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Overview

• Basics and background
• Entropy

• Non-lattice flow policies
• Compiler-based mechanisms
• Execution-based mechanisms
• Examples
• Privacy and cell phones
• Firewalls
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Basics

• Bell-LaPadula Model embodies information flow policy
• Given compartments A, B, info can flow from A to B iff B dom A

• So does Biba Model
• Given compartments A, B, info can flow from A to B iff A dom B

• Variables x, y assigned compartments x, y as well as values
• Confidentiality (Bel-LaPadula): if x = A, y = B, and B dom A, then y := x allowed 

but not x := y
• Integrity (Biba): if x = A, y = B, and A dom B, then x := y allowed but not y := x

• From here on, the focus is on confidentiality (Bell-LaPadula)
• Discuss integrity later
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Entropy and Information Flow

• Idea: info flows from x to y as a result of a sequence of commands c if 
you can deduce information about x before c from the value in y after 
c
• Formally:
• s time before execution of c, t time after
• H(xs | yt) < H(xs | ys)
• If no y at time s, then H(xs | yt) < H(xs)
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Example 1

• Command is x := y + z; where:
• 0 ≤ y ≤ 7, equal probability
• z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each

• s state before command executed; t, after; so
• H(ys) = H(yt) = –8(1/8) lg (1/8) = 3
• H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5

• If you know xt, ys can have at most 3 values, so H(ys | xt) = –3(1/3) lg
(1/3) = lg 3 ≈ 1.58
• Thus, information flows from y to x
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Example 2

• Command is
if x = 1 then y := 0 else y := 1;

where x, y equally likely to be either 0 or 1
• H(xs) = 1 as x can be either 0 or 1 with equal probability
• H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa
• Thus, H(xs | yt) = 0 < 1 = H(xs)

• So information flowed from x to y
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Implicit Flow of Information

• Information flows from x to y without an explicit assignment of the 
form y := f(x)
• f(x) an arithmetic expression with variable x

• Example from previous slide:
if x = 1 then y := 0 else y := 1;

• So must look for implicit flows of information to analyze program
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Notation

• x means class of x
• In Bell-LaPadula based system, same as “label of security compartment to 

which x belongs”

• x ≤ y means “information can flow from an element in class of x to an 
element in class of y
• Or, “information with a label placing it in class x can flow into class y”
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Information Flow Policies

Information flow policies are usually:
• reflexive
• So information can flow freely among members of a single class

• transitive
• So if information can flow from class 1 to class 2, and from class 2 to class 3, 

then information can flow from class 1 to class 3
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Non-Transitive Policies

• Betty is a confident of Anne
• Cathy is a confident of Betty
• With transitivity, information flows from Anne to Betty to Cathy

• Anne confides to Betty she is having an affair with Cathy’s spouse
• Transitivity undesirable in this case, probably
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Non-Lattice Transitive Policies

• 2 faculty members co-PIs on a grant
• Equal authority; neither can overrule the other

• Grad students report to faculty members
• Undergrads report to grad students
• Information flow relation is:
• Reflexive and transitive

• But some elements (people) have no “least upper bound” element
• What is it for the faculty members?
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Confidentiality Policy Model

• Lattice model fails in previous 2 cases
• Generalize: policy I = (SCI, ≤I, joinI):
• SCI set of security classes
• ≤I ordering relation on elements of SCI

• joinI function to combine two elements of SCI

• Example: Bell-LaPadula Model
• SCI set of security compartments
• ≤I ordering relation dom
• joinI function lub
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Confinement Flow Model

• (I, O, confine, ®)
• I = (SCI, ≤I, joinI)
• O set of entities
• ®: O´O with (a, b) Î® (written a ® b) iff information can flow from a to b
• for a Î O, confine(a) = (aL, aU) Î SCI´SCI with aL ≤I aU

• Interpretation: for a Î O, if x ≤I aU, information can flow from x to a, and if aL ≤I x, 
information can flow from a to x

• So aL lowest classification of information allowed to flow out of a, and aU highest 
classification of information allowed to flow into a
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Assumptions, etc.

