
Formal Methods
Chapter 21

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-1

Outline

• Formal verification techniques
• Design verification languages
• Bell-LaPadula and SPECIAL
• Current verification systems
• Functional programming languages
• Formally verified products

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-2

Formal Verification Techniques

• Formal specification languages for specifying requirements and
systems
• Well-defined semantics, syntax
• Based on mathematical logic systems

• Mathematically-based automated formal methods for proving
properties of specifications and programs
• Inductive verification techniques
• Model checking techniques

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-3

Inductive Verification vs. Model Checking

Classification criteria:
• Proof-based vs. model-based techniques:
• premises embody system description
• conclusion represents properties to be proved
• Proof-based: derive intermediate formulae that go from premises to

conclusion
• Model-based: establish that premises, conclusion have same truth table

values

• Degree of automation: fully manual to fully automatic, with
everything in between

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-4

Inductive Verification vs. Model Checking

Classification criteria:
• Full vs. property verification:
• System specification may describe entire system or part of system
• Property specification may be single property or many properties

• Predevelopment vs. postdevelopment: may be design aid or for
verification after system design is complete
• Intended domain of application: hardware or software, sequential or

concurrent, non-terminating (like an operating system) or
terminating, and so forth

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-5

Example: HDM

• Developed at SRI
• Began as proof-based formal verification methodology
• Covers design through implementation
• Automated, general-purpose methodology
• Used specification languages, implementation languages

• Provided model checking with its multilevel security tool
• Input is formal specification in language SPECIAL
• Theorem prover uses proof-based technique; fully automated property-

oriented verification system

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-6

Example: HDM

• Tool uses SRI model (interpretation of Bell-LaPadula model)
• Given a SPECIAL specification
• Verification condition generator creates formulae that assert specification

correctly implements SRI model
• Boyer-Moore theorem prover processes these formulae
• Output is list of the formulae that were satisfied and those that were not

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-7

Formal Specification

• A specification written in a formal language with restricted syntax,
well-defined semantics, based on well-established mathematical
concepts
• Precise semantics avoids ambiguity
• Languages support exact descriptions of system function behavior
• Generally eliminate implementation details

• Automated tools support verification of syntax, semantics

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-8

Example Language: SPECIAL

• First-order logic-based language
• Nonprocedural, strongly typed

• Specification in SPECIAL represents module
• Specifier defines module scope
• Systems described in terms of modules

• Function representation in modules
• VFUN: describe variable data
• OFUN: describe state transitions
• OVFUN: describe state transitions and changes in VFUN values

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-9

Bell-LaPadula Model and SPECIAL

MODULE Bell_LaPadula_Model give-access
TYPES
Subject_ID: DESIGNATOR;
Object_ID: DESIGNATOR;
Access_Mode: {OBSERVE_ONLY, ALTER_ONLY, OBSERVE_AND_ALTER};
Access: STRUCT_OF(Subject_ID subject;

Object_ID object;
Access_Mode mode);

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-10

Comments

• Subject_ID, Object_ID types described at lower level of abstraction
• The DESIGNATOR indicates this

• Access_Mode types have 3 possible values
• Access type is structure with 3 fields of types shown

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-11

Bell-LaPadula Model and SPECIAL

FUNCTIONS
VFUN active (Object_ID object) -> BOOLEAN active:
HIDDEN;
INITIALLY

TRUE;

VFUN access_matrix () -> Access accesses:
HIDDEN;
INITIALLY

FORALL Access a: a INSET accesses => active(a.object);

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-12

Comments

• VFUN active(object) defines the state variable active for the object
and sets it to TRUE initially
• So state variable for that object is true if the object exists

• VFUN access_matrix() defines the state variable access_matrix to be
set of triples (subject, object, right)
• This is simply the current set of access rights in the system

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-13

Bell-LaPadula Model and SPECIAL

OFUN give-access(Subject_ID giver; Access access);
ASSERTIONS

active(access.object) = TRUE;
EFFECTS
access_matrix() = access_matrix() UNION (access);

END_MODULE

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-14

Comments

• OFUN access_matrix() defines state transition when new object
added to matrix
• State variable active for object must be true
• See in the ASSERTIONS sections

• Value of state variable access_matrix after transition is value before
transition and additional access rights for the new object

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-15

Hierarchical Development Methodology
(HDM)
• General-purpose methodology

for design, implementation
• Goal was to automate and

formalize development process

• System design specification is
hierarchy of a series of abstract
machines at increasing level of
detail

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-16

Requirements

Model

External Interfaces
AM 1

Abstract Machine
AM 1

Primitive Machine
AM n

Analyze, accept requirements

Model proven internally consistent,
used as basis for verifying lower AMs

First AM is usually external interface,
called Formal Top Level Specification

Some combination of hardware and
software that runs verified system

Each AM mapped to next lower
AM, which represents lower levels
of system specification

