
Building Systems with
Assurance

Chapter 20

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-1

Overview

• Assurance in requirements definition, analysis
• Assurance in system and software design
• Assurance in implementation and Integration
• Assurance in operation and maintenance

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-2

Threats and Goals

• Threat is a danger that can lead to undesirable consequences
• Vulnerability is a weakness allowing a threat to occur
• Each identified threat requires countermeasure
• Unauthorized people using system mitigated by requiring identification and

authentication
• Often single countermeasure addresses multiple threats

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-3

Architecture

• Where do security enforcement mechanisms go?
• Focus of control on operations or data?

• Operating system: typically on data
• Applications: typically on operations

• Centralized or distributed enforcement mechanisms?
• Centralized: called by routines
• Distributed: spread across several routines

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-4

Layered Architecture

• Security mechanisms at any layer
• Example: 4 layers in architecture

• Application layer: user tasks
• Services layer: services in support of applications
• Operating system layer: the kernel
• Hardware layer: firmware and hardware proper

• Where to put security services?
• Early decision: which layer to put security service in

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-5

Security Services in Layers

• Choose best layer
• User actions: probably at applications layer
• Erasing data in freed disk blocks: OS layer

• Determine supporting services at lower layers
• Security mechanism at application layer needs support in all 3 lower layers

• May not be possible
• Application may require new service at OS layer; but OS layer services may be

set up and no new ones can be added

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-6

Security: Built In or Add On?

• Think of security as you do performance

• You don’t build a system, then add in performance later
• Can “tweak” system to improve performance a little

• Much more effective to change fundamental algorithms, design

• You need to design it in

• Otherwise, system lacks fundamental and structural concepts for high
assurance

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-7

Reference Validation Mechanism

• Reference monitor is access control concept of an abstract machine
that mediates all accesses to objects by subjects

• Reference validation mechanism (RVM) is an implementation of the
reference monitor concept.
• Tamperproof

• Complete (always invoked and can never be bypassed)

• Simple (small enough to be subject to analysis and testing, the completeness
of which can be assured)

• Last engenders trust by providing evidence of correctness

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-8

Examples

• Security kernel combines hardware and software to implement
reference monitor
• Trusted computing base (TCB) consists of all protection mechanisms

within a system responsible for enforcing security policy
• Includes hardware and software
• Generalizes notion of security kernel

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-9

Adding On Security

• Key to problem: analysis and testing
• Designing in mechanisms allow assurance at all levels
• Too many features adds complexity, complicates analysis

• Adding in mechanisms makes assurance hard
• Gap in abstraction from requirements to design may prevent complete

requirements testing
• May be spread throughout system (analysis hard)
• Assurance may be limited to test results

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-10

Example

• 2 AT&T products with same goal of adding mandatory controls to
UNIX system
• SV/MLS: add MAC to UNIX System V Release 3.2
• SVR4.1ES: re-architect UNIX system to support MAC

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-11

Comparison

• Architecting of System
• SV/MLS: used existing kernel modular structure; no implementation of least

privilege
• SVR4.1ES: restructured kernel to make it highly modular and incorporated

least privilege

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-12

Comparison

• File Attributes (inodes)
• SV/MLS added separate table for MAC labels, DAC permissions

• UNIX inodes have no space for labels; pointer to table added
• Problem: 2 accesses needed to check permissions
• Problem: possible inconsistency when permissions changed
• Corrupted table causes corrupted permissions

• SVR4.1ES defined new inode structure
• Included MAC labels, DAC attributes
• Only 1 access needed to check permissions

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-13

Requirements Assurance

• Specification describes of characteristics of computer system or
program
• Security specification specifies desired security properties
• Must be clear, complete, unambiguous
• Something like “meets C2 security requirements” not good: what are those

requirements (actually, 34 of them!)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-14

Example

• “Users of the system must be identified and authenticated” is
ambiguous
• Type of ID required—driver’s license, token?
• What is to be authenticated—user, representation of identity, system?
• Who is to do the authentication—system, guard?

• “Users of the system must be identified to the system and must have
that identification authenticated by the system” is less ambiguous
• Under what conditions must the user be identified to the system—at login,

time of day, or something else?