• Assumes: object can change security classes
• So, variable can take on security class of its data

• Object x has security class x currently
• Note transitivity not required
• If information can flow from a to b, then b dominates a under 

ordering of policy I:
(" a, b Î O)[ a ® b Þ aL ≤I bU ]
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Example 1

• SCI = { U, C, S, TS }, with U ≤I C, C ≤I S, and S ≤I TS
• a, b, c Î O
• confine(a) = [ C, C ]
• confine(b) = [ S, S ]
• confine(c) = [ TS, TS ]

• Secure information flows: a ® b, a ® c, b ® c
• As aL ≤I bU, aL ≤I cU, bL ≤I cU

• Transitivity holds
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Example 2

• SCI, ≤I as in Example 1
• x, y, z Î O
• confine(x) = [ C, C ]
• confine(y) = [ S, S ]
• confine(z) = [ C, TS ]

• Secure information flows: x ® y, x ® z, y ® z, z ® x, z ® y
• As xL ≤I yU, xL ≤I zU, yL ≤I zU, zL ≤I xU, zL ≤I yU

• Transitivity does not hold
• y ® z and z ® x, but y ® z is false, because yL ≤I xU is false
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Transitive Non-Lattice Policies

• Q = (SQ, ≤Q) is a quasi-ordered set when ≤Q is transitive and reflexive 
over SQ

• How to handle information flow?
• Define a partially ordered set containing quasi-ordered set
• Add least upper bound, greatest lower bound to partially ordered set
• It’s a lattice, so apply lattice rules!
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In Detail …

• "x Î SQ: let f(x) = { y | y Î SQ Ù y ≤Q x }
• Define SQP = { f(x) | x Î SQ }
• Define ≤QP = { (x, y) | x, y Î SQ Ù x Í y }

• SQP partially ordered set under ≤QP

• f preserves order, so y ≤Q x iff f(x) ≤QP f(y)

• Add upper, lower bounds
• SQP¢ = SQP È { SQ, Æ }
• Upper bound ub(x, y) = { z | z Î SQP Ù x Í z Ù y Í z }
• Least upper bound lub(x, y) = Çub(x, y)

• Lower bound, greatest lower bound defined analogously
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And the Policy Is …

• Now (SQP¢, ≤QP) is lattice
• Information flow policy on quasi-ordered set emulates that of this 

lattice!
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Nontransitive Flow Policies

• Government agency information flow policy (on next slide)
• Entities public relations officers PRO, analysts A, spymasters S
• confine(PRO) = [ public, analysis ]
• confine(A) = [ analysis, top-level ]
• confine(S) = [ covert, top-level ]
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Information Flow

• By confinement flow model:
• PRO ≤ A, A ≤ PRO
• PRO ≤ S
• A ≤ S, S ≤ A

• Data cannot flow to public 
relations officers; not transitive
• S ≤ A, A ≤ PRO
• S ≤ PRO is false

top-level

analysis covert

public
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Transforming Into Lattice

• Rough idea: apply a special mapping to generate a subset of the 
power set of the set of classes
• Done so this set is partially ordered
• Means it can be transformed into a lattice

• Can show this mapping preserves ordering relation
• So it preserves non-orderings and non-transitivity of elements corresponding 

to those of original set
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Dual Mapping

• R = (SCR, ≤R, joinR) reflexive info flow policy
• P = (SP, ≤P) ordered set
• Define dual mapping functions lR, hR: SCR®SP

• lR(x) = { x }
• hR(x) = { y | y Î SCR Ù y ≤R x }

• SP contains subsets of SCR; ≤P subset relation
• Dual mapping function order preserving iff

("a, b Î SCR )[ a ≤R b Û lR(a) ≤P hR(b) ]
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Theorem

Dual mapping from reflexive information flow policy R to ordered set P
order-preserving
Proof sketch: all notation as before
(Þ) Let a ≤R b. Then a Î lR(a), a Î hR(b), so lR(a) Í hR(b), or lR(a) ≤P hR(b)
(Ü) Let lR(a) ≤P hR(b). Then lR(a) Í hR(b). But lR(a) = { a }, so a Î hR(b), 
giving a ≤R b
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Information Flow Requirements