Specifications

• Hierarchical specification identifies abstract machines (AMs) making
up hierarchy
• Each AM a set of modules written in SPECIAL
• Modules could be reused in more than one AM

• Mapping specifications define functions of one AM in terms of next
higher AM
• Hierarchy consistency checker: ensured consistency among hierarchy

specs, associated module specs for AMs, mapping specs between
AMs

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-17

Design Hierarchy

• Look at each pair of consecutive AMs, mappings between them
• For each function in higher AM, write programs to show how it was

implemented in terms of lower-level AM
• Written in high-order language
• Translator mapped program into common internal form that HDM tools used
• Specs mapped into intermediate language; this and common internal form

generated verification conditions
• Sent to Boyer-Moore theorem prover

• If lower-level AM correct, then higher-level AM verified to work correctly

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-18

Verification in HDM

• Approach: prove the FTLS correctly implemented predefined
properties within a model
• Used to verify design of a multi-level security (MLS) tool

implementing a version of Bell-LaPadula model (called SRI model)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-19

SRI Model

• Some SRI model entities had no corresponding Bell-LaPadula features
• Visible function references and results (VFUN, OVFUN)
• Defined subjects implicitly (function callers)
• *-property addresses downward flow of information

• Bell-LaPadula model had features SRI model did not
• Discretionary access control, current access triples
• Defined subjects explicitly
• *-property addressed allowable downward access

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-20

Properties of SRI Model in MLS Tool

• Information returned by specific function invocation to subject can
depend only on information with security levels no greater than
subject
• Information flowing into state variable (ie, VFUN) can depend only on

other state variables with security levels no greater than that of first
state variable
• If value of state variable modified, only function invocation with

security level no greater than level of state variable can do the
modification

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-21

MLS Tool

• Processed SPECIAL specification describing external interfaces to
SPECIAL model
• One AM represented, so no mappings
• Could be multiple modules in specification; each module had to be verified,

and then the set verified using hierarchy consistency tool

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-22

MLS Tool

• To verify properties:
• MLS tool generated formulae claiming correctness of properties
• Property 1 correctness: formulae generated from exceptions from visible

functions and VFUN, OVFUN return values
• Properties 2, 3 correctness: formulae generated for each new value

assignment to state variables

• Formulae (verification conditions) submitted to theorem prover
• Theorem prover reported the verification conditions that passes,

failed, could not be proven

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-23

Boyer-Moore Theorem Prover

• User provides theorems, lemmata, axions, assertions needed for
proof
• For example, rules of reflexivity, associativity, transitivity among partial

ordering relations
• Provided in a LISP-like notation
• Maintained list of previously proven theorems, axioms for future proofs

• Used extended propositional calculus
• Heuristics organized to find proof in most efficient manner
• Used a series of steps on formula in search of proof

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-24

Boyer-Moore Steps

• Simplify: apply axioms, lemmata, function definitions, and other
techniques
• Reformulate: replace terms by equivalent terms easier to process
• Substitute equalities: replace equal expressions with appropriate

substitutions to eliminate equality expressions
• Generalize: introduce variables for terms that are no longer used
• Eliminate irrelevant terms
• Use induction to prove theorems when needed

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-25

Boyer-Moore Evaluation

1. Iterated between simplify, reformulate steps until formula proved
or disproved, or formula did not change

2. Substitute equalities, and if any changes then go back to step 1
3. Generalize, and if any changes then go back to step 1
4. Eliminate, and if any changes then go back to step 1
5. Apply induction, and if any changes then go back to step 1
If formula reduced to TRUE or FALSE, done; otherwise formula could
not be proven

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-26

Enhanced HDM (EHDM)

EHDM addressed difficulties with HDM
1. SPECIAL not defined in terms Boyer-Moore theorem prover could

use readily
• Missing specific constructs that theorem prover needed
• EHDM used new language, similar to SPECIAL but with the missing constructs,

such as concepts of AXIONM, THEOREM, LEMMA

2. HDM theorem prover not interactive
• EHDM theorem prover based on Boyer-Moore theorem prover, but was

interactive

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-27

Gypsy Verification Environment

• Gypsy Verification Environment (GVE) focused on implementation
proofs
• Verification system tried to show correspondence between specifications,

their implementation
• Verification system could also prove properties of Gypsy specifications

• Set of tools including a Gypsy language parser, verification condition
generator, theorem prover

