
Information Flow
Chapter 17

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-1

Overview

• Basics and background
• Entropy

• Non-lattice flow policies
• Compiler-based mechanisms
• Execution-based mechanisms
• Examples
• Privacy and cell phones
• Firewalls

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-2

Basics

• Bell-LaPadula Model embodies information flow policy
• Given compartments A, B, info can flow from A to B iff B dom A

• So does Biba Model
• Given compartments A, B, info can flow from A to B iff A dom B

• Variables x, y assigned compartments x, y as well as values
• Confidentiality (Bel-LaPadula): if x = A, y = B, and B dom A, then y := x allowed

but not x := y
• Integrity (Biba): if x = A, y = B, and A dom B, then x := y allowed but not y := x

• From here on, the focus is on confidentiality (Bell-LaPadula)
• Discuss integrity later

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-3

Entropy and Information Flow

• Idea: info flows from x to y as a result of a sequence of commands c if
you can deduce information about x before c from the value in y after
c
• Formally:
• s time before execution of c, t time after
• H(xs | yt) < H(xs | ys)
• If no y at time s, then H(xs | yt) < H(xs)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-4

Example 1

• Command is x := y + z; where:
• 0 ≤ y ≤ 7, equal probability
• z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each

• s state before command executed; t, after; so
• H(ys) = H(yt) = –8(1/8) lg (1/8) = 3
• H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5

• If you know xt, ys can have at most 3 values, so H(ys | xt) = –3(1/3) lg
(1/3) = lg 3 ≈ 1.58
• Thus, information flows from y to x

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-5

Example 2

• Command is
if x = 1 then y := 0 else y := 1;

where x, y equally likely to be either 0 or 1
• H(xs) = 1 as x can be either 0 or 1 with equal probability
• H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa
• Thus, H(xs | yt) = 0 < 1 = H(xs)

• So information flowed from x to y

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-6

Implicit Flow of Information

• Information flows from x to y without an explicit assignment of the
form y := f(x)
• f(x) an arithmetic expression with variable x

• Example from previous slide:
if x = 1 then y := 0 else y := 1;

• So must look for implicit flows of information to analyze program

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-7

Notation

• x means class of x
• In Bell-LaPadula based system, same as “label of security compartment to

which x belongs”

• x ≤ y means “information can flow from an element in class of x to an
element in class of y
• Or, “information with a label placing it in class x can flow into class y”

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-8

Information Flow Policies

Information flow policies are usually:
• reflexive
• So information can flow freely among members of a single class

• transitive
• So if information can flow from class 1 to class 2, and from class 2 to class 3,

then information can flow from class 1 to class 3

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-9

Non-Transitive Policies

• Betty is a confident of Anne
• Cathy is a confident of Betty
• With transitivity, information flows from Anne to Betty to Cathy

• Anne confides to Betty she is having an affair with Cathy’s spouse
• Transitivity undesirable in this case, probably

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-10

Non-Lattice Transitive Policies

• 2 faculty members co-PIs on a grant
• Equal authority; neither can overrule the other

• Grad students report to faculty members
• Undergrads report to grad students
• Information flow relation is:
• Reflexive and transitive

• But some elements (people) have no “least upper bound” element
• What is it for the faculty members?

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-11

Confidentiality Policy Model

• Lattice model fails in previous 2 cases
• Generalize: policy I = (SCI, ≤I, joinI):
• SCI set of security classes
• ≤I ordering relation on elements of SCI

• joinI function to combine two elements of SCI

• Example: Bell-LaPadula Model
• SCI set of security compartments
• ≤I ordering relation dom
• joinI function lub

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-12

Confinement Flow Model

• (I, O, confine, ®)
• I = (SCI, ≤I, joinI)
• O set of entities
• ®: O´O with (a, b) Î® (written a ® b) iff information can flow from a to b
• for a Î O, confine(a) = (aL, aU) Î SCI´SCI with aL ≤I aU

• Interpretation: for a Î O, if x ≤I aU, information can flow from x to a, and if aL ≤I x,
information can flow from a to x

• So aL lowest classification of information allowed to flow out of a, and aU highest
classification of information allowed to flow into a

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-13

Assumptions, etc.