• Interpretation: let confine(x) = [ xL, xU ], consider class y
• Information can flow from x to element of y iff xL ≤R y, or lR(xL) Í hR(y)
• Information can flow from element of y to x iff y ≤R xU, or lR(y) Í hR(xU)
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Revisit Government Example

• Information flow policy is R
• Flow relationships among classes are:

public ≤R public
public ≤R analysis analysis ≤R analysis
public ≤R covert covert ≤R covert
public ≤R top-level covert ≤R top-level
analysis ≤R top-level top-level ≤R top-level
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Dual Mapping of R

• Elements lR, hR:
lR(public) = { public }
hR(public = { public }
lR(analysis) = { analysis }
hR(analysis) = { public, analysis }
lR(covert) = { covert }
hR(covert) = { public, covert }
lR(top-level) = { top-level }
hR(top-level) = { public, analysis, covert, top-level }
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confine

• Let p be entity of type PRO, a of type A, s of type S
• In terms of P (not R), we get:
• confine(p) = [ { public }, { public, analysis } ]
• confine(a) = [ { analysis }, { public, analysis, covert, top-level } ]
• confine(s) = [ { covert }, { public, analysis, covert, top-level } ]
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And the Flow Relations Are …

• p ® a as lR(p) Í hR(a)
• lR(p) = { public }
• hR(a) = { public, analysis, covert, top-level }

• Similarly: a ® p, p ® s, a ® s, s ® a
• But s ® p is false as lR(s) Ë hR(p)
• lR(s) = { covert }
• hR(p) = { public, analysis }
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Analysis

• (SP, ≤P) is a lattice, so it can be analyzed like a lattice policy
• Dual mapping preserves ordering, hence non-ordering and non-

transitivity, of original policy
• So results of analysis of (SP, ≤P) can be mapped back into (SCR, ≤R, joinR)
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Compiler-Based Mechanisms

• Detect unauthorized information flows in a program during 
compilation
• Analysis not precise, but secure
• If a flow could violate policy (but may not), it is unauthorized
• No unauthorized path along which information could flow remains 

undetected

• Set of statements certified with respect to information flow policy if 
flows in set of statements do not violate that policy
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Example

if x = 1 then y := a;
else y := b;
• Information flows from x and a to y, or from x and b to y
• Certified only if x ≤ y and a ≤ y and b ≤ y
• Note flows for both branches must be true unless compiler can determine 

that one branch will never be taken
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Declarations

• Notation:
x: int class { A, B }

means x is an integer variable with security class at least lub{ A, B }, so 
lub{ A, B } ≤ x
• Distinguished classes Low, High
• Constants are always Low
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Input Parameters

• Parameters through which data passed into procedure
• Class of parameter is class of actual argument

ip: type class { ip }
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Output Parameters

• Parameters through which data passed out of procedure
• If data passed in, called input/output parameter

• As information can flow from input parameters to output parameters, 
class must include this:

op: type class { r1, …, rn }
where ri is class of ith input or input/output argument 
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Example

proc sum(x: int class { A };
var out: int class { A, B });

begin
out := out + x;

end;
• Require x ≤ out and out ≤ out
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Array Elements

• Information flowing out:
… := a[i]

Value of i, a[i] both affect result, so class is lub{ a[i], i }
• Information flowing in:

a[i] := …
• Only value of a[i] affected, so class is a[i]
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Assignment Statements

x := y + z;
• Information flows from y, z to x, so this requires lub{ y, z } ≤ x
More generally:
y := f(x1, …, xn)
• the relation lub{ x1, …, xn } ≤ y must hold
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Compound Statements

x := y + z; a := b * c – x;
• First statement: lub{ y, z } ≤ x
• Second statement: lub{ b, c, x } ≤ a
• So, both must hold (i.e., be secure)
More generally:
S1; … Sn;
• Each individual Si must be secure
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Conditional Statements

if x + y < z then a := b else d := b * c – x; end

• Statement executed reveals information about x, y, z, so lub{ x, y, z } ≤ 
glb{ a, d }

