stored in creating_server

table
• Vulnerable if capability disclosed to another process

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-22



Amplifying

• Allows temporary increase of privileges

• Needed for modular programming

• Module pushes, pops data onto stack

module stack … endmodule.
• Variable x declared of type stack

var x: module;
• Only stack module can alter, read x

• So process doesn’t get capability, but needs it when x is referenced — a problem!

• Solution: give process the required capabilities while it is in module

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-23



Examples

• HYDRA: templates
• Associated with each procedure, function in module
• Adds rights to process capability while the procedure or function is being 

executed
• Rights deleted on exit

• Intel iAPX 432: access descriptors for objects
• These are really capabilities
• 1 bit in this controls amplification
• When ADT constructed, permission bits of type control object set to what 

procedure needs
• On call, if amplification bit in this permission is set, the above bits or’ed with 

rights in access descriptor of object being passed

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-24



Revocation

• Scan all C-lists, remove relevant capabilities
• Far too expensive!

• Use indirection
• Each object has entry in a global object table
• Names in capabilities name the entry, not the object

• To revoke, zap the entry in the table
• Can have multiple entries for a single object to allow control of different sets of rights 

and/or groups of users for each object

• Example: Amoeba: owner requests server change random number in server 
table
• All capabilities for that object now invalid

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-25



• Problems if you don’t control copying of capabilities

• The capability to write file lough is Low, and Heidi is High so she reads 
(copies) the capability; now she can write to a Low file, violating the 
*-property!

Limits

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-26

Heidi (H)

Lara (L)

r*lough

C-List

rw*lough

C-List
rw*lough

Lough (L)

Heidi (H)

Lara (L)

r*lough

C-List

rw*lough

C-List
rw*lough

Lough (L)

rw*lough



Remedies

• Label capability itself
• Rights in capability depends on relation between its compartment and that of 

object to which it refers
• In example, as as capability copied to High, and High dominates object compartment 

(Low), write right removed

• Check to see if passing capability violates security properties
• In example, it does, so copying refused

• Distinguish between “read” and “copy capability”
• Take-Grant Protection Model does this (“read” and “take”)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-27



ACLs vs. Capabilities

• Both theoretically equivalent; consider 2 questions
1. Given a subject, what objects can it access, and how?
2. Given an object, what subjects can access it, and how?
• ACLs answer second easily; C-Lists, first

• Suggested that the second question, which in the past has been of 
most interest, is the reason ACL-based systems more common than 
capability-based systems
• As first question becomes more important (in incident response, for 

example), this may change

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-28



Privileges

• In Linux, used to override or add access restrictions by adding, 
masking rights
• Not capabilities as no particular object associated with the (added or deleted) 

rights

• 3 sets of privileges
• Bounding set (all privileges process may assert)
• Effective set (current privileges process may assert)
• Saved set (rights saved for future purpose)

• Example: UNIX effective, saved UID

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-29



Trusted Solaris

• Associated with each executable:
• Allowed set (AS) are privileges assigned to process created by executing file
• Forced set (FS) are privileges process must have when it begins execution
• FS ⊆AS

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-30



Trusted Solaris Privileges

Four sets:

• Inheritable set (IS): privileges inherited from parent process

• Permitted set (PS): all privileges process may assert; (FS ∪ IS) ∩ AS
• Corresponds to bounding set

• Effective set (ES): privileges program requires for current task; initially, 
PS
• Saved set (SS): privileges inherited from parent process and allowed 

for use; that is, IS ∩ AS

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-31



Bracketing Effective Privileges

• Process needs to read file at particular point
• file_mac_read, file_dac_read ∈ PS, ES
• Initially, program deletes these from ES
• So they can’t be used

• Just before reading file, add them back to ES
• Allowed as these are in PS

• When file is read, delete from ES
• And if no more reading, can delete from PS

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-32



Locks and Keys

• Associate information (lock) with object, information (key) with 
subject
• Latter controls what the subject can access and how
• Subject presents key; if it corresponds to any of the locks on the object, 

access granted

• This can be dynamic
• ACLs, C-Lists static and must be manually changed
• Locks and keys can change based on system constraints, other factors (not 

necessarily manual)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-33



Cryptographic Implementation

• Enciphering key is lock; deciphering key is key
• Encipher object o; store Ek(o)
• Use subject’s key k¢ to compute Dk¢(Ek(o))
• Any of n can access o: store

o¢ = (E1(o), …, En(o))
• Requires consent of all n to access o: store

o¢ = (E1(E2(…(En(o))…))