• Assumes: object can change security classes
• So, variable can take on security class of its data

• Object x has security class x currently
• Note transitivity not required
• If information can flow from a to b, then b dominates a under

ordering of policy I:
(" a, b Î O)[a ® b Þ aL ≤I bU]

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-14

Example 1

• SCI = { U, C, S, TS }, with U ≤I C, C ≤I S, and S ≤I TS
• a, b, c Î O
• confine(a) = [C, C]
• confine(b) = [S, S]
• confine(c) = [TS, TS]

• Secure information flows: a ® b, a ® c, b ® c
• As aL ≤I bU, aL ≤I cU, bL ≤I cU

• Transitivity holds

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-15

Example 2

• SCI, ≤I as in Example 1
• x, y, z Î O
• confine(x) = [C, C]
• confine(y) = [S, S]
• confine(z) = [C, TS]

• Secure information flows: x ® y, x ® z, y ® z, z ® x, z ® y
• As xL ≤I yU, xL ≤I zU, yL ≤I zU, zL ≤I xU, zL ≤I yU

• Transitivity does not hold
• y ® z and z ® x, but y ® z is false, because yL ≤I xU is false

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-16

Transitive Non-Lattice Policies

• Q = (SQ, ≤Q) is a quasi-ordered set when ≤Q is transitive and reflexive
over SQ

• How to handle information flow?
• Define a partially ordered set containing quasi-ordered set
• Add least upper bound, greatest lower bound to partially ordered set
• It’s a lattice, so apply lattice rules!

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-17

In Detail …

• "x Î SQ: let f(x) = { y | y Î SQ Ù y ≤Q x }
• Define SQP = { f(x) | x Î SQ }
• Define ≤QP = { (x, y) | x, y Î SQ Ù x Í y }

• SQP partially ordered set under ≤QP

• f preserves order, so y ≤Q x iff f(x) ≤QP f(y)

• Add upper, lower bounds
• SQP¢ = SQP È { SQ, Æ }
• Upper bound ub(x, y) = { z | z Î SQP Ù x Í z Ù y Í z }
• Least upper bound lub(x, y) = Çub(x, y)

• Lower bound, greatest lower bound defined analogously

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-18

And the Policy Is …

• Now (SQP¢, ≤QP) is lattice
• Information flow policy on quasi-ordered set emulates that of this

lattice!

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-19

Nontransitive Flow Policies

• Government agency information flow policy (on next slide)
• Entities public relations officers PRO, analysts A, spymasters S
• confine(PRO) = [public, analysis]
• confine(A) = [analysis, top-level]
• confine(S) = [covert, top-level]

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-20

Information Flow

• By confinement flow model:
• PRO ≤ A, A ≤ PRO
• PRO ≤ S
• A ≤ S, S ≤ A

• Data cannot flow to public
relations officers; not transitive
• S ≤ A, A ≤ PRO
• S ≤ PRO is false

top-level

analysis covert

public

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-21

Transforming Into Lattice

• Rough idea: apply a special mapping to generate a subset of the
power set of the set of classes
• Done so this set is partially ordered
• Means it can be transformed into a lattice

• Can show this mapping preserves ordering relation
• So it preserves non-orderings and non-transitivity of elements corresponding

to those of original set

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-22

Dual Mapping

• R = (SCR, ≤R, joinR) reflexive info flow policy
• P = (SP, ≤P) ordered set
• Define dual mapping functions lR, hR: SCR®SP

• lR(x) = { x }
• hR(x) = { y | y Î SCR Ù y ≤R x }

• SP contains subsets of SCR; ≤P subset relation
• Dual mapping function order preserving iff

("a, b Î SCR)[a ≤R b Û lR(a) ≤P hR(b)]

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-23

Theorem

Dual mapping from reflexive information flow policy R to ordered set P
order-preserving
Proof sketch: all notation as before
(Þ) Let a ≤R b. Then a Î lR(a), a Î hR(b), so lR(a) Í hR(b), or lR(a) ≤P hR(b)
(Ü) Let lR(a) ≤P hR(b). Then lR(a) Í hR(b). But lR(a) = { a }, so a Î hR(b),
giving a ≤R b