More generally:
if f(x1, …, xn) then S1 else S2; end

• S1, S2 must be secure
• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S1, S2 }
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Iterative Statements

while i < n do begin a[i] := b[i]; i := i + 1; end

• Same ideas as for “if”, but must terminate

More generally:
while f(x1, …, xn) do S;

• Loop must terminate;
• S must be secure
• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S }
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Goto Statements

• No assignments
• Hence no explicit flows

• Need to detect implicit flows
• Basic block is sequence of statements that have one entry point and 

one exit point
• Control in block always flows from entry point to exit point
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Example Program
proc tm(x: array[1..10][1..10] of integer class {x};

var y: array[1..10][1..10] of integer class {y});

var i, j: integer class {i};

begin

b1 i := 1;

b2 L2: if i > 10 goto L7;

b3 j := 1;

b4 L4: if j > 10 then goto L6;

b5 y[j][i] := x[i][j]; j := j + 1; goto L4;

b6 L6: i := i + 1; goto L2;

b7 L7:

end;
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Flow of Control

b1 b2 b7

b6 b3

b4

b5

i > n
i ≤ n

j > n

j ≤ n
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IFDs

• Idea: when two paths out of basic block, implicit flow occurs
• Because information says which path to take

• When paths converge, either:
• Implicit flow becomes irrelevant; or
• Implicit flow becomes explicit

• Immediate forward dominator of basic block b (written IFD(b)) is first 
basic block lying on all paths of execution passing through b
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IFD Example

• In previous procedure:
• IFD(b1) = b2 one path
• IFD(b2) = b7 b2®b7 or b2®b3®b6®b2®b7

• IFD(b3) = b4 one path
• IFD(b4) = b6 b4®b6 or b4®b5®b6

• IFD(b5) = b4 one path
• IFD(b6) = b2 one path
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Requirements

• Bi is set of basic blocks along an execution path from bi to IFD(bi)
• Analogous to statements in conditional statement

• xi1, …, xin variables in expression selecting which execution path 
containing basic blocks in Bi used
• Analogous to conditional expression

• Requirements for secure:
• All statements in each basic blocks are secure
• lub{ xi1, …, xin } ≤ glb{ y | y target of assignment in Bi }
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Example of Requirements

• Within each basic block:
b1: Low ≤ i b3: Low ≤ j b6: lub{ Low, i } ≤ i
b5: lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j
• Combining, lub{ x[i][j], i, j } ≤ y[j][i] }
• From declarations, true when lub{ x, i } ≤ y

• B2 = {b3, b4, b5, b6}
• Assignments to i, j, y[j][i]; conditional is i ≤ 10
• Requires i ≤ glb{ i, j, y[j][i] }
• From declarations, true when i ≤ y
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Example (continued)

• B4 = { b5 }
• Assignments to j, y[j][i]; conditional is j ≤ 10
• Requires j ≤ glb{ j, y[j][i] }
• From declarations, means i ≤ y

• Result:
• Combine lub{ x, i } ≤ y; i ≤ y; i ≤ y
• Requirement is lub{ x, i } ≤ y
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Procedure Calls

tm(a, b);
From previous slides, to be secure, lub{ x, i } ≤ y must hold
• In call, x corresponds to a, y to b
• Means that lub{ a, i } ≤ b, or a ≤ b
More generally:
proc pn(i1, …, im: int; var o1, …, on: int); begin S end;

• S must be secure
• For all j and k, if ij ≤ ok, then xj ≤ yk

• For all j and k, if oj ≤ ok, then  yj ≤ yk
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Exceptions

proc copy(x: integer class { x };
var y: integer class Low);

var sum: integer class { x };
z: int class Low;

begin
y := z := sum := 0;
while z = 0 do begin

sum := sum + x;
y := y + 1;

end
end
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Exceptions (cont)

• When sum overflows, integer overflow trap
• Procedure exits
• Value of x is MAXINT/y
• Information flows from y to x, but x ≤ y never checked