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-15

Example

• “Users of the system must be identified to the system and must have
that identification authenticated by the system before the system
performs any functions on behalf of that identity”
• Type of identification is user name
• User identification (name) to be authenticated
• System to authenticate
• Authentication to be done at login (before system performs any action on

behalf of user)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-16

Methods of Definition

• Extract applicable requirements from existing security standards
• Tend to be semiformal

• Combine results of threat analysis with components of existing
policies to create a new policy
• Map the system to existing model
• If model appropriate, creating a mapping from model to system may be

cheaper than requirements analysis

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-17

Example

• System X: UNIX system with MAC based on Bell-LaPadula Model
• Mapping constructed in series of stages
• Auditing also required

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-18

Example Stage 1

• Map elements, state variables of BLP to entities in System X

• Subject set S in BLP ® set of processes in System X

• Object set O in BLP ® set of inode objects, IPC objects, mail messages,

processes as destinations, passive entities in System X

• Right set P in BLP ® set of rights of system functions in System X

• Functions that create entities, write entities, have write w

• Functions that read entities have right r

• Functions that execute, search entities have right r

• Access set b in BLP ® types of access

• Subjects can use rights r, w, a to access inode objects

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-19

Example Stage 1

• Access control matrix a for current state in BLP ® current state of mandatory
and discretionary controls in System X
• Functions fs, fo, and fc in BLP ® three functions in System X

• f(s) is the maximum security level of subject s
• current-level(s) is current security level of subject s
• f(o) is the security level of object o

• Hierarchy H in BLP ® differently for different objects in System X
• Inode objects are hierarchical trees represented by the file system hierarchy
• Other object types map to discrete points in the hierarchy

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-20

Example Stage 2

• Define BLP properties in language of System X and show each
property is consistent with BLP
• MAC property of BLP ® user having over an object:

• read access iff user’s clearance dominates object’s classification
• write access over an object iff object’s classification dominates user’s clearance.

• DAC property of BLP ® user having access to object iff owner of object has
explicitly granted that user access to object

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-21

Example Stage 2

• Label inheritance, user level changes specific to System X
• Security level of newly created object inherited from creating subject
• Security level of initial process at user login, security level of initial process after user

level change, bounded by security level range defined for that user and for the terminal
• Security level of newly spawned process inherited from parent, except for first process

after a user level change
• When user’s level raised, child process does not inherit write access to objects opened

by parent
• When user’s level lowered, all processes, accesses associated with higher privilege

terminated

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-22

Example Stage 2

• Reclassification property of System X
• Specially trusted users allowed to downgrade objects they own within

constraints of user’s authorizations.
• System X property of owner/group transfer allows ownership or

group membership of process to be transferred to another user or
group
• Status property is property of System X
• Restricts visibility of status information available to users when they use

standard System X set of commands

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-23

Example Stage 3

• Designers define System X rules by mapping System X system calls,
commands, and functions to BLP rules
• Simple security condition, *-property, and discretionary security property

interpreted for each type of access
• From these interpretations, designers can extract specific requirements for

specific accesses to particular types of objects.

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-24

Example Stage 4

• Designers show System X rules preserve security properties
• Show that the rules enforce the properties directly; or
• Map the rules directly to a BLP rule or a sequence of BLP rules

• 9 rules about current access
• 5 rules about functions and security levels
• 8 access permission rules
• 8 more rules about subjects and objects

• Designers must show that each rule is consistent with actions of System X.

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-25

Justifying Requirements

• Show policy complete and consistent
• Example: ITSEC suitability analysis
• Map threats to requirements and assumptions
• Describe how references address threat

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-26

Example: System Y Evaluation

• Threat T1: A person not authorized to use the system gains access to
the system and its facilities by impersonating an authorized user.
• Requirement IA1: A user is permitted to begin a user session only if the user

presents a valid unique identifier to the system and if the claimed identity of
the user is authenticated by the system by authenticating the supplied
password.
• Requirement IA2: Before the first user/system interaction in a session,

successful identification and authentication of the user take place.