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-24

Information Flow Requirements

• Interpretation: let confine(x) = [xL, xU], consider class y
• Information can flow from x to element of y iff xL ≤R y, or lR(xL) Í hR(y)
• Information can flow from element of y to x iff y ≤R xU, or lR(y) Í hR(xU)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-25

Revisit Government Example

• Information flow policy is R
• Flow relationships among classes are:

public ≤R public
public ≤R analysis analysis ≤R analysis
public ≤R covert covert ≤R covert
public ≤R top-level covert ≤R top-level
analysis ≤R top-level top-level ≤R top-level

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-26

Dual Mapping of R

• Elements lR, hR:
lR(public) = { public }
hR(public = { public }
lR(analysis) = { analysis }
hR(analysis) = { public, analysis }
lR(covert) = { covert }
hR(covert) = { public, covert }
lR(top-level) = { top-level }
hR(top-level) = { public, analysis, covert, top-level }

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-27

confine

• Let p be entity of type PRO, a of type A, s of type S
• In terms of P (not R), we get:
• confine(p) = [{ public }, { public, analysis }]
• confine(a) = [{ analysis }, { public, analysis, covert, top-level }]
• confine(s) = [{ covert }, { public, analysis, covert, top-level }]

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-28

And the Flow Relations Are …

• p ® a as lR(p) Í hR(a)
• lR(p) = { public }
• hR(a) = { public, analysis, covert, top-level }

• Similarly: a ® p, p ® s, a ® s, s ® a
• But s ® p is false as lR(s) Ë hR(p)
• lR(s) = { covert }
• hR(p) = { public, analysis }

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-29

Analysis

• (SP, ≤P) is a lattice, so it can be analyzed like a lattice policy
• Dual mapping preserves ordering, hence non-ordering and non-

transitivity, of original policy
• So results of analysis of (SP, ≤P) can be mapped back into (SCR, ≤R, joinR)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-30

Compiler-Based Mechanisms

• Detect unauthorized information flows in a program during
compilation
• Analysis not precise, but secure
• If a flow could violate policy (but may not), it is unauthorized
• No unauthorized path along which information could flow remains

undetected

• Set of statements certified with respect to information flow policy if
flows in set of statements do not violate that policy

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-31

Example

if x = 1 then y := a;
else y := b;
• Information flows from x and a to y, or from x and b to y
• Certified only if x ≤ y and a ≤ y and b ≤ y
• Note flows for both branches must be true unless compiler can determine

that one branch will never be taken

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-32

Declarations

• Notation:
x: int class { A, B }

means x is an integer variable with security class at least lub{ A, B }, so
lub{ A, B } ≤ x
• Distinguished classes Low, High
• Constants are always Low

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-33

Input Parameters

• Parameters through which data passed into procedure
• Class of parameter is class of actual argument

ip: type class { ip }

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-34

Output Parameters

• Parameters through which data passed out of procedure
• If data passed in, called input/output parameter

• As information can flow from input parameters to output parameters,
class must include this:

op: type class { r1, …, rn }
where ri is class of ith input or input/output argument

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-35

Example

proc sum(x: int class { A };
var out: int class { A, B });

begin
out := out + x;

end;
• Require x ≤ out and out ≤ out

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-36

Array Elements

• Information flowing out:
… := a[i]

Value of i, a[i] both affect result, so class is lub{ a[i], i }
• Information flowing in:

a[i] := …
• Only value of a[i] affected, so class is a[i]

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-37

Assignment Statements

x := y + z;
• Information flows from y, z to x, so this requires lub{ y, z } ≤ x
More generally:
y := f(x1, …, xn)
• the relation lub{ x1, …, xn } ≤ y must hold

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-38

Compound Statements

x := y + z; a := b * c – x;
• First statement: lub{ y, z } ≤ x
• Second statement: lub{ b, c, x } ≤ a
• So, both must hold (i.e., be secure)
More generally:
S1; … Sn;
• Each individual Si must be secure

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-39

Conditional Statements

if x + y < z then a := b else d := b * c – x; end

• Statement executed reveals information about x, y, z, so lub{ x, y, z } ≤
glb{ a, d }

More generally:
if f(x1, …, xn) then S1 else S2; end

• S1, S2 must be secure
• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S1, S2 }