• Need to handle exceptions explicitly
• Idea: on integer overflow, terminate loop

on integer_overflow_exception sum do z := 1;
• Now information flows from sum to z, meaning sum ≤ z
• This is false (sum = { x } dominates z = Low)
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Infinite Loops

proc copy(x: integer 0..1 class { x };
var y: integer 0..1 class Low);

begin
y := 0;
while x = 0 do

(* nothing *);
y := 1;

end
• If x = 0 initially, infinite loop
• If x = 1 initially, terminates with y set to 1
• No explicit flows, but implicit flow from x to y
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Semaphores

Use these constructs:
wait(x):   if x = 0 then block until x > 0; x := x – 1;

signal(x): x := x + 1;
• x is semaphore, a shared variable
• Both executed atomically

Consider statement
wait(sem); x := x + 1;

• Implicit flow from sem to x
• Certification must take this into account!
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Flow Requirements

• Semaphores in signal irrelevant
• Don’t affect information flow in that process

• Statement S is a wait
• shared(S): set of shared variables read

• Idea: information flows out of variables in shared(S)
• fglb(S): glb of assignment targets following S
• So, requirement is shared(S) ≤ fglb(S)

• begin S1; … Sn end
• All Si must be secure
• For all i, shared(Si) ≤ fglb(Si)
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Example

begin

x := y + z;       (* S1 *)

wait(sem);        (* S2 *)

a := b * c – x;   (* S3 *)

end

• Requirements:
• lub{ y, z } ≤ x
• lub{ b, c, x } ≤ a
• sem ≤ a

• Because fglb(S2) = a and shared(S2) = sem
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Concurrent Loops

• Similar, but wait in loop affects all statements in loop
• Because if flow of control loops, statements in loop before wait may be 

executed after wait

• Requirements
• Loop terminates
• All statements S1, …, Sn in loop secure
• lub{ shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)

• Where t1, …, tm are variables assigned to in loop
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Loop Example

while i < n do begin

a[i] := item;    (* S1 *)

wait(sem);       (* S2 *)

i := i + 1;      (* S3 *)

end

• Conditions for this to be secure:
• Loop terminates, so this condition met
• S1 secure if lub{ i, item } ≤ a[i]
• S2 secure if sem ≤ i and sem ≤ a[i]
• S3 trivially secure
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cobegin/coend

cobegin

x := y + z;       (* S1 *)

a := b * c – y;   (* S2 *)

coend

• No information flow among statements
• For S1, lub{ y, z } ≤ x
• For S2, lub{ b, c, y } ≤ a

• Security requirement is both must hold
• So this is secure if lub{ y, z } ≤ x Ù lub{ b, c, y } ≤ a

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 17-59



Soundness

• Above exposition intuitive
• Can be made rigorous:
• Express flows as types
• Equate certification to correct use of types
• Checking for valid information flows same as checking types conform to 

semantics imposed by security policy
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Execution-Based Mechanisms

• Detect and stop flows of information that violate policy
• Done at run time, not compile time

• Obvious approach: check explicit flows
• Problem: assume for security, x ≤ y

if x = 1 then y := a;
• When x ≠ 1, x = High, y = Low, a = Low, appears okay—but implicit flow 

violates condition!
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Fenton’s Data Mark Machine

• Each variable has an associated class
• Program counter (PC) has one too
• Idea: branches are assignments to PC, so you can treat implicit flows 

as explicit flows
• Stack-based machine, so everything done in terms of pushing onto 

and popping from a program stack
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Instruction Description

• skip means instruction not executed
• push(x, x) means push variable x and its security class x onto program 

stack
• pop(x, x) means pop top value and security class from program stack, 

assign them to variable x and its security class x respectively
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Instructions

• x := x + 1 (increment)
• Same as:
if PC ≤ x then x := x + 1 else skip

• if x = 0 then goto n else x := x – 1 (branch and save PC on 
stack)
• Same as:
if x = 0 then begin
push(PC, PC); PC := lub{PC, x}; PC := n;

end else if PC ≤ x then
x := x - 1

else
skip;
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More Instructions

• if’ x = 0 then goto n else x := x – 1 (branch without 
saving PC on stack)
• Same as:
if x = 0 then
if x ≤ PC then PC := n else skip

else
if PC ≤ x then x := x - 1 else skip
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More Instructions

• return (go to just after last if)
• Same as:
pop(PC, PC);

