
Formal Methods
Chapter 21

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-1



Outline

• Formal verification techniques
• Design verification languages
• Bell-LaPadula and SPECIAL
• Current verification systems
• Functional programming languages
• Formally verified products
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Formal Verification Techniques

• Formal specification languages for specifying requirements and 
systems
• Well-defined semantics, syntax
• Based on mathematical logic systems

• Mathematically-based automated formal methods for proving 
properties of specifications and programs
• Inductive verification techniques
• Model checking techniques
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Inductive Verification vs. Model Checking

Classification criteria:
• Proof-based vs. model-based techniques: 
• premises embody system description
• conclusion represents properties to be proved
• Proof-based: derive intermediate formulae that go from premises to 

conclusion
• Model-based: establish that premises, conclusion have same truth table 

values

• Degree of automation: fully manual to fully automatic, with 
everything in between
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Inductive Verification vs. Model Checking

Classification criteria:
• Full vs. property verification: 
• System specification may describe entire system or part of system
• Property specification may be single property or many properties

• Predevelopment vs. postdevelopment: may be design aid or for 
verification after system design is complete
• Intended domain of application: hardware or software, sequential or 

concurrent, non-terminating (like an operating system) or 
terminating, and so forth
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Example: HDM

• Developed at SRI
• Began as proof-based formal verification methodology
• Covers design through implementation
• Automated, general-purpose methodology
• Used specification languages, implementation languages

• Provided model checking with its multilevel security tool
• Input is formal specification in language SPECIAL
• Theorem prover uses proof-based technique; fully automated property-

oriented verification system
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Example: HDM

• Tool uses SRI model (interpretation of Bell-LaPadula model)
• Given a SPECIAL specification
• Verification condition generator creates formulae that assert specification 

correctly implements SRI model
• Boyer-Moore theorem prover processes these formulae
• Output is list of the formulae that were satisfied and those that were not
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Formal Specification

• A specification written in a formal language with restricted syntax, 
well-defined semantics, based on well-established mathematical 
concepts
• Precise semantics avoids ambiguity
• Languages support exact descriptions of system function behavior
• Generally eliminate implementation details

• Automated tools support verification of syntax, semantics
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Example Language: SPECIAL

• First-order logic-based language
• Nonprocedural, strongly typed

• Specification in SPECIAL represents module
• Specifier defines module scope
• Systems described in terms of modules

• Function representation in modules
• VFUN: describe variable data
• OFUN: describe state transitions
• OVFUN: describe state transitions and changes in VFUN values
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Bell-LaPadula Model and SPECIAL

MODULE Bell_LaPadula_Model give-access
TYPES
Subject_ID: DESIGNATOR;
Object_ID: DESIGNATOR;
Access_Mode: {OBSERVE_ONLY, ALTER_ONLY, OBSERVE_AND_ALTER};
Access: STRUCT_OF( Subject_ID subject;

Object_ID object;
Access_Mode mode);
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Comments

• Subject_ID, Object_ID types described at lower level of abstraction
• The DESIGNATOR indicates this

• Access_Mode types have 3 possible values
• Access type is structure with 3 fields of types shown
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Bell-LaPadula Model and SPECIAL

FUNCTIONS
VFUN active (Object_ID object) -> BOOLEAN active:
HIDDEN;
INITIALLY

TRUE;

VFUN access_matrix () -> Access accesses:
HIDDEN;
INITIALLY

FORALL Access a: a INSET accesses => active(a.object);
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Comments

• VFUN active(object) defines the state variable active for the object
and sets it to TRUE initially
• So state variable for that object is true if the object exists

• VFUN access_matrix() defines the state variable access_matrix to be 
set of triples (subject, object, right) 
• This is simply the current set of access rights in the system
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Bell-LaPadula Model and SPECIAL

OFUN give-access(Subject_ID giver; Access access);
ASSERTIONS

active(access.object) = TRUE;
EFFECTS
access_matrix() = access_matrix() UNION (access);

END_MODULE
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Comments

• OFUN access_matrix() defines state transition when new object 
added to matrix
• State variable active for object must be true
• See in the ASSERTIONS sections