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-27

System Y Assumptions

• Assumption A1: The product must be configured such that only the approved
group of users has physical access to the system.

• Assumption A2: Only authorized users may physically remove from the system
the media on which authentication data is stored.

• Assumption A3: Users must not disclose their passwords to other individuals.

• Assumption A4: Passwords generated by the administrator shall be distributed in
a secure manner.

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-28

System Y Mapping

Threat Security Target Reference
T1 IA1, IA2, A1, A2, A3, A4

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-29

System Y Justifications

1. Referenced requirements and assumptions guard against unauthorized access.
• Assumption A1 restricts physical access to the system to those authorized to use it.
• Requirement IA1 requires all users to supply a valid identity and confirming password.
• Requirement IA2 ensures that requirement IA1 cannot be bypassed.

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-30

System Y Justifications

2. Referenced assumptions prevent unauthorized users from gaining access by
using valid user’s identity and password
• Assumption A3 ensures that users keep passwords secret
• Assumption A4 prevents unauthorized users from intercepting new passwords when those

passwords are distributed to users
• Assumption A2 prevents unauthorized access to authentication information stored on

removable media.

These justifications provide an informal basis for asserting that, if the assumptions
hold and the requirements are met, the threat is adequately handled.

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-31

Design Assurance

• Process of establishing that design of system sufficient to enforce
security requirements
• Specify requirements (see above)
• Specify system design
• Examine how well design meets requirements

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-32

Design Techniques

• Modularity
• Makes system design easier to analyze
• RVM: functions not related to security distinct from modules supporting

security functionality
• Layering
• Makes system easier to understand
• Supports information hiding

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-33

Layering

• Develop specifications at each layer of abstraction
• subsystem or component: special-purpose division of a larger entity

• Example: for OS, memory manager, process manager; Web store: credit card handlers
• subcomponent: part of a component

• Example: I/O component has I/O managers and I/O drivers as subcomponents
• module: set of related functions, data structures

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-34

Example: Windows 10 and Windows Server
2016 I/O System
• 3 layer decomposition of components
• I/O System Component

• Windows Management Interface (WMI) routines
• Plug and Play (PnP) manager
• Power manager
• I/O manager

• Drivers Component
• File system drivers
• Plug and play drivers
• Non-plug and play drivers

• Hardware Abstraction Layer (HAL) component (no subcomponents)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-35

Example: Decomposition

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-36

I/O System Component

Drivers Component

HAL Component

WMI
Routines

PnP
Manager

Power
Manager

I/O
Manager

File System Drivers PnP Drivers Non-PnP Drivers

Example: More Details

• Subcomponents of file system drivers
• Compact disk file system drivers (CDFS)
• NT file system (NTFS)
• Fast file allocation table file system (FAT)
• Encrypting file system (EFS)

• Below this layer are module, function layers

• I/O system uses data stored in several places
• Registry: database storing system configuration information
• Driver installation files (INF)
• Files storing digital signatures for drivers (CAT)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-37

Design Document Contents

• Provide basis for analysis
• Informal, semiformal, formal

• Must include:
• Security functions: high-level descriptions of functions that enforce security

and overview of protection approach
• External interfaces: interfaces visible to users, how the security enforcement

functions constrain them, and what the constraints and effects should be
• Internal design: Design descriptions addressing the architecture in terms of

the next layer of decomposition; also, for each module, identifies and
describes all interfaces and data structures

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-38

Security Functions

Security functions summary specification identifies high-level security
functions defined for the system; includes
• Description of individual security functions, complete enough to show the

intent of the function; tie to requirements
• Overview of set of security functions describing how security functions work

together to satisfy security requirements
• Mapping to requirements, specifying mapping between security functions

and security requirements.

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-39

External Interface

High-level description of external interfaces to system, component,
subcomponent, or module

1. Component overview identifying the component, its parent, how the
component fits into the design

2. Data descriptions identifying data types and structures needed to support
the external interface descriptions specific to this component, and security
issues or protection requirements relevant to data structures.