• halt (stop)
• Same as:
if program stack empty then halt
• Note stack empty to prevent user obtaining information from it after halting
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Example Program

1 if x = 0 then goto 4 else x := x - 1
2 if z = 0 then goto 6 else z := z - 1
3 halt
4 z := z - 1
5 return
6 y := y - 1
7 return
Initially x = 0 or x = 1, y = 0, z = 0
Program copies value of x to y
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Example Execution

x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y
0 1 0 7 z (3, Low)
0 1 0 3 Low —
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Handling Errors

• Ignore statement that causes error, but continue execution
• If aborted or a visible exception taken, user could deduce information
• Means errors cannot be reported unless user has clearance at least equal to 

that of the information causing the error
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Variable Classes

• Up to now, classes fixed
• Check relationships on assignment, etc.

• Consider variable classes
• Fenton’s Data Mark Machine does this for PC
• On assignment of form y := f(x1, …, xn), y changed to lub{ x1, …, xn }
• Need to consider implicit flows, also
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Example Program

(* Copy value from x to y. Initially, x is 0 or 1 *)
proc copy(x: integer class { x };

var y: integer class { y })
var z: integer class variable { Low };
begin
y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;
• z changes when z assigned to
• Assume y < x
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Analysis of Example

• x = 0
• z := 0 sets z to Low
• if x = 0 then z := 1 sets z to 1 and z to x
• So on exit, y = 0

• x = 1
• z := 0 sets z to Low
• if z = 0 then y := 1 sets y to 1 and checks that lub{Low, z} ≤ y
• So on exit, y = 1

• Information flowed from x to y even though y < x
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Handling This (1)

• Fenton’s Data Mark Machine detects implicit flows violating 
certification rules
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Handling This (2)

• Raise class of variables assigned to in conditionals even when branch 
not taken
• Also, verify information flow requirements even when branch not 

taken
• Example:
• In if x = 0 then z := 1, z raised to x whether or not x = 0
• Certification check in next statement, that z ≤ y, fails, as z = x from previous 

statement, and y ≤ x
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Handling This (3)

• Change classes only when explicit flows occur, but all flows (implicit 
as well as explicit) force certification checks
• Example
• When x = 0, first if sets z to Low, then checks x ≤ z
• When x = 1, first if checks x ≤ z
• This holds if and only if x = Low

• Not possible as y < x = Low by assumption and there is no such class
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Integrity Mechanisms

• The above also works with Biba, as it is mathematical dual of Bell-
LaPadula
• All constraints are simply duals of confidentiality-based ones 

presented above
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Example 1

For information flow of assignment statement:
y := f(x1, …, xn)

the relation glb{ x1, …, xn } ≤ y must hold
• Why? Because information flows from x1, …, xn to y, and under Biba, 

information must flow from a higher (or equal) class to a lower one
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Example 2

For information flow of conditional statement:
if f(x1, …, xn) then S1; else S2; end;

then the following must hold:
• S1, S2 must satisfy integrity constraints
• glb{ x1, …, xn } ≥ lub{y | y target of assignment in S1, S2 }
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Example Information Flow Control Systems

• Use access controls of various types to inhibit information flows
• Privacy and Android Cell Phones
• Analyzes data being sent from the phone

• Firewalls
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Privacy and Android Cell Phones

• Many commercial apps use advertising libraries to monitor clicks, 
fetch ads, display them
• So they send information, ostensibly to help tailor advertising to you

• Many apps ask to have full access to phone, data
• This is because of complexity of permission structure of Android system

• Ads displayed with privileges of app
• And if they use Javascript, that executes with those privileges
• So if it has full access privilege, it can send contact lists, other information to 

others
• Information flow problem as information is flowing from phone to 

external party
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Analyzing Android Flows

• Android based on Linux
• App executables in bytecode format (Dalvik executables, or DEX) and run in 

Dalvik VM
• Apps event driven
• Apps use system libraries to do many of their functions
• Binder subsystem controls interprocess communication

• Analysis uses 2 security levels, untainted and tainted
• No categories, and tainted < untainted
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TaintDroid: Checking Information Flows

