Formal Methods

Chapter 21

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-1

Outline

* Formal verification techniques

* Design verification languages

* Bell-LaPadula and SPECIAL

* Current verification systems

* Functional programming languages
* Formally verified products

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-2

Formal Verification Technigues

* Formal specification languages for specifying requirements and
systems

* Well-defined semantics, syntax
* Based on mathematical logic systems

* Mathematically-based automated formal methods for proving
properties of specifications and programs

* Inductive verification techniques
* Model checking techniques

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-3

Inductive Verification vs. Model Checking

Classification criteria:

* Proof-based vs. model-based techniques:
* premises embody system description
» conclusion represents properties to be proved

* Proof-based: derive intermediate formulae that go from premises to
conclusion

* Model-based: establish that premises, conclusion have same truth table
values

* Degree of automation: fully manual to fully automatic, with
everything in between

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-4

Inductive Verification vs. Model Checking

Classification criteria:

* Full vs. property verification:
* System specification may describe entire system or part of system
* Property specification may be single property or many properties

* Predevelopment vs. postdevelopment: may be design aid or for
verification after system design is complete

* Intended domain of application: hardware or software, sequential or
concurrent, non-terminating (like an operating system) or
terminating, and so forth

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-5

Example: HDM

* Developed at SRI

* Began as proof-based formal verification methodology
* Covers design through implementation
* Automated, general-purpose methodology
* Used specification languages, implementation languages

* Provided model checking with its multilevel security tool
* Input is formal specification in language SPECIAL

* Theorem prover uses proof-based technique; fully automated property-
oriented verification system

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-6

Example: HDM

* Tool uses SRI model (interpretation of Bell-LaPadula model)
e Given a SPECIAL specification

 Verification condition generator creates formulae that assert specification
correctly implements SRI model

* Boyer-Moore theorem prover processes these formulae
e Output is list of the formulae that were satisfied and those that were not

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-7

Formal Specification

A specification written in a formal language with restricted syntax,
well-defined semantics, based on well-established mathematical
COﬂCEptS

* Precise semantics avoids ambiguity
* Languages support exact descriptions of system function behavior
* Generally eliminate implementation details

e Automated tools support verification of syntax, semantics

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-8

Example Language: SPECIAL

* First-order logic-based language
* Nonprocedural, strongly typed

 Specification in SPECIAL represents module
* Specifier defines module scope
* Systems described in terms of modules

* Function representation in modules
 VFUN: describe variable data
* OFUN: describe state transitions
* OVFUN: describe state transitions and changes in VFUN values

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-9

Bell-LaPadula Model and SPECIAL

MODULE Bell LaPadula_Model give-access

TYPES

Subject_ID: DESIGNATOR;

Object_ID: DESIGNATOR;:

Access_Mode: {OBSERVE_ONLY, ALTER_ONLY, OBSERVE_AND_ALTER};
Access: STRUCT_OF(Subject_ID subject;

Object_ID object;
Access_Mode mode);

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-10

Comments

* Subject_ID, Object_ID types described at lower level of abstraction
* The DESIGNATOR indicates this

* Access_Mode types have 3 possible values
* Access type is structure with 3 fields of types shown

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-11

Bell-LaPadula Model and SPECIAL

FUNCTIONS
VFUN active (Object_ID object) -> BOOLEAN active:
HIDDEN;
INITIALLY
TRUE;

VFUN access_matrix () -> Access accesses:
HIDDEN;
INITIALLY
FORALL Access a: a INSET accesses => active(a.object);

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-12

Comments

* VFUN active(object) defines the state variable active for the object
and sets it to TRUE initially
* So state variable for that object is true if the object exists

* VFUN access_matrix() defines the state variable access matrix to be
set of triples (subject, object, right)
* This is simply the current set of access rights in the system

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-13

Bell-LaPadula Model and SPECIAL

OFUN give-access(Subject_ID giver; Access access);
ASSERTIONS

active(access.object) = TRUE;
EFFECTS

access_matrix() = access_matrix() UNION (access);

END_MODULE

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-14

Comments

 OFUN access _matrix() defines state transition when new object
added to matrix

e State variable active for object must be true
e See in the ASSERTIONS sections

 Value of state variable access matrix after transition is value before
transition and additional access rights for the new object

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-15

Hierarchical Development Methodology
(HDM)