• Value of state variable access_matrix after transition is value before 
transition and additional access rights for the new object 
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Hierarchical Development Methodology 
(HDM)
• General-purpose methodology 

for design, implementation
• Goal was to automate and 

formalize development process

• System design specification is 
hierarchy of a series of abstract 
machines at increasing level of 
detail
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Specifications

• Hierarchical specification identifies abstract machines (AMs) making 
up hierarchy
• Each AM a set of modules written in SPECIAL
• Modules could be reused in more than one AM

• Mapping specifications define functions of one AM in terms of next 
higher AM
• Hierarchy consistency checker: ensured consistency among hierarchy 

specs, associated module specs for AMs, mapping specs between 
AMs
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Design Hierarchy

• Look at each pair of consecutive AMs, mappings between them
• For each function in higher AM, write programs to show how it was 

implemented in terms of lower-level AM
• Written in high-order language
• Translator mapped program into common internal form that HDM tools used
• Specs mapped into intermediate language; this and common internal form 

generated verification conditions
• Sent to Boyer-Moore theorem prover

• If lower-level AM correct, then higher-level AM verified to work correctly
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Verification in HDM

• Approach: prove the FTLS correctly implemented predefined 
properties within a model
• Used to verify design of a multi-level security (MLS) tool 

implementing a version of Bell-LaPadula model (called SRI model)
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SRI Model

• Some SRI model entities had no corresponding Bell-LaPadula features
• Visible function references and results (VFUN, OVFUN)
• Defined subjects implicitly (function callers)
• *-property addresses downward flow of information

• Bell-LaPadula model had features SRI model did not
• Discretionary access control, current access triples
• Defined subjects explicitly
• *-property addressed allowable downward access
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Properties of SRI Model in MLS Tool

• Information returned by specific function invocation to subject can 
depend only on information with security levels no greater than 
subject
• Information flowing into state variable (ie, VFUN) can depend only on 

other state variables with security levels no greater than that of first 
state variable
• If value of state variable modified, only function invocation with 

security level no greater than level of state variable can do the 
modification 
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MLS Tool

• Processed SPECIAL specification describing external interfaces to 
SPECIAL model
• One AM represented, so no mappings
• Could be multiple modules in specification; each module had to be verified, 

and then the set verified using hierarchy consistency tool
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MLS Tool

• To verify properties:
• MLS tool generated formulae claiming correctness of properties
• Property 1 correctness: formulae generated from exceptions from visible 

functions and VFUN, OVFUN return values
• Properties 2, 3 correctness: formulae generated for each new value 

assignment to state variables

• Formulae (verification conditions) submitted to theorem prover
• Theorem prover reported the verification conditions that passes, 

failed, could not be proven

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-23



Boyer-Moore Theorem Prover

• User provides theorems, lemmata, axions, assertions needed for 
proof
• For example, rules of reflexivity, associativity, transitivity among partial 

ordering relations
• Provided in a LISP-like notation
• Maintained list of previously proven theorems, axioms for future proofs

• Used extended propositional calculus
• Heuristics organized to find proof in most efficient manner
• Used a series of steps on formula in search of proof
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Boyer-Moore Steps

• Simplify: apply axioms, lemmata, function definitions, and other 
techniques
• Reformulate: replace terms by equivalent terms easier to process
• Substitute equalities: replace equal expressions with appropriate 

substitutions to eliminate equality expressions
• Generalize: introduce variables for terms that are no longer used
• Eliminate irrelevant terms
• Use induction to prove theorems when needed
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Boyer-Moore Evaluation

1. Iterated between simplify, reformulate steps until formula proved 
or disproved, or formula did not change

2. Substitute equalities, and if any changes then go back to step 1
3. Generalize, and if any changes then go back to step 1
4. Eliminate, and if any changes then go back to step 1
5. Apply induction, and if any changes then go back to step 1
If formula reduced to TRUE or FALSE, done; otherwise formula could 
not be proven
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Enhanced HDM (EHDM)

EHDM addressed difficulties with HDM
1. SPECIAL not defined in terms Boyer-Moore theorem prover could 

use readily
• Missing specific constructs that theorem prover needed
• EHDM used new language, similar to SPECIAL but with the missing constructs, 

such as concepts of AXIONM, THEOREM, LEMMA

2. HDM theorem prover not interactive
• EHDM theorem prover based on Boyer-Moore theorem prover, but was 

interactive
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Gypsy Verification Environment