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-34



Example: IBM

• IBM 370: process gets access key; pages get storage key and fetch bit
• Fetch bit clear: read access only
• Fetch bit set, access key 0: process can write to (any) page
• Fetch bit set, access key matches storage key: process can write to page
• Fetch bit set, access key non-zero and does not match storage key: no access 

allowed

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-35



Example: Cisco Router

• Dynamic access control lists
access-list 100 permit tcp any host 10.1.1.1 eq telnet
access-list 100 dynamic test timeout 180 permit ip any host 10.1.2.3 time-
range my-time

time-range my-time
periodic weekdays 9:00 to 17:00

line vty 0 2
login local
autocommand access-enable host timeout 10

• Limits external access to 10.1.2.3 to 9AM–5PM
• Adds temporary entry for connecting host once user supplies name, password to 

router
• Connections good for 180 minutes

• Drops access control entry after that

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-36



Type Checking

• Lock is type, key is operation
• Example: UNIX system call write won’t work on directory object but does 

work on file
• Example: split I&D space of PDP-11
• Example: countering buffer overflow attacks on the stack by putting stack on 

non-executable pages/segments
• Then code uploaded to buffer won’t execute
• Does not stop other forms of this attack, though …

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-37



More Examples

• LOCK system:
• Compiler produces “data”

• Trusted process must change this type to “executable” before program can be 
executed

• Sidewinder firewall
• Subjects assigned domain, objects assigned type

• Example: ingress packets get one type, egress packets another

• All actions controlled by type, so ingress packets cannot masquerade as 
egress packets (and vice versa)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-38



Sharing Secrets

• Implements separation of privilege
• Use (t, n)-threshold scheme
• Data divided into n parts
• Any t parts sufficient to derive original data

• Or-access and and-access can do this
• Increases the number of representations of data rapidly as n, t grow
• Cryptographic approaches more common

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-39



Shamir’s Scheme

• Goal: use (t, n)-threshold scheme to share cryptographic key encoding 
data
• Based on Lagrange polynomials
• Idea: take polynomial p(x) of degree t–1, set constant term (p(0)) to key
• Compute value of p at n points, excluding x = 0
• By algebra, need values of p at any t distinct points to derive polynomial, and 

hence constant term (key)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-40



Ring-Based Access Control

…Privileges
increase 0 1 n

• Process (segment) accesses
another segment

• read
• execute

• Gate is an entry point for
calling segment

• Rights:
• r read
• w write
• a append
• e execute

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-41



Reading/Writing/Appending

• Procedure executing in ring r
• Data segment with access bracket (a1, a2)
• Mandatory access rule
• r ≤ a1 allow access
• a1 < r ≤ a2 allow r access; not w, a access
• a2 < r deny all access

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-42



Executing

• Procedure executing in ring r
• Call procedure in segment with access bracket (a1, a2) and call bracket

(a2, a3)
• Often written (a1, a2 , a3 )

• Mandatory access rule
• r < a1 allow access; ring-crossing fault
• a1 ≤ r ≤ a2 allow access; no ring-crossing fault
• a2 < r ≤ a3 allow access if through valid gate
• a3 < r deny all access

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-43



Versions

• Multics
• 8 rings (from 0 to 7)

• Intel’s Itanium chip
• 4 levels of privilege: 0 the highest, 3 the lowest

• Older systems
• 2 levels of privilege: user, supervisor

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-44



PACLs

• Propagated Access Control List

• Implements ORCON

• Creator kept with PACL, copies

• Only owner can change PACL

• Subject reads object: object’s PACL associated with subject

• Subject writes object: subject’s PACL associated with object

• Notation: PACLs means s created object; PACL(e) is PACL associated 

with entity e

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-45



Multiple Creators

• Betty reads Ann’s file dates
PACL(Betty) = PACLBetty Ç PACL(dates)

= PACLBetty Ç PACLAnn

• Betty creates file dc
PACL(dc) = PACLBetty Ç PACLAnn

• PACLBetty allows Char to access objects, but PACLAnn does not; both 
allow June to access objects
• June can read dc
• Char cannot read dc

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-46



Key Points

• Access control mechanisms provide controls for users accessing files
• Many different forms
• ACLs, capabilities, locks and keys

• Type checking too
• Ring-based mechanisms (mandatory)
• PACLs (ORCON)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 16-47