° General-purpose methodology Requirements Analyze, accept requirements
for design, implementation
 Goal was to automate and Model Model proven internally consistent,
formalize development process used as basis for verifying lower AMs
* System dESign SpECification IS External ‘Irnterfaces First AM is usually external interface,
hiera rchy Of 3 series Of abstract AM 1 called Formal Top Level Specification
machines at increasing level of Abstract Machine
. AM 1 Each AM mapped to next lower
detail AM, which represents lower levels

of system specification

= = —

Primitive Machine Some combination of hardware and
AM n software that runs verified system

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-16

Specifications

* Hierarchical specification identifies abstract machines (AMs) making
up hierarchy

e Each AM a set of modules written in SPECIAL
e Modules could be reused in more than one AM

* Mapping specifications define functions of one AM in terms of next
higher AM

* Hierarchy consistency checker: ensured consistency among hierarchy
specs, associated module specs for AMs, mapping specs between
AMs

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-17

Design Hierarchy

* Look at each pair of consecutive AMs, mappings between them

* For each function in higher AM, write programs to show how it was
implemented in terms of lower-level AM
* Written in high-order language
* Translator mapped program into common internal form that HDM tools used

* Specs mapped into intermediate language; this and common internal form
generated verification conditions

* Sent to Boyer-Moore theorem prover
* If lower-level AM correct, then higher-level AM verified to work correctly

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-18

Verification in HDM

* Approach: prove the FTLS correctly implemented predefined
properties within a model

e Used to verify design of a multi-level security (MLS) tool
implementing a version of Bell-LaPadula model (called SRI model)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-19

SRI Model

* Some SRI model entities had no corresponding Bell-LaPadula features
* Visible function references and results (VFUN, OVFUN)
» Defined subjects implicitly (function callers)
e *-property addresses downward flow of information

e Bell-LaPadula model had features SRI model did not

* Discretionary access control, current access triples
* Defined subjects explicitly
e *-property addressed allowable downward access

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-20

Properties of SRI Model in MLS Tool

* Information returned by specific function invocation to subject can
depend only on information with security levels no greater than
subject

* Information flowing into state variable (ie, VFUN) can depend only on
other state variables with security levels no greater than that of first
state variable

* If value of state variable modified, only function invocation with
security level no greater than level of state variable can do the
modification

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-21

MLS Tool

* Processed SPECIAL specification describing external interfaces to
SPECIAL model
* One AM represented, so no mappings

* Could be multiple modules in specification; each module had to be verified,
and then the set verified using hierarchy consistency tool

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-22

MLS Tool

* To verify properties:
* MLS tool generated formulae claiming correctness of properties

* Property 1 correctness: formulae generated from exceptions from visible
functions and VFUN, OVFUN return values

* Properties 2, 3 correctness: formulae generated for each new value
assignment to state variables

* Formulae (verification conditions) submitted to theorem prover

* Theorem prover reported the verification conditions that passes,
failed, could not be proven

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-23

Boyer-Moore Theorem Prover

* User provides theorems, lemmata, axions, assertions needed for
proof

* For example, rules of reflexivity, associativity, transitivity among partial
ordering relations

* Provided in a LISP-like notation
* Maintained list of previously proven theorems, axioms for future proofs

* Used extended propositional calculus

* Heuristics organized to find proof in most efficient manner
* Used a series of steps on formula in search of proof

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-24

Boyer-Moore Steps

* Simplify: apply axioms, lemmata, function definitions, and other
techniques

* Reformulate: replace terms by equivalent terms easier to process

* Substitute equalities: replace equal expressions with appropriate
substitutions to eliminate equality expressions

* Generalize: introduce variables for terms that are no longer used
* Eliminate irrelevant terms

* Use induction to prove theorems when needed

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-25

Boyer-Moore Evaluation

1. Iterated between simplify, reformulate steps until formula proved
or disproved, or formula did not change

Substitute equalities, and if any changes then go back to step 1
Generalize, and if any changes then go back to step 1
Eliminate, and if any changes then go back to step 1

5. Apply induction, and if any changes then go back to step 1

If formula reduced to TRUE or FALSE, done; otherwise formula could
not be proven

= W N

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-26

Enhanced HDM (EHDM)

EHDM addressed difficulties with HDM

1. SPECIAL not defined in terms Boyer-Moore theorem prover could

use readily
* Missing specific constructs that theorem prover needed

« EHDM used new language, similar to SPECIAL but with the missing constructs,
such as concepts of AXIONM, THEOREM, LEMMA