3. Interface descriptions including commands, system calls, library calls,
functions, and application program interfaces as well as exception
conditions and effects

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-40

Example 1

• Routine for error handling subsystem that adds an event to an
existing log file

Interface Name
error_t add_logevent (handle_t handle, data_t event);
Input Parameters
handle valid handle returned from previous call to open_log
event buffer of event data with records in logevent format

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-41

Example 1 (con’t)

Exceptions
• Caller lacks permission to add to EVENT file
• Inadequate memory to add to an EVENT file

Effects
Event is added to EVENT log.

Output Parameters
status status_ok /* routine completed successfully */

no_memory /* insufficient memory (failed) */
permission_denied /* no permission (failed) */

Note
add_logevent is a user-visible interface

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-42

Example 2

• Interface for web user to change user password

Interface Name
User Manager / Change Password

Input Parameters
Old password Current user’s current password
New password Current user’s new password
Confirm new password Current user’s confirmation of new password
OK button Used to submit change password request
CANCEL button Used to cancel change password request and return to previous

screen/window

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-43

Example 2 (con’t)

Exceptions
• Caller does not have permission to submit change password request

• New password does not meet complexity requirements

• New password does not match confirmation password

Effects
• Event is added to EVENT log

• If current password is correct, new password and confirmed password identical, and new

password meets complexity requirements, user’s password is changed

Output Parameters
Dialog box indicates password is changed, or password did not meet complexity requirements, or

new and confirmed password did not match

Note
User Manager / Change Password is a user-visible interface

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-44

Internal Design

Describes internal structures and functions of components of system
1. Overview of the parent component; its high-level purpose, function,

security relevance
2. Detailed description of the component; its features, functions, structure in

terms of the subcomponents, all interfaces (noting externally visible ones),
effects, exceptions, and error messages

3. Security relevance of the component in terms of security issues that it and
its subcomponents should address

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-45

Example: Parent Component

• Documents high-level design of audit mechanism shown previously
• Audit component is responsible for recording accurate representation

of all security-relevant events in the system and ensuring that
integrity and confidentiality of the records are maintained.
• Audit view: subcomponent providing authorized users with a mechanism for

viewing audit records.
• Audit logging: subcomponent records the auditable events, as requested by

the system, in the format defined by the requirements
• Audit management: subcomponent handling administrative interface used to

define what is audited.

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-46

Example: Detailed Component Description

• Audit logging subcomponent records auditable events in a secure
fashion. It checks whether requested audit event meets conditions for
recording.
• Subcomponent formats audit record and includes all attributes of

security-relevant event; generates the audit record in the predefined
format
• Audit logging subcomponent handles exception conditions
• Error writing to the log

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-47

Example

• Audit logging subcomponent uses one global structure:
structure audit_config /* defines configuration of */

/* which events to audit */

• Audit logging subcomponent has two external interfaces:
add_logevent() /* log an event */
logevent() /* ask to log event */

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-48

Example: Security Relevance

• Audit logging subcomponent monitors security-relevant events and
records those events matching configurable audit selection criteria
• Security-relevant events include attempts to violate security policy, successful

completion of security-relevant actions

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-49

Low-Level Design

Focus on internal logic, data structures, interfaces; may include
pseudocode

1. Overview, giving the purpose of the module and its interrelations with
other modules, especially dependencies on other modules

2. Security relevance of the module, showing how the module addresses
security issues

3. Individual module interfaces, identifying all interfaces to the module, and
those externally visible.

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-50

Example: Overview of Module

• Audit logging subcomponent
• Responsible for monitoring and recording security-relevant events
• Depends on I/O system and process system components

• Audit management subcomponent
• Depends on audit logging subcomponent for accurate implementation of

audit parameters configured by audit management subcomponent
• All system components depend on audit logging component to

produce their audit records

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-51

Example: Components Module Uses

• Audit logging subcomponent:
Variables
structure logevent_t defines audit record
structure audit_ptr current position in audit file
file_ptr audit_fd file descriptor of audit file

Global structure
structure audit_config defines configuration of which events are to be audited

External interfaces
add_logevent() begin logging events of given type
logevent() ask to log event

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-52

Example: Security Relevance of Module

• Audit logging subcomponent monitors security-relevant events,
records those events matching the configurable audit selection
criteria
• Example: attempts to violate security policy
• Example: successful completion of security-relevant actions