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-40

Iterative Statements

while i < n do begin a[i] := b[i]; i := i + 1; end

• Same ideas as for “if”, but must terminate

More generally:
while f(x1, …, xn) do S;

• Loop must terminate;
• S must be secure
• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S }

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-41

Goto Statements

• No assignments
• Hence no explicit flows

• Need to detect implicit flows
• Basic block is sequence of statements that have one entry point and

one exit point
• Control in block always flows from entry point to exit point

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-42

Example Program
proc tm(x: array[1..10][1..10] of integer class {x};

var y: array[1..10][1..10] of integer class {y});

var i, j: integer class {i};

begin

b1 i := 1;

b2 L2: if i > 10 goto L7;

b3 j := 1;

b4 L4: if j > 10 then goto L6;

b5 y[j][i] := x[i][j]; j := j + 1; goto L4;

b6 L6: i := i + 1; goto L2;

b7 L7:

end;

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-43

Flow of Control

b1 b2 b7

b6 b3

b4

b5

i > n
i ≤ n

j > n

j ≤ n

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-44

IFDs

• Idea: when two paths out of basic block, implicit flow occurs
• Because information says which path to take

• When paths converge, either:
• Implicit flow becomes irrelevant; or
• Implicit flow becomes explicit

• Immediate forward dominator of basic block b (written IFD(b)) is first
basic block lying on all paths of execution passing through b

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-45

IFD Example

• In previous procedure:
• IFD(b1) = b2 one path
• IFD(b2) = b7 b2®b7 or b2®b3®b6®b2®b7

• IFD(b3) = b4 one path
• IFD(b4) = b6 b4®b6 or b4®b5®b6

• IFD(b5) = b4 one path
• IFD(b6) = b2 one path

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-46

Requirements

• Bi is set of basic blocks along an execution path from bi to IFD(bi)
• Analogous to statements in conditional statement

• xi1, …, xin variables in expression selecting which execution path
containing basic blocks in Bi used
• Analogous to conditional expression

• Requirements for secure:
• All statements in each basic blocks are secure
• lub{ xi1, …, xin } ≤ glb{ y | y target of assignment in Bi }

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-47

Example of Requirements

• Within each basic block:
b1: Low ≤ i b3: Low ≤ j b6: lub{ Low, i } ≤ i
b5: lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j
• Combining, lub{ x[i][j], i, j } ≤ y[j][i] }
• From declarations, true when lub{ x, i } ≤ y

• B2 = {b3, b4, b5, b6}
• Assignments to i, j, y[j][i]; conditional is i ≤ 10
• Requires i ≤ glb{ i, j, y[j][i] }
• From declarations, true when i ≤ y

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-48

Example (continued)

• B4 = { b5 }
• Assignments to j, y[j][i]; conditional is j ≤ 10
• Requires j ≤ glb{ j, y[j][i] }
• From declarations, means i ≤ y

• Result:
• Combine lub{ x, i } ≤ y; i ≤ y; i ≤ y
• Requirement is lub{ x, i } ≤ y

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-49

Procedure Calls

tm(a, b);
From previous slides, to be secure, lub{ x, i } ≤ y must hold
• In call, x corresponds to a, y to b
• Means that lub{ a, i } ≤ b, or a ≤ b
More generally:
proc pn(i1, …, im: int; var o1, …, on: int); begin S end;

• S must be secure
• For all j and k, if ij ≤ ok, then xj ≤ yk

• For all j and k, if oj ≤ ok, then yj ≤ yk

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-50

Exceptions

proc copy(x: integer class { x };
var y: integer class Low);

var sum: integer class { x };
z: int class Low;

begin
y := z := sum := 0;
while z = 0 do begin

sum := sum + x;
y := y + 1;

end
end

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-51

Exceptions (cont)

• When sum overflows, integer overflow trap
• Procedure exits
• Value of x is MAXINT/y
• Information flows from y to x, but x ≤ y never checked

• Need to handle exceptions explicitly
• Idea: on integer overflow, terminate loop

on integer_overflow_exception sum do z := 1;
• Now information flows from sum to z, meaning sum ≤ z
• This is false (sum = { x } dominates z = Low)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-52

Infinite Loops

proc copy(x: integer 0..1 class { x };
var y: integer 0..1 class Low);

begin
y := 0;
while x = 0 do

(* nothing *);
y := 1;

end
• If x = 0 initially, infinite loop
• If x = 1 initially, terminates with y set to 1
• No explicit flows, but implicit flow from x to y

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-53

Semaphores

Use these constructs:
wait(x): if x = 0 then block until x > 0; x := x – 1;

signal(x): x := x + 1;
• x is semaphore, a shared variable
• Both executed atomically

Consider statement
wait(sem); x := x + 1;

• Implicit flow from sem to x
• Certification must take this into account!

