
Introduction to Assurance
Chapter 19

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-1



Overview

• Trust
• Problems from lack of assurance
• Types of assurance
• Life cycle and assurance
• Waterfall life cycle model
• Other life cycle models

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-2



Trust

• Trustworthy entity has sufficient credible evidence leading one to 
believe that the system will meet a set of requirements
• Trust is a measure of trustworthiness relying on the evidence
• Assurance is confidence that an entity meets its security 

requirements based on evidence provided by applying assurance 
techniques

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-3



Relationships

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-4

Assurance

Policy

Mechanisms

Statement of requirements that explicitly define
the security expectations of the mechanism(s)

Provides justification that the mechanism meets
policy through assurance evidence and approvals
based on evidence

Executable entities that are designed and imple-
mented to meet the requirements of the policy



Trusted System

• System that has been shown to meet well-defined requirements 
under an evaluation by a credible body of experts who are certified to 
assign trust ratings or assurance levels to evaluated products and 
systems
• Use specific methodologies to gather assurance evidence
• These methodologies typically have increasing ”levels of trust”

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-5



Problem Sources

1. Requirements definitions, omissions, and mistakes
2. System design flaws
3. Hardware implementation flaws, such as wiring and chip flaws
4. Software implementation errors, program bugs, and compiler bugs
5. System use and operation errors and inadvertent mistakes
6. Willful system misuse
7. Hardware, communication, or other equipment malfunction
8. Environmental problems, natural causes, and acts of God
9. Evolution, maintenance, faulty upgrades, and decommissions
Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-6



Examples

• Challenger explosion

• Sensors removed from booster rockets to meet accelerated launch schedule

• Deaths from faulty radiation therapy system

• Hardware safety interlock removed

• Flaws in software design

• Bell V22 Osprey crashes

• Failure to correct for malfunctioning components; two faulty ones could 

outvote a third

• Intel 486 chip

• Bug in trigonometric functions

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-7



Role of Requirements

• Requirements are statements of goals that must be satisfied
• Vary from high-level, generic issues to low-level, concrete issues

• Security objectives are high-level security issues
• Security requirements are specific, concrete issues
• Security policy is set of specific statements that, when enforced, result in a 

secure system
• Alternatively, a statement that partitions states of system into a set of authorized 

states and a set of unauthorized states
• Security model describes a family of policies, systems, or entities and is 

more abstract than a policy
• A policy is specific to particular entities

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-8



Types of Assurance

• Policy assurance is evidence establishing security requirements in 
policy is complete, consistent, technically sound
• Design assurance is evidence establishing design sufficient to meet 

requirements of security policy
• Implementation assurance is evidence establishing implementation 

consistent with security requirements of security policy

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-9



Types of Assurance

• Operational assurance is evidence establishing system sustains the 
security policy requirements during installation, configuration, and 
day-to-day operation
• Also called administrative assurance

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-10



Life Cycle

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-11

Security requirements

Design

Implementation

1

3

4

2

Design and 
implementation 
of refinement

Assurance 
justification



Life Cycle for Building Secure, Trusted Systems

• Life cycle process establish discipline, control in the building of a 
product or system
• This provides confidence in consistency, quality of resulting system

• Assurance requires life cycle model end engineering process in every
situation
• Size and complexity will vary

• Life cycle defined in stages

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-12



Generic Life Cycle Model

These are present in all models, but the emphasis and focus is different 
for each project, and will be more detailed than what is presented here
• Conception
• Manufacture
• Deployment
• Fielded Product Life

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-13



Conception

• Idea
• Decisions to pursue it

• Proof of concept
• See if idea has merit

• High-level requirements analysis
• What does “secure” mean for this concept?
• Is it possible for this concept to meet this meaning of security?
• Is the organization willing to support the additional resources required to 

make this concept meet this meaning of security?

• Identify threats, assumptions

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-14



Manufacture

• Develop detailed plans for each group involved
• May depend on use; internal product requires no sales

• Implement the plans to create entity
• Includes decisions whether to proceed, for example due to market needs
• Software development, engineering process is in this stage

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-15



Deployment

• Delivery
• Assure that correct masters are delivered to production and protected
• Assure integrity of what is delivered to customers, sales organizations

• Installation and configuration
• Ensure product works appropriately for specific environment into which it is 

installed
• Service people know security procedures

• Example of configuration failure
• 2013: Target breached via a third party vendor, as network architected with 

improper security controls

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-16



Fielded Product Life

• Routine maintenance, patching
• Responsibility of engineering in small organizations
• Responsibility may be in different group than one that manufactures product
• Example of failure: 2017 Equifax breach believed due to failing to install an 

important system patch, resulting in breach of financial information for 
hundreds of millions of people

• Customer service, support organizations
• Retirement or decommission of product

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-17



Waterfall Life Cycle Model

• Requirements definition and analysis
• Functional and non-functional
• General (for customer), specifications

• System and software design
• Implementation and unit testing
• Integration and system testing
• Operation and maintenance

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-18



Relationship of Stages

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-19

Requirements 
definition and 
analysis System and 

software 
design Implementa-

tion and unit 
testing

Integration 
and system 
testing

Operation 
and 
maintenance



Agile Software Development

• Software development is creative process, always changing, never 
really completed
• Leads to agile methodologies
• Focuses on working together
• Agile team efficiently works together in their environment
• Team engages customer as a member of the team, developing requirements 

and scoping of the project
• Accept, adapt to rapidly changing requirements

• Allows for continuous improvement

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-20



Agile Methodologies

Term “Agile software development” used to describe several Agile 
methodologies
• Scrum
• Kanban
• Extreme Programming (XP)
• Others
• Feature-Driven Development (FDD), Dynamic Systems Development Method 

(DSDM), Pragmatic Programming
In all, evidence of trustworthiness for assurance adduced after
development

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-21



Scrum

• Split project into small parts that can be done in a short timeframe (called 
a sprint)
• This product backlog created by product owner, who represents customer, product 

stakeholders
• Scrum team agrees on a small subset from top of backlog, decides how to 

design, implement it
• Goal: complete this within the sprint

• Every day, team meets to evaluate progress, adjust as needed to get a 
workable solution within each sprint
• At the end, work completed should be ready to ship, demo, or put back into backlog 

if not complete
• Iterate until product complete

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-22



Kanban

• Identify lanes of work: to be done, in progress, completed, deployed
• Each lane except the last has limit on how many items can be in that 

lane
• Based on staff available to perform the work

• Teams take item off to be done lane, work on it until completed
• When implemented correctly, team is completing work on top item in lane 

when another item arrives

• Goal: deliver product to customer within expected timeline
• Methodology originated at Toyota

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-23



Extreme Programming

• Rapid prototyping and “best practices”

• Project driven by business decisions

• Requirements open until project complete

• Programmers work in teams

• Components tested, integrated several times a day

• Objective is to get system into production as quickly as possible, then 
enhance it

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-24



Models

• Exploratory programming
• Develop working system quickly
• Used when detailed requirements specification cannot be formulated in 

advance, and adequacy is goal
• No requirements or design specification, so low assurance

• Prototyping
• Objective is to establish system requirements
• Future iterations (after first) allow assurance techniques

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-25



Models

• Formal transformation
• Create formal specification
• Translate it into program using correctness-preserving transformations
• Very conducive to assurance methods

• System assembly from reusable components
• Depends on whether components are trusted
• Must assure connections, composition as well
• Very complex, difficult to assure

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-26



Key Points

• Assurance critical for determining trustworthiness of systems
• Different levels of assurance, from informal evidence to rigorous 

mathematical evidence
• Assurance needed at all stages of system life cycle

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 19-27