• Audit logging subcomponent must ensure no audit records are lost,
and are protected from tampering

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-53

Example: Individual Module Interfaces

• logevent() only non-priviledged external interface
verify function parameters
call check_selection_parameters to determine if system has been configured to

audit event
if check_selection_parameters then

call create_logevent
call write_logevent
return success or error number

else
return success

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-54

Example: Individual Module Interfaces (con’t)

• add_logevent() available only to privileged users
verify caller has privilege/permission to use this function
if caller does not have permission

return permission_denied
verify function parameters
call write_logevent for each event record
return success or error number from write_logevent

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-55

Internal Design

Show in which documents to put various designs to create a useful,
readable, and complete set of documents
• Introduction: purpose, scope, target audience
• Component overview: identifies modules, data structures; how data is

transmitted; security relevance and functionality
• Detailed module designs

• Module #1: module’s interrelations with other modules, local data structures, its control
and data flows, security
• Interface Designs: describes each interface
• Interface 1a: security relevance, external visibility, purpose, effects, exceptions, error

messages, and results

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-56

Example

• Windows I/O System

• High-level design document describes I/O system as a whole

• Necessary descriptions of I/O System, Drivers, HAL

• Describes first level of design decomposition

• Next level of decomposition (here only shown for I/O System)

• High-level design document for I/O file drivers

• Internal design specification for HAL component

• Internal design specifications for each subcomponent of I/O file

drivers

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-57

Documentation and Specification

• Time, cost, efficiency may impact how complete set of documents
prepared
• Different types of specifications
• Modification Specifications
• Security Specifications
• Formal Specifications

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-58

Modification Specifications

• Used when system built from previous versions or components
• Specifications for these versions or components
• Specifications for changes to, additions of, and methods for deleting modules,

functions, components
• Developer understands the system upon which the new system is

based

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-59

Security Considerations

• Security analysis must rest on specification of current system, not
previous ones or changes only
• If modification specifications are only ones, security analysis based upon

incomplete specifications
• If previous system has full security specifications, then analysis may be

complete

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-60

Security Specifications

• Used when design specifications adequate except for security issues
• Develop supplemental specifications to describe missing security

functionality
• Develop document that starts with security functions summary specification
• Expand to address security issues of components, subcomponents, modules,

functions

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-61

Example: System X

• Underlying UNIX system completely specified, including complete
functional specifications and internal design specifications
• Neither covered security well, let alone document new functionality

• Team supplemented existing documentation with security
architecture document
• Addresses deficiencies of existing documentation
• Gives complete overview of each security function
• Additional documentation describes external interface, internal design of all

functions

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-62

Formal Specifications

• Any specification can be formal
• Written in formal language, with well-defined syntax and sound

semantics
• Supporting tools allow checking
• Parsers
• Theorem provers

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-63

Justifications

• Formal techniques
• Proofs of correctness, consistency

• Informal techniques
• Requirements tracing: showing which specific security requirements are met

by parts of a specification
• Informal correspondence (also called representation correspondence):

showing a specification is consistent with adjacent level of specification

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-64

Requirements Mapping and Informal
Correspondence

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-65

Security functional requirements

External functional requirements

Internal design specifications

Implementation code

IC

IC

RT

RT

RT

RT: requirements tracing
IC: Informal correspondence

Mappings Between Layers

• Informal techniques most appropriate when all levels of specification
have identified requirements and all adjacent pairs of specifications
have been shown to be consistent
• Security functions summary specification and functional specification
• Functional specification and high-level design specification
• High-level design specification and low-level design specification
• Low-level design specification and implementation code

• Doing third mapping may be difficult as difference in levels of
abstraction can obscure relationship
• Intermediate level often simplifies this

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-66

Example

• Family of specifications across several levels
• Security requirement R2 requires users of system be identified to system,

and to have identification authenticated by system before use of any
system functions
• Identification and authentication (I&A) high-level security-enforcing

function from security functions summary specification:
1. Users identify themselves to system using login_ID before they can use any system

resources
2. Users use password to authenticate their identity; system must accept password as

authentic before any resources can be used
3. Password must meet specific size, character constraints

• Interfaces login, change_password described in functional specification

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-67

Example

• Requirements mapping represented by table following explanation
• In this example, only R2 maps to I&A

• Informal correspondence between functional, security functions
summary specifications are:
• login maps to items 1, 2 in description of I&A
• change_password maps to items 2, 3 in description of I&A

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-68

Security requirements Function 1 I&A ... Function m
R1

R2 X

...