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-54

Flow Requirements

• Semaphores in signal irrelevant
• Don’t affect information flow in that process

• Statement S is a wait
• shared(S): set of shared variables read

• Idea: information flows out of variables in shared(S)
• fglb(S): glb of assignment targets following S
• So, requirement is shared(S) ≤ fglb(S)

• begin S1; … Sn end
• All Si must be secure
• For all i, shared(Si) ≤ fglb(Si)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-55

Example

begin

x := y + z; (* S1 *)

wait(sem); (* S2 *)

a := b * c – x; (* S3 *)

end

• Requirements:
• lub{ y, z } ≤ x
• lub{ b, c, x } ≤ a
• sem ≤ a

• Because fglb(S2) = a and shared(S2) = sem

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-56

Concurrent Loops

• Similar, but wait in loop affects all statements in loop
• Because if flow of control loops, statements in loop before wait may be

executed after wait

• Requirements
• Loop terminates
• All statements S1, …, Sn in loop secure
• lub{ shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)

• Where t1, …, tm are variables assigned to in loop

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-57

Loop Example

while i < n do begin

a[i] := item; (* S1 *)

wait(sem); (* S2 *)

i := i + 1; (* S3 *)

end

• Conditions for this to be secure:
• Loop terminates, so this condition met
• S1 secure if lub{ i, item } ≤ a[i]
• S2 secure if sem ≤ i and sem ≤ a[i]
• S3 trivially secure

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-58

cobegin/coend

cobegin

x := y + z; (* S1 *)

a := b * c – y; (* S2 *)

coend

• No information flow among statements
• For S1, lub{ y, z } ≤ x
• For S2, lub{ b, c, y } ≤ a

• Security requirement is both must hold
• So this is secure if lub{ y, z } ≤ x Ù lub{ b, c, y } ≤ a

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-59

Soundness

• Above exposition intuitive
• Can be made rigorous:
• Express flows as types
• Equate certification to correct use of types
• Checking for valid information flows same as checking types conform to

semantics imposed by security policy

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-60

Execution-Based Mechanisms

• Detect and stop flows of information that violate policy
• Done at run time, not compile time

• Obvious approach: check explicit flows
• Problem: assume for security, x ≤ y

if x = 1 then y := a;
• When x ≠ 1, x = High, y = Low, a = Low, appears okay—but implicit flow

violates condition!

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-61

Fenton’s Data Mark Machine

• Each variable has an associated class
• Program counter (PC) has one too
• Idea: branches are assignments to PC, so you can treat implicit flows

as explicit flows
• Stack-based machine, so everything done in terms of pushing onto

and popping from a program stack

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-62

Instruction Description

• skip means instruction not executed
• push(x, x) means push variable x and its security class x onto program

stack
• pop(x, x) means pop top value and security class from program stack,

assign them to variable x and its security class x respectively

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-63

Instructions

• x := x + 1 (increment)
• Same as:
if PC ≤ x then x := x + 1 else skip

• if x = 0 then goto n else x := x – 1 (branch and save PC on
stack)
• Same as:
if x = 0 then begin
push(PC, PC); PC := lub{PC, x}; PC := n;

end else if PC ≤ x then
x := x - 1

else
skip;

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-64

More Instructions

• if’ x = 0 then goto n else x := x – 1 (branch without
saving PC on stack)
• Same as:
if x = 0 then
if x ≤ PC then PC := n else skip

else
if PC ≤ x then x := x - 1 else skip

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-65

More Instructions

• return (go to just after last if)
• Same as:
pop(PC, PC);