• All objects tagged tainted or untainted
• Interpreters, Binder augmented to handle tags

• Android native libraries trusted
• Those communicating externally are taint sinks

• When untrusted app invokes a taint sink library, taint tag of data is recorded
• Taint tags assigned to external variables, library return values

• These are assigned based on knowledge of what native code does

• Files have single taint tag, updated when file is written
• Database queries retrieve information, so tag determined by database query 

responder
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TaintDroid: Checking Information Flows

• Information from phone sensor may be sensitive; if so, tainted
• TaintDroid determines this from characteristics of information

• Experiment 1 (2010): select 30 popular apps out of a set of 358 that 
required permission to access Internet, phone location, camera, or 
microphone; also could access cell phone information
• 105 network connections accessed tainted data
• 2 sent phone identification information to a server
• 9 sent device identifiers to third parties, and 2 didn’t tell user
• 15 sent location information to third parties, none told user
• No false positives
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TaintDroid: Checking Information Flows

• Experiment 2 (2010): revisit 18 out of the 30 apps (others did not run 
on current version of Android)
• 3 still sent location information to third parties
• 8 sent device identification information to third parties without consent

• 3 of these did so in 2010 experiment
• 5 were new 

• 2 new flows that could reveal tainted data
• No false positives
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Firewalls

• Host that mediates access to a network
• Allows, disallows accesses based on configuration and type of access

• Example: block Conficker worm
• Conficker connects to botnet, which can use system for many purposes

• Spreads through a vulnerability in a particular network service
• Firewall analyze packets using that service remotely, and look for Conficker

and its variants
• If found, packets discarded, and other actions may be taken

• Conficker also generates list of host names, tried to contact botnets at those 
hosts
• As set of domains known, firewall can also block outbound traffic to those hosts
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Filtering Firewalls

• Access control based on attributes of packets and packet headers
• Such as destination address, port numbers, options, etc.
• Also called a packet filtering firewall
• Does not control access based on content
• Examples: routers, other infrastructure systems
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Proxy

• Intermediate agent or server acting on behalf of endpoint without 
allowing a direct connection between the two endpoints
• So each endpoint talks to proxy, thinking it is talking to other endpoint
• Proxy decides whether to forward messages, and whether to alter them
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Proxy Firewall

• Access control done with proxies
• Usually bases access control on content as well as source, destination 

addresses, etc.
• Also called an applications level or application level firewall
• Example: virus checking in electronic mail

• Incoming mail goes to proxy firewall
• Proxy firewall receives mail, scans it
• If no virus, mail forwarded to destination
• If virus, mail rejected or disinfected before forwarding
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Example

• Want to scan incoming email for malware
• Firewall acts as recipient, gets packets making up message and 

reassembles the message
• It then scans the message for malware
• If none, message forwarded
• If some found, mail is discarded (or some other appropriate action)

• As email reassembled at firewall by a mail agent acting on behalf of 
mail agent at destination, it’s a proxy firewall (application layer 
firewall)
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Stateful Firewall

• Keeps track of the state of each connection
• Similar to a proxy firewall
• No proxies involved, but this can examine contents of connections
• Analyzes each packet, keeps track of state
• When state indicates an attack, connection blocked or some other 

appropriate action taken
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Network Organization: DMZ

• DMZ is portion of network separating a purely internal network from 
external network
• Usually put systems that need to connect to the Internet here
• Firewall separates DMZ from purely internal network
• Firewall controls what information is allowed to flow through it
• Control is bidirectional; it control flow in both directions
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One Setup of DMZ

One dual-homed firewall that 
routes messages to internal 
network or DMZ as 
appropriate
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Another Setup of DMZ

Two firewalls, one (outer 
firewall) connected to the 
Internet, the other (inner 
firewall) connected to internal 
network, and the DMZ is 
between the firewalls
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Key Points

• Both amount of information, direction of flow important
• Flows can be explicit or implicit

• Analysis assumes lattice model
• Non-lattices can be embedded in lattices

• Compiler-based checks flows at compile time
• Execution-based checks flows at run time
• Analysis can be for confidentiality, integrity, or both
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