Rn

Informal Arguments

• Requirements tracing identifies components, modules, functions that
meet requirements but not how well they are met
• Informal arguments uses approach similar to mathematical proofs

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-69

Example

• System W is a new version of an existing product
• Previous version had good requirements, security functions summary,

external functional, and design specifications

• System W added bug fixes, features (some large and pervasive)

• Developers created external functional specification, internal design
specification documents for all modifications of the system
• Each document defined scope to be modifications only

• Security analysts asked developers many questions

• Resulting combined security specification and analysis document
addressed impacts of change on security of previous system

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-70

Example (con’t)

• Analysis document contained
• Security analysis document containing individual documents for each of the different

functional areas
• System overview document
• Test coverage analysis document

• Documentation semiformal, written in natural language with code excepts
where practical
• Design overview: gave high-level description of component, relevant security issues,

impact on security
• Requirements section: identified security functionality in module, traced it to

applicable security functional requirements
• Interface analysis: described new or impacted interfaces, mapped requirements to

them, identified and documented security problems and made recommendations

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-71

Formal Methods

• Requirements tracing checks specifications satisfy requirements
• Specifiers intend to process specification using automated tools
• Proof-based technology typically based on some form of logic (like predicate

calculus); user constructs proof, proof checkers validate it
• Model checking takes a security model and processes a specification to

determine if it meets the model’s constraints

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-72

Reviews of Assurance Evidence

• Reviewers given guidelines for review
• Other roles:
• Scribe: takes notes
• Moderator: controls review process
• Reviewer: examines assurance evidence
• Author: author of assurance evidence
• Observer: observe process silently

• Important: managers may only be reviewers, and only then if their
technical expertise warrants it

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-73

Setting Review Up

• Moderator manages review process

• If not ready, moderator and author’s manager discuss how to make it ready
with author

• May split it up into several reviews

• Chooses team, defines ground rules

• Technical Review

• Reviewers follow rules, commenting on any issues they uncover
• May request moderator to stop review, send back to author

• General and specific comments to author

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-74

Review Meeting

• Moderator is master of ceremonies
• Grammatical issues presented first
• General and specific comments next
• Goal is to collect comments on entity, not to resolve differences
• Scribes write down comments and who made it (anyone can see it, help

scribe, verify comment made)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-75

Conflict Resolution

• After meeting, scribe creates Master Comment List
• Reviewers mark “Agree” or “Challenge”
• All comments that everyone “Agree”s are put on Official Comment List (OCL)
• Rest must be resolved by reviewers

• Moderator, reviewers then:
• Accept as is
• Accept with changes on OCL
• Reject

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-76

Conflict Resolution

• Author takes OCL, makes changes as sees fit
• Author then meets with reviewers
• Explains how each comment made by reviewer was handled
• All must be resolved to satisfaction of author, reviewer

• Review completed

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-77

Informal Review

• Occurs sometimes due to quick pace of releases, bug fixes
• Review process does not include moderator or scribe
• Review may use electronic communications with one reviewer

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-78

Implementation Considerations for Assurance

• Make system modular, with minimum of interfaces
• Interfaces are well-designed
• Remove any non-security functionality from them, whenever possible

• Choice of programming language can affect assurance
• Use one providing built-in features to avoid common flaws

• Strong typing, built-in checks for buffer overflow, data hiding, error handling, etc.
• Otherwise, develop and use appropriate coding standards and guidelines