2. HDM theorem prover not interactive

« EHDM theorem prover based on Boyer-Moore theorem prover, but was
interactive

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-27

Gypsy Verification Environment

* Gypsy Verification Environment (GVE) focused on implementation
proofs

 Verification system tried to show correspondence between specifications,
their implementation

* Verification system could also prove properties of Gypsy specifications

* Set of tools including a Gypsy language parser, verification condition
generator, theorem prover

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-28

Gypsy Language

* Combined specification language constructs with programming
language (Pascal base)

e Limitations on Pascal base

* Could not nest routines, but could group them together in named “scope”

No global variables; only constants, types, functions, procedures visible
between routines

Parameters all constant and passed only by reference
No pointers

New data structures sets, sequences, mappings, buffers; new operations of
addition, deletion, moving component

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-29

Gypsy Language Specifications

* Gypsy program made up of small, verifiable units
* Functions, procedures, lemmata, types, constants
* Proof of unit depended only on external specifications of referenced units

* Specification constructs
* Entry: conditions assumed to be true when routine activated
Exit: conditions that must have been true if routine exited

Block: conditions that must have been true if routine blocked waiting on
access to shared memory

Assert: conditions that had to be true at specific point of execution
Keep: conditions that had to remain true throughout execution of routine

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-30

Gypsy Language Specifications

* Gypsy supported execution of lemmata as separate units
* Lemmata defined relation among functions, global constraints
* hold specification defined constraint on values of abstract data type

* Expressive level
e Existential quantifier some
* Universal quantifier all
* Mechanism to distinguish old, new values

* Validation directive says when to prove condition: during verification,
validated at runtime, or both

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-31

Bledsoe Theorem Prover

* Interactive natural deduction system using extended first-order logic
* Allowed subgoaling, matching, rewriting

* Every loop had to be broken by at least one assert specification

* Each verification condition was theorem corresponding to single path
of execution

* Due to asserts, finite number of execution paths

* Condition stated that specification at beginning of path implies specification
at end of path

* Analyst could guide the prover, or it could be told to choose next step

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-32

Current Verification Systems

* Prototype Verification System (PVS)
* Symbolic Model Verifier (SMV)
* Naval Research Laboratory Protocol Analyzer (NPA)

(as of the publication date of this book)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-33

PVS

* Builds on prior work at SRI, especially EHDM

* HDM, EHDM focused on proving programs correct and the full life
cycle of software development

* PVS focuses on mechanically checked specifications, readable proofs
* It does not provide a full software development environment
* No notion of layers of abstraction, mapping between levels

* Components:
* Specification language integrated with theorem prover
 Theorem prover highly interactive (a “proof checker”)
e Other tools like syntax and type checkers, parsers

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-34

PVS Specification Language

 Strongly typed, based on first-order logic, nonprocedural

e Supports defining theories

» Statements called declarations identifying types, constants, variables, axioms,
formulae

* Theories reusable, some incorporated into PVS and are called preludes

* Preludes provide definitions, theorems of set theory, functions, relations,
ordering, properties of numbers

* External libraries provide finite sets, coalgebras, real analysis, graphs, lambda
calculus, temporal logics

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-35

Example PVS Specification

 Built-in theory; beginning of theory of rational numbers
rats: THEORY
BEGIN

rat: TYPE

zero: rat

nonzero : TYPE {x | x # zero}
/ [rat, nonzero -> rat]

* [rat, rat -> rat]

X, Y ¢ VAR

left cancellation : AXIOM zero # x IMPLIES x * (y/X) =y
zero _times : AXIOM zero * X = zero
END rats

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-36

Example PVS Specification

 Types rat, nonzero

* nonzero subtype of rat (as all members of nonzero are elements of rat, but
not vice versa)

* Constant zero of type rat

* Multiplication , division functions take 2 arguments, return value of
type rat
* Note second argument of division must have type nonzero

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-37

Example PVS Specification

* Type checker checks types for an occurrence of “/” in left
cancellation’

* It generates a type correctness condition
* |t adds this to the specification

e TCCs must be proved in order to show theory type correct (hence called
obligations)

* For example, here is added declaration:
left cancellation TCCl: OBLIGATION
(FORALL (x: rat): zero # x IMPLIES X # ZzZero)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-38