• halt (stop)
• Same as:
if program stack empty then halt
• Note stack empty to prevent user obtaining information from it after halting

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-66

Example Program

1 if x = 0 then goto 4 else x := x - 1
2 if z = 0 then goto 6 else z := z - 1
3 halt
4 z := z - 1
5 return
6 y := y - 1
7 return
Initially x = 0 or x = 1, y = 0, z = 0
Program copies value of x to y

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-67

Example Execution

x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y
0 1 0 7 z (3, Low)
0 1 0 3 Low —

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-68

Handling Errors

• Ignore statement that causes error, but continue execution
• If aborted or a visible exception taken, user could deduce information
• Means errors cannot be reported unless user has clearance at least equal to

that of the information causing the error

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-69

Variable Classes

• Up to now, classes fixed
• Check relationships on assignment, etc.

• Consider variable classes
• Fenton’s Data Mark Machine does this for PC
• On assignment of form y := f(x1, …, xn), y changed to lub{ x1, …, xn }
• Need to consider implicit flows, also

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-70

Example Program

(* Copy value from x to y. Initially, x is 0 or 1 *)
proc copy(x: integer class { x };

var y: integer class { y })
var z: integer class variable { Low };
begin
y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;
• z changes when z assigned to
• Assume y < x

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-71

Analysis of Example

• x = 0
• z := 0 sets z to Low
• if x = 0 then z := 1 sets z to 1 and z to x
• So on exit, y = 0

• x = 1
• z := 0 sets z to Low
• if z = 0 then y := 1 sets y to 1 and checks that lub{Low, z} ≤ y
• So on exit, y = 1

• Information flowed from x to y even though y < x

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-72

Handling This (1)

• Fenton’s Data Mark Machine detects implicit flows violating
certification rules

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-73

Handling This (2)

• Raise class of variables assigned to in conditionals even when branch
not taken
• Also, verify information flow requirements even when branch not

taken
• Example:
• In if x = 0 then z := 1, z raised to x whether or not x = 0
• Certification check in next statement, that z ≤ y, fails, as z = x from previous

statement, and y ≤ x

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-74

Handling This (3)

• Change classes only when explicit flows occur, but all flows (implicit
as well as explicit) force certification checks
• Example
• When x = 0, first if sets z to Low, then checks x ≤ z
• When x = 1, first if checks x ≤ z
• This holds if and only if x = Low

• Not possible as y < x = Low by assumption and there is no such class

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-75

Integrity Mechanisms

• The above also works with Biba, as it is mathematical dual of Bell-
LaPadula
• All constraints are simply duals of confidentiality-based ones

presented above

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-76

Example 1

For information flow of assignment statement:
y := f(x1, …, xn)

the relation glb{ x1, …, xn } ≤ y must hold
• Why? Because information flows from x1, …, xn to y, and under Biba,

information must flow from a higher (or equal) class to a lower one

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-77

Example 2

For information flow of conditional statement:
if f(x1, …, xn) then S1; else S2; end;

then the following must hold:
• S1, S2 must satisfy integrity constraints
• glb{ x1, …, xn } ≥ lub{y | y target of assignment in S1, S2 }

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-78

Example Information Flow Control Systems

• Use access controls of various types to inhibit information flows
• Privacy and Android Cell Phones
• Analyzes data being sent from the phone

• Firewalls

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-79

Privacy and Android Cell Phones

• Many commercial apps use advertising libraries to monitor clicks,
fetch ads, display them
• So they send information, ostensibly to help tailor advertising to you

• Many apps ask to have full access to phone, data
• This is because of complexity of permission structure of Android system

• Ads displayed with privileges of app
• And if they use Javascript, that executes with those privileges
• So if it has full access privilege, it can send contact lists, other information to

others
• Information flow problem as information is flowing from phone to

external party

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-80

Analyzing Android Flows

• Android based on Linux
• App executables in bytecode format (Dalvik executables, or DEX) and run in

Dalvik VM
• Apps event driven
• Apps use system libraries to do many of their functions
• Binder subsystem controls interprocess communication

• Analysis uses 2 security levels, untainted and tainted
• No categories, and tainted < untainted

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-81

TaintDroid: Checking Information Flows

• All objects tagged tainted or untainted
• Interpreters, Binder augmented to handle tags