• Gypsy Verification Environment (GVE) focused on implementation 
proofs
• Verification system tried to show correspondence between specifications, 

their implementation
• Verification system could also prove properties of Gypsy specifications

• Set of tools including a Gypsy language parser, verification condition 
generator, theorem prover
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Gypsy Language

• Combined specification language constructs with programming 
language (Pascal base)
• Limitations on Pascal base
• Could not nest routines, but could group them together in named ”scope”
• No global variables; only constants, types, functions, procedures visible 

between routines
• Parameters all constant and passed only by reference
• No pointers
• New data structures sets, sequences, mappings, buffers; new operations of 

addition, deletion, moving component
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Gypsy Language Specifications

• Gypsy program made up of small, verifiable units
• Functions, procedures, lemmata, types, constants
• Proof of unit depended only on external specifications of referenced units

• Specification constructs
• Entry: conditions assumed to be true when routine activated
• Exit: conditions that must have been true if routine exited
• Block: conditions that must have been true if routine blocked waiting on 

access to shared memory
• Assert: conditions that had to be true at specific point of execution
• Keep: conditions that had to remain true throughout execution of routine
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Gypsy Language Specifications

• Gypsy supported execution of lemmata as separate units
• Lemmata defined relation among functions, global constraints
• hold specification defined constraint on values of abstract data type

• Expressive level
• Existential quantifier some
• Universal quantifier all
• Mechanism to distinguish old, new values
• Validation directive says when to prove condition: during verification, 

validated at runtime, or both
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Bledsoe Theorem Prover

• Interactive natural deduction system using extended first-order logic
• Allowed subgoaling, matching, rewriting

• Every loop had to be broken by at least one assert specification
• Each verification condition was theorem corresponding to single path 

of execution
• Due to asserts, finite number of execution paths
• Condition stated that specification at beginning of path implies specification 

at end of path

• Analyst could guide the prover, or it could be told to choose next step
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Current Verification Systems

• Prototype Verification System (PVS)
• Symbolic Model Verifier (SMV)
• Naval Research Laboratory Protocol Analyzer (NPA)

(as of the publication date of this book)
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PVS

• Builds on prior work at SRI, especially EHDM
• HDM, EHDM focused on proving programs correct and the full life 

cycle of software development
• PVS focuses on mechanically checked specifications, readable proofs
• It does not provide a full software development environment
• No notion of layers of abstraction, mapping between levels

• Components:
• Specification language integrated with theorem prover
• Theorem prover highly interactive (a “proof checker”)
• Other tools like syntax and type checkers, parsers
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PVS Specification Language

• Strongly typed, based on first-order logic, nonprocedural
• Supports defining theories
• Statements called declarations identifying types, constants, variables, axioms, 

formulae
• Theories reusable, some incorporated into PVS and are called preludes
• Preludes provide definitions, theorems of set theory, functions, relations, 

ordering, properties of numbers
• External libraries provide finite sets, coalgebras, real analysis, graphs, lambda 

calculus, temporal logics
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Example PVS Specification

• Built-in theory; beginning of theory of rational numbers
rats: THEORY
BEGIN

rat: TYPE
zero: rat

nonzero : TYPE {x | x ≠ zero}
/ : [rat, nonzero -> rat]
* : [rat, rat -> rat]
x, y : VAR

left_cancellation : AXIOM zero ≠ x IMPLIES x * (y/x) = y
zero_times : AXIOM zero * x = zero

END rats
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Example PVS Specification

• Types rat, nonzero
• nonzero subtype of rat (as all members of nonzero are elements of rat, but 

not vice versa)

• Constant zero of type rat
• Multiplication , division functions take 2 arguments, return value of 

type rat
• Note second argument of division must have type nonzero
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Example PVS Specification

• Type checker checks types for an occurrence of “/” in left 
cancellation’
• It generates a type correctness condition
• It adds this to the specification
• TCCs must be proved in order to show theory type correct (hence called 

obligations)

• For example, here is added declaration:
left_cancellation _TCC1: OBLIGATION

(FORALL (x: rat): zero ≠ x IMPLIES x ≠ zero)
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PVS Proof Checker