• Useful, but limited support for good code

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-79

Implementation Management

• Configuration management: control of changes made in system’s
components, documentation, and testing throughout development,
operational life
• Need processes, tools to do this effectively
• Configuration management system consists of:
• Version control and tracking
• Change authorization: restrict change check in to authorized people
• Integration procedures
• Product generation tools: generate the distribution version from authorized

version

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-80

Justification

• Goal is to demonstrate implementation meets design
• Security testing
• Formal methods: used during coding processes, work best on small

parts of a program performing well-defined tasks
• We’ll discuss these later (next chapter)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-81

Testing

• Testing techniques

• Functional (black box): testing to see how well entity meets its specifications

• Structural (white box): testing based on analysis of code to develop test cases

• When to do testing

• Unit testing: testing by developer on code module before integration

• Usually structural testing

• System testing: functional testing performed by integration team on
integrated modules

• May include structural testing

• Third-party (independent) testing: functional testing by a group outside
development organization

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-82

Security Testing

• Testing that addresses product security
• Security functional testing: functional testing specific to security issues described in

relevant specification
• Focus is on pathalogical cases, boundary value issues, and so forth

• Security structural testing: structural testing specific to security implementation
found in relevant code

• Security requirements testing: security functional testing specific to security
requirements found in requirements specification
• May overlap significantly with security functional testing

• Test coverage covers system security functions more consistently than
ordinary testing
• When completed, provides rigorous argument that all external interfaces have been

completely tested

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-83

Security Testing

• Usually takes place at external interface level

• Here, “interface” is point at which processing crosses security perimeter

• Users access system through these

• Therefore, violations of policy occur through these

• Parallel efforts, one by programming team, other by test team

• Security test suites ver large
• Automated test suites essential

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-84

Code Development and Testing

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-85

Code

Test unit on
current build

Integrate tested
test into auto-

mated test suite

Build test suiteExecute system
test on current

build

Code

Unit test

Integrate

Build system

Find
test
bugs

Find
code
bugs

Plans and Reports

• Configuration management, documentation very important
• Testers develop, document test plans, test specifications, test procedures, test

results

• Writing test plans, specifications, procedures help authors examine,
correct approaches
• Provides assurance about test methodology
• Enables analysis of test suite for correctness, completeness

• Reports identify which tests entity has passed, which it has failed
• Watch out for failures due to automation (where automated test fails, but

same test run independently of suite passes)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-86

Security Testing Using PGWG

• PAT(Process Action Team) Guidance Working Group developed
systematic approach to test development using successive
decomposition of system, requirements tracing
• Methodology works well in system defined into successively smaller

components
• Requirements mapped to successively lower levels of design using test

matrices
• At lowest level, test assertions claim interfaces meet each requirement
• Used to develop test cases
• Includes documentation approach

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-87

PGWG Test Matrices

• Two types of test matrices: high-level, low-level
• High level matrix

• Rows are entity subsystems, major components
• Columns are high-level security areas focused on functional requirements

• Like access controls, integrity controls, cryptography
• Cells give pointers to relevant documentation, lower-level test matrices

• Low level matrix
• Rows are interfaces to subsystem, component
• Columns represent security areas, their subdivisions, individual requirements
• Cells contain test assertions, each of which apply to single interface and requirement

• Any empty cells must be justified to show why requirement does not apply

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-88

Example: Testing Security-Enhanced UNIX

• System includes file, memory, process, and IPC management, process
control, I/O interfaces and devices

• Security functional requirement areas
• Discretionary access control

• Privileges, identification, authentication (I&A)

• Object reuse protection

• Security audit

• System architecture constraints

• Testing uses interpretation of PGWG methodology
• High-level matrix

• Low-level matrices, 1 for each row of high-level matrix

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-89

Example: High-Level Matrix
Security Requirement Area

Component DAC Priv I&A OR Audit Arch
Process management ✓
Process control ✓ ✓ ✓ ✓ ✓
File management ✓ ✓ ✓ ✓ ✓
Audit subsystem ✓ ✓ ✓ ✓ ✓
I/O subsystem interfaces ✓ ✓ ✓ ✓ ✓
I/O device drivers ✓ ✓ ✓ ✓
IPC management ✓ ✓ ✓ ✓ ✓
Memory management ✓ ✓ ✓ ✓ ✓