• Android native libraries trusted
• Those communicating externally are taint sinks

• When untrusted app invokes a taint sink library, taint tag of data is recorded
• Taint tags assigned to external variables, library return values

• These are assigned based on knowledge of what native code does

• Files have single taint tag, updated when file is written
• Database queries retrieve information, so tag determined by database query

responder

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-82

TaintDroid: Checking Information Flows

• Information from phone sensor may be sensitive; if so, tainted
• TaintDroid determines this from characteristics of information

• Experiment 1 (2010): select 30 popular apps out of a set of 358 that
required permission to access Internet, phone location, camera, or
microphone; also could access cell phone information
• 105 network connections accessed tainted data
• 2 sent phone identification information to a server
• 9 sent device identifiers to third parties, and 2 didn’t tell user
• 15 sent location information to third parties, none told user
• No false positives

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-83

TaintDroid: Checking Information Flows

• Experiment 2 (2010): revisit 18 out of the 30 apps (others did not run
on current version of Android)
• 3 still sent location information to third parties
• 8 sent device identification information to third parties without consent

• 3 of these did so in 2010 experiment
• 5 were new

• 2 new flows that could reveal tainted data
• No false positives

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-84

Firewalls

• Host that mediates access to a network
• Allows, disallows accesses based on configuration and type of access

• Example: block Conficker worm
• Conficker connects to botnet, which can use system for many purposes

• Spreads through a vulnerability in a particular network service
• Firewall analyze packets using that service remotely, and look for Conficker

and its variants
• If found, packets discarded, and other actions may be taken

• Conficker also generates list of host names, tried to contact botnets at those
hosts
• As set of domains known, firewall can also block outbound traffic to those hosts

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-85

Filtering Firewalls

• Access control based on attributes of packets and packet headers
• Such as destination address, port numbers, options, etc.
• Also called a packet filtering firewall
• Does not control access based on content
• Examples: routers, other infrastructure systems

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-86

Proxy

• Intermediate agent or server acting on behalf of endpoint without
allowing a direct connection between the two endpoints
• So each endpoint talks to proxy, thinking it is talking to other endpoint
• Proxy decides whether to forward messages, and whether to alter them

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-87

Proxy Firewall

• Access control done with proxies
• Usually bases access control on content as well as source, destination

addresses, etc.
• Also called an applications level or application level firewall
• Example: virus checking in electronic mail

• Incoming mail goes to proxy firewall
• Proxy firewall receives mail, scans it
• If no virus, mail forwarded to destination
• If virus, mail rejected or disinfected before forwarding

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-88

Example

• Want to scan incoming email for malware
• Firewall acts as recipient, gets packets making up message and

reassembles the message
• It then scans the message for malware
• If none, message forwarded
• If some found, mail is discarded (or some other appropriate action)

• As email reassembled at firewall by a mail agent acting on behalf of
mail agent at destination, it’s a proxy firewall (application layer
firewall)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-89

Stateful Firewall

• Keeps track of the state of each connection
• Similar to a proxy firewall
• No proxies involved, but this can examine contents of connections
• Analyzes each packet, keeps track of state
• When state indicates an attack, connection blocked or some other

appropriate action taken

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-90

Network Organization: DMZ

• DMZ is portion of network separating a purely internal network from
external network
• Usually put systems that need to connect to the Internet here
• Firewall separates DMZ from purely internal network
• Firewall controls what information is allowed to flow through it
• Control is bidirectional; it control flow in both directions

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-91

One Setup of DMZ

One dual-homed firewall that
routes messages to internal
network or DMZ as
appropriate

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-92

firewall internal
network

DMZ

Internet

Another Setup of DMZ

Two firewalls, one (outer
firewall) connected to the
Internet, the other (inner
firewall) connected to internal
network, and the DMZ is
between the firewalls

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-93

outer
firewall

internal
network

DMZ

Internet

inner
firewall

Key Points

• Both amount of information, direction of flow important
• Flows can be explicit or implicit

• Analysis assumes lattice model
• Non-lattices can be embedded in lattices

• Compiler-based checks flows at compile time
• Execution-based checks flows at run time
• Analysis can be for confidentiality, integrity, or both

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-94