• Proceeds in 4 phase:
1. Exploratory phase: developer tests specification proofs, revises high-level 

proof ideas as needed
2. Development phase: developer constructs proof in larger steps, works on 

making it efficient
3. Presentation phase: proof is sharpened, polished, checked
4. Generalization phase: developer analyzes proof, lessons learned, for future 

proofs

• Uses goal-directed proof search
• So it starts from the conclusion, infers subgoals
• Process repeats until subgoals obvious to prove
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PVS Proof Checker

• Inferencing applies inference rules
• Starts with small set of rules
• Applies mechanism to compose rules into proof strategies

• Types of rules and some examples:
• Propositional rules: cut rule for introducing case splits, another rule for raising if

conditionals to top level of formula, another for deleting formulae from goal
• Quantifier rules: rules for instantiating existentially quantified variables with terms
• Equality rules: replace one side of an equality premise with another

• Proof strategies: frequently used proof patterns collapsed into one step
• Examples: propositional simplification, rewriting with a definition of lemma
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Experiences with PVS

• Applied in many areas beyond computer security:
• Used by NASA to analyze requirements for several spacecraft projects, 

avionics control
• Used to verify microarchitectures, complex circuits, algorithms, protocols in 

hardware devices
• Used to analyze fault-tolerant and distributed algorithms
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SMV

• Based on Control Tree Logic that uses 2 letters for connectives:
• First letter: “A” (along all paths), “E” (along at least 1 path)
• Second letter: “F” (some future state), “G” (all future states), “U” (until), “X” 

(next state)
• Examples: “AX” (along all possible paths to the next states), “EX” (along at 

least 1 path to the next states)

• Represent model in CTL as a digraph
• Nodes represent states
• Propositional atoms holding in a state represented by node annotations
• Edges show possible state transitions
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Example

• Model M specifies system with 
states s0, s1, s2 and propositional 
atoms p1, p2, p3

• Possible state transitions:
s0 ➝ s1, s0 ➝ s2, s1 ➝ s0, 
s1 ➝ s2, s2 ➝ s2

• Suppose p1 true in s0 and s1, p2
true in s2, p3 true in s0, s2
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Example

• Unwind the graph to create a 
tree of all computational paths 
beginning at s0

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-44

s0

s2

s2

s1

s2

s2

s0

s2

s2



SMV Language

• Program specifies system, properties to be verified
• SMV tool returns true (specs hold for all initial states), or a trail of 

actions showing how it fails
• Module min identifies modules of program, forms root of model 

hierarchy
• Individual module specifications describe set of variables
• May be parameterized, contain instances of other modules; can be reused as 

needed
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SMV Language

• VAR: defines variable, identifies type of variable
• SMV supports boolean, scalar, fixed array, structured data types

• ASSIGN: assigns initial, next values to variables
• Next values defined in terms of current values of variables

• DEFINE: assigns values to variables in terms of other variables, 
constants, logical and arithmetic operators, case and set operators
• INVAR: invariant of state transition system
• SPEC: CTL specification to be proved about module
• Other features:
• Fairness contraints to rule our infinite executions
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Example

• 2 concurrent processes share mutually exclusive resource
• Define critical section of process’ code, and protocol for entry

• Model M: processes p1, p2

• States for each process:
• ni: process not attempting entry
• ti: process trying to enter
• ci: process in critical section

• Allowed states: (n1, n2), (n1, t2), (n1, c2), (t1, n2), (t1, t2), (t1, c2), (c1, n2), (c1, t2)
• Omit (c1, c2) as both processes cannot be in critical section at the same 

time
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Building the model

• (t1, t2) occurs 2 times – one with the next state (c1, t2) and the other 
with the next state (t1, c2)
• That is, first case is when p1 gets into the critical section, and the second 

when p2 gets into the critical section
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Graph of the Model
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What to Show

• Safety: only 1 process at a time can be in the critical section
• Liveness: a process trying to enter the critical section will eventually 

do so
• Nonblocking: a process can always request to enter its critical section
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From the Model . . .