PVS Proof Checker

* Proceeds in 4 phase:

1. Exploratory phase: developer tests specification proofs, revises high-level
proof ideas as needed

2. Development phase: developer constructs proof in larger steps, works on
making it efficient

3. Presentation phase: proof is sharpened, polished, checked

4. Generalization phase: developer analyzes proof, lessons learned, for future
proofs

e Uses goal-directed proof search

* So it starts from the conclusion, infers subgoals
* Process repeats until subgoals obvious to prove

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-39

PVS Proof Checker

* Inferencing applies inference rules
e Starts with small set of rules
* Applies mechanism to compose rules into proof strategies

* Types of rules and some examples:

* Propositional rules: cut rule for introducing case splits, another rule for raising if
conditionals to top level of formula, another for deleting formulae from goal

* Quantifier rules: rules for instantiating existentially quantified variables with terms
* Equality rules: replace one side of an equality premise with another

* Proof strategies: frequently used proof patterns collapsed into one step
* Examples: propositional simplification, rewriting with a definition of lemma

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-40

Experiences with PVS

* Applied in many areas beyond computer security:

* Used by NASA to analyze requirements for several spacecraft projects,
avionics control

* Used to verify microarchitectures, complex circuits, algorithms, protocols in
hardware devices

* Used to analyze fault-tolerant and distributed algorithms

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-41

SMV

* Based on Control Tree Logic that uses 2 letters for connectives:
* First letter: “A” (along all paths), “E” (along at least 1 path)

e Second letter: “F” (some future state), “G” (all future states), “U” (until), “X”
(next state)

* Examples: “AX” (along all possible paths to the next states), “EX” (along at
least 1 path to the next states)
* Represent model in CTL as a digraph

* Nodes represent states
* Propositional atoms holding in a state represented by node annotations
* Edges show possible state transitions

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-42

Example

* Model M specifies system with
states s, S1, S, and propositional

atoms p,, p,, ps3
e Possible state transitions:

So ™ S1,So ™ S, S1 — So,
P1 J P2 Ps3
S1 75575 s \ s)

* Suppose p, true in s, and s4, p,
trueins,, p; trueins,, s,

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-43

Example

* Unwind the graph to create a
tree of all computational paths @
beginning at s,

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-44

SMV Language

* Program specifies system, properties to be verified

* SMV tool returns true (specs hold for all initial states), or a trail of
actions showing how it fails

* Module min identifies modules of program, forms root of model
hierarchy
* Individual module specifications describe set of variables

* May be parameterized, contain instances of other modules; can be reused as
needed

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-45

SMV Language

* VAR: defines variable, identifies type of variable
 SMV supports boolean, scalar, fixed array, structured data types

* ASSIGN: assigns initial, next values to variables
 Next values defined in terms of current values of variables

* DEFINE: assigns values to variables in terms of other variables,
constants, logical and arithmetic operators, case and set operators

* INVAR: invariant of state transition system
* SPEC: CTL specification to be proved about module

 Other features:
* Fairness contraints to rule our infinite executions

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-46

Example

e 2 concurrent processes share mutually exclusive resource
» Define critical section of process’ code, and protocol for entry

* Model M: processes p4, p,

e States for each process:
* n;: process not attempting entry

* t;: process trying to enter
* ¢;: process in critical section

* Allowed states: (nll n2)) (nll tZ)) (nll CZ)/ (tll nZ)I (tll t2)) (tll CZ)I (Cll nZ)I (Cll t2)

* Omit (c,, ¢,) as both processes cannot be in critical section at the same
time

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-47

Building the model

* (t,, t,) occurs 2 times — one with the next state (¢, t,) and the other
with the next state (t, ¢,)

* That is, first case is when p, gets into the critical section, and the second
when p, gets into the critical section

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-48

Graph of the Model

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-49

What to Show

» Safety: only 1 process at a time can be in the critical section

* Liveness: a process trying to enter the critical section will eventually
do so

* Nonblocking: a process can always request to enter its critical section

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-50

From the Model . ..

* Safety requires that, for all paths, ¢; and ¢, cannot be true
simultaneously; in CTL, AG-(c; A ¢,).