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-90

Example: Low-Level Matrix
System

Call
DAC

u/g/o
DAC
ACL Priv I&A OR Security

Audit Logging Isolation Protection
Domains

brk ✓ ✓ ✓
madvise ✓ ✓
mmap ✓ ✓ ✓ ✓ ✓ ✓ ✓
mprotect ✓ ✓ ✓ ✓ ✓
msync ✓ ✓
munmap ✓ ✓ ✓ ✓ ✓
plock ✓ ✓ ✓ ✓ ✓ ✓ ✓
vm-ctl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-91

Test Assertions

• Created by identifying security-relevant, testable, analyzable
conditions
• Review design documentation for this

• PGWG methods for stating assertions
• Develop statements describing behavior that must be verified

• Example: “Verify that the calling process needs DAC write access permission to the
parent directory of the file being created. Verify that if access is denied, the return error
code is 2.”

• Develop statements that tester must prove or disprove with tests
• Example: “The calling process needs DAC write access permission to the parent directory

of the file being created, and if access is denied, it returns error code 2.”
• State assertions as claims embedded within structured specification format

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-92

Test Specifications

• Test cases to verify truth of each assertion for each interface
• PGWG suggests:
• High-level test specifications (HLTS) describe, specify test cases for each

interface
• Low-level test specifications (LLTS) provide information about each test case

• Like setup and cleanup conditions, other environmental conditions

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-93

Example: HLTS for Interface stime()

Assertion
Number

Requirement Area
and Number Assertion Relevant

Test Cases
1 PRIV AC_1 Verify that only root can use system

call stime() successfully
Stime_1, 2

2 PRIV AC_2 Verify audit record generated for
every failed stime() call

Stime_1, 2

3 PRIV AC_3 Verify audit record generated for
every successful stime() call

Stime_1, 2

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-94

High-level test specification includes assertion, test case specifications

Test Case Specifications

• Describe specific tests required to meet assertions

Version 1.1 Computer Security: Art and Science, 2
nd

Edition Slide 20-95

Test Case Name

and Number

Is UserID

= root? Expected Results

Stime_1 Yes Call to stime() should succeed; audit record

should be generated noting successful attempt

and new clock time

Stime_2 No Call to stime() should fail; audit record should be

generated noting failed attempt

LLTS for Stime_1

Test case name: K_MIS_stime_1
Test case description: Call stime as a non-root user to change system
time; this should fail, verifying only root can use this call successfully
Expected result: stime call should fail with return value of –1, system
clock should be unchanged, error number (errno) set to EPERM, audit
record as shown below
Test specific setup:
1. Log in as a non-root user (secusr1)
2. Get the current system time

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-96

LLTS for Stime_1 (con’t)

Algorithm:
1. Do the setup as above
2. Call stime to change system time to 10 min ahead of current time
3. If return value is –1, error number is EPERM, and current system

time not new time given to stime, declare the test passed;
otherwise, declare failed

Cleanup: If system time has changed, reduce current time to 10
minutes

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-97

LLTS for Stime_1 (con’t)

Audit record field values for failure (success):
Authid secusr1
RUID secusr1
EUID secusr1
RGID scgrp1
EGID secgrp1
Class tune
Reason Privilege failure (success)
Event SETTHETIME_1
Message Privilege failure (none)

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-98

Operation, Maintenance Assurance

• Bugs will be found during operation, requiring fixes

• Hot fix: handle bugs immediately, sent out as quickly as possible

• Used to fix bugs that immediately affect system security or operation

• Regular fix: handle less serious bugs or give long-term solutions to bugs fixed

by hot fix, usually collected until some condition arises and then sent out

• Sent out as maintenance release or as “patch Tuesday” or some other way

• Well-defined procedures handle, track reported flaws

• Include information about bug, such as description, remedial actions, severity,

pointer to related configuration management entries, other documentation

• Actions taken follow same security procedures used during original

devlopment

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-99

Key Points

• Assurance critical for determining trustworthiness of systems
• Different levels of assurance, from informal evidence to rigorous

mathematical evidence
• Assurance needed at all stages of system life cycle

Version 1.1 Computer Security: Art and Science, 2nd Edition Slide 20-100