• Safety requires that, for all paths, c1 and c2 cannot be true 
simultaneously; in CTL, AG¬(c1 ∧ c2).
• State (c1, c2) not defined in model, so trivially true

• Liveness requires that for all paths, if ti is true, then there is some 
future state on the same path in which ci is true; in CTL, AG(ti➝AFci)
• Inspection of graph shows this is true

• Nonblocking requires that, for every path, every state ni has a 
successor state ti; that is, in CTL, AG(ni -> EXti)
• Inspection of graph shows this is true  
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Use of SVM

• Used to verify sequential circuit designs
• Used to verify IEEE Futurebus+ Logical Protocol Specification
• Also used to verify security protocols, finite state real-time systems, 

concurrent systems
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NPA

• Verification system for cryptographic protocols
• Written in Prolog

• Based on Dolev-Yao model of rewriting terms
• Underlying assumption: adversary can read, modify, destroy any message, 

and can do any operation (encryption, decryption) that a legitimate user can 
do
• Also assumes adversary does not know specific words (keys, messages)
• Goal: learn those specific words

• Approach based on interactions among a set of state machines
• User specifies nonsecure states and tries to prove they are unreachable
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NPA Languages

• NPA Temporal Requirements Language (NPATRL) expresses generic 
requirements of key distribution, agreement protocols
• Common Authentication Protocol Specification Language (CAPSL)
• High-level language for cryptographic authentication, key distribution 

protocols
• Idea is to specify in this language, and then translators can translate it into 

languages for various protocol verification systems
• NPA has CAPSL interface
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CAPSL Language

• Protocol specification defines protocol
• Types specification describes encryption, decryption operations
• Environment specification provides specific details about the scenario 

in which the protocol is to be used to help in finding a proof
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Use of NPA

• Used to test and verify many protocols
• Internet Key Exchange protocol
• Needham-Schroeder public key protocol
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Functional Programming Languages

• These languages use mathematical expressions that are evaluated
• Expressions only depend on inputs, so results (outputs, effects) not 

dependent on global variables, local state
• Functions treated like any other value, so can be modified, used as input, 

output parameters

• These languages are well-defined, well-0typed leading to simpler 
analyses than programs unimplemented using nonfunctional 
programming languages
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Examples

• OCaml: programs verified by compiler prior to execution
• Reduces programming errors
• Used where speed, error-free functionality is critical

• Haskell: offers built-in memory management
• Strongly typed
• Programs tend to be shorter, leading to a program that is easier to verify

• Rust: combines speed of C programming language with functional 
programming language characteristics
• Provides thread safety, prevents segmentation faults
• Formally proved that unsafe implementations are safely encapsulated
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Formally Verified Products

• As computing power increases and formal verification methods 
become more scalable, formally verifying products becomes more 
feasible
• Example: open-source seL4 microkernel
• Designed using high assurance techniques
• Formally verified against its own specification, including ability to enforce 

security properties

• Usually done by embedding hypotheses about program in the 
program
• When one is encountered, it is checked; on failure, appropriate action taken
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Example: SOAAP

• Security-Oriented Analysis of Application Programs uses annotations
• Based on compartmentalization of execution
• Describe what parts of program should be in sandbox, how they communicate

• Example: function to decipher file, put cleartext into second file
• Annotated functions compiled into intermediate representation
• All such file linked
• SOAAP performs both static, dynamic control, data flow analysis to identify 

violations
• Also warns if overhead added by checking causes program not to meet 

performance requirements
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Example

__soaap_var_read("decipher")
int retval;

__soaap_sandbox_persistent("decipher")
void decipher(fdes in, fdes out)
{

char key[128] __soaap_private;
if (getkey("Key:", key) < 0)

retval = -1;
while ((n = read(buf, 1023, in)) > 0)

decrypt(buf, key);
if (write(buf, n, out) != n)

retval = -1;
retval = 0;

}
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Example

• decipher to be run in sandbox:
__soaap_sandbox_persistent(“decipher”)

• key value should not be visible outside this function
__soaap_private

• retval used to communicate success (0) or failure (–1), so decipher
must be able to modify its value even though it is outside scope of 
sandbox

__soaap_var_read(“decipher”)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-62



Key Points

• Formal verification based on formal specifications
• HDM, EHDM use hierarchy of abstract machines and mappings 

between each layer
• Gypsy focused on proving properties of implementations
• PVS provides system to prove theorems about specifications using 

interactive theorem prover
• SMV is a model-checking tool
• NRL Protocol Analyzer verifies protocols, can identify potential attacks
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