* State (cy, ¢,) not defined in model, so trivially true

* Liveness requires that for all paths, if t; is true, then there is some
future state on the same path in which ¢; is true; in CTL, AG(t; —AFc;)
* Inspection of graph shows this is true

* Nonblocking requires that, for every path, every state n; has a
successor state t; that is, in CTL, AG(n; -> EXt))

* Inspection of graph shows this is true

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-51

Use of SVM

* Used to verify sequential circuit designs
» Used to verify IEEE Futurebus+ Logical Protocol Specification

* Also used to verify security protocols, finite state real-time systems,
concurrent systems

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-52

N PA

* Verification system for cryptographic protocols
* Written in Prolog

e Based on Dolev-Yao model of rewriting terms

* Underlying assumption: adversary can read, modify, destroy any message,
and can do any operation (encryption, decryption) that a legitimate user can

do
* Also assumes adversary does not know specific words (keys, messages)
* Goal: learn those specific words

* Approach based on interactions among a set of state machines
» User specifies nonsecure states and tries to prove they are unreachable

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-53

NPA Languages

 NPA Temporal Requirements Language (NPATRL) expresses generic
requirements of key distribution, agreement protocols

« Common Authentication Protocol Specification Language (CAPSL)

* High-level language for cryptographic authentication, key distribution
protocols

 |ldea is to specify in this language, and then translators can translate it into
languages for various protocol verification systems

 NPA has CAPSL interface

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-54

CAPSL Language

* Protocol specification defines protocol
* Types specification describes encryption, decryption operations

* Environment specification provides specific details about the scenario
in which the protocol is to be used to help in finding a proof

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-55

Use of NPA

e Used to test and verify many protocols
* Internet Key Exchange protocol
* Needham-Schroeder public key protocol

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-56

Functional Programming Languages

* These languages use mathematical expressions that are evaluated

e Expressions only depend on inputs, so results (outputs, effects) not
dependent on global variables, local state

* Functions treated like any other value, so can be modified, used as input,
output parameters

* These languages are well-defined, well-Otyped leading to simpler
analyses than programs unimplemented using nonfunctional
programming languages

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-57

Examples

 OCaml: programs verified by compiler prior to execution
e Reduces programming errors
* Used where speed, error-free functionality is critical

* Haskell: offers built-in memory management
e Strongly typed
* Programs tend to be shorter, leading to a program that is easier to verify

* Rust: combines speed of C programming language with functional
programming language characteristics

* Provides thread safety, prevents segmentation faults
* Formally proved that unsafe implementations are safely encapsulated

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-58

Formally Veritied Products

* As computing power increases and formal verification methods
become more scalable, formally verifying products becomes more
feasible

* Example: open-source seL4 microkernel

* Designed using high assurance techniques

* Formally verified against its own specification, including ability to enforce
security properties

* Usually done by embedding hypotheses about program in the
program
* When one is encountered, it is checked; on failure, appropriate action taken

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-59

Example: SOAAP

 Security-Oriented Analysis of Application Programs uses annotations
* Based on compartmentalization of execution
e Describe what parts of program should be in sandbox, how they communicate

* Example: function to decipher file, put cleartext into second file
* Annotated functions compiled into intermediate representation
 All such file linked

* SOAAP performs both static, dynamic control, data flow analysis to identify
violations

* Also warns if overhead added by checking causes program not to meet
performance requirements

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-60

Example

___soaap var read('"decipher")
int retval;

___soaap sandbox persistent("decipher")
void decipher(fdes in, fdes out)

{
char key[128] soaap private;
if (getkey("Key:", key) < 0)
retval = -1;
while ((n = read(buf, 1023, in)) > 0)
decrypt (buf, key);
if (write(buf, n, out) != n)
retval = -1;
retval = 0;
}

Version 1.0 Computer Security: Art and Science, 2" Edition

Slide 21-61

Example

* decipher to be run in sandbox:
___soaap_ sandbox persistent(“decipher”)
* key value should not be visible outside this function
___soaap private

e retval used to communicate success (0) or failure (—1), so decipher
must be able to modify its value even though it is outside scope of
sandbox

___soaap var read(“decipher”)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-62

Key Points

* Formal verification based on formal specifications

« HDM, EHDM use hierarchy of abstract machines and mappings
between each layer

* Gypsy focused on proving properties of implementations

* PVS provides system to prove theorems about specifications using
interactive theorem prover

* SMV is a model-checking tool
* NRL Protocol Analyzer verifies protocols, can identify potential attacks

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 21-63