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-28

Gypsy Language

• Combined specification language constructs with programming
language (Pascal base)
• Limitations on Pascal base
• Could not nest routines, but could group them together in named ”scope”
• No global variables; only constants, types, functions, procedures visible

between routines
• Parameters all constant and passed only by reference
• No pointers
• New data structures sets, sequences, mappings, buffers; new operations of

addition, deletion, moving component

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-29

Gypsy Language Specifications

• Gypsy program made up of small, verifiable units
• Functions, procedures, lemmata, types, constants
• Proof of unit depended only on external specifications of referenced units

• Specification constructs
• Entry: conditions assumed to be true when routine activated
• Exit: conditions that must have been true if routine exited
• Block: conditions that must have been true if routine blocked waiting on

access to shared memory
• Assert: conditions that had to be true at specific point of execution
• Keep: conditions that had to remain true throughout execution of routine

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-30

Gypsy Language Specifications

• Gypsy supported execution of lemmata as separate units
• Lemmata defined relation among functions, global constraints
• hold specification defined constraint on values of abstract data type

• Expressive level
• Existential quantifier some
• Universal quantifier all
• Mechanism to distinguish old, new values
• Validation directive says when to prove condition: during verification,

validated at runtime, or both

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-31

Bledsoe Theorem Prover

• Interactive natural deduction system using extended first-order logic
• Allowed subgoaling, matching, rewriting

• Every loop had to be broken by at least one assert specification
• Each verification condition was theorem corresponding to single path

of execution
• Due to asserts, finite number of execution paths
• Condition stated that specification at beginning of path implies specification

at end of path

• Analyst could guide the prover, or it could be told to choose next step

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-32

Current Verification Systems

• Prototype Verification System (PVS)
• Symbolic Model Verifier (SMV)
• Naval Research Laboratory Protocol Analyzer (NPA)

(as of the publication date of this book)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-33

PVS

• Builds on prior work at SRI, especially EHDM
• HDM, EHDM focused on proving programs correct and the full life

cycle of software development
• PVS focuses on mechanically checked specifications, readable proofs
• It does not provide a full software development environment
• No notion of layers of abstraction, mapping between levels

• Components:
• Specification language integrated with theorem prover
• Theorem prover highly interactive (a “proof checker”)
• Other tools like syntax and type checkers, parsers

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-34

PVS Specification Language

• Strongly typed, based on first-order logic, nonprocedural
• Supports defining theories
• Statements called declarations identifying types, constants, variables, axioms,

formulae
• Theories reusable, some incorporated into PVS and are called preludes
• Preludes provide definitions, theorems of set theory, functions, relations,

ordering, properties of numbers
• External libraries provide finite sets, coalgebras, real analysis, graphs, lambda

calculus, temporal logics

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-35

Example PVS Specification

• Built-in theory; beginning of theory of rational numbers
rats: THEORY
BEGIN

rat: TYPE
zero: rat

nonzero : TYPE {x | x ≠ zero}
/ : [rat, nonzero -> rat]
* : [rat, rat -> rat]
x, y : VAR

left_cancellation : AXIOM zero ≠ x IMPLIES x * (y/x) = y
zero_times : AXIOM zero * x = zero

END rats

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-36

Example PVS Specification

• Types rat, nonzero
• nonzero subtype of rat (as all members of nonzero are elements of rat, but

not vice versa)

• Constant zero of type rat
• Multiplication , division functions take 2 arguments, return value of

type rat
• Note second argument of division must have type nonzero

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-37

Example PVS Specification

• Type checker checks types for an occurrence of “/” in left
cancellation’
• It generates a type correctness condition
• It adds this to the specification
• TCCs must be proved in order to show theory type correct (hence called

obligations)

• For example, here is added declaration:
left_cancellation _TCC1: OBLIGATION

(FORALL (x: rat): zero ≠ x IMPLIES x ≠ zero)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-38

PVS Proof Checker

• Proceeds in 4 phase:
1. Exploratory phase: developer tests specification proofs, revises high-level

proof ideas as needed
2. Development phase: developer constructs proof in larger steps, works on

making it efficient
3. Presentation phase: proof is sharpened, polished, checked
4. Generalization phase: developer analyzes proof, lessons learned, for future

proofs

• Uses goal-directed proof search
• So it starts from the conclusion, infers subgoals
• Process repeats until subgoals obvious to prove

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-39

PVS Proof Checker

• Inferencing applies inference rules
• Starts with small set of rules
• Applies mechanism to compose rules into proof strategies

• Types of rules and some examples:
• Propositional rules: cut rule for introducing case splits, another rule for raising if

conditionals to top level of formula, another for deleting formulae from goal
• Quantifier rules: rules for instantiating existentially quantified variables with terms
• Equality rules: replace one side of an equality premise with another

• Proof strategies: frequently used proof patterns collapsed into one step
• Examples: propositional simplification, rewriting with a definition of lemma

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-40

Experiences with PVS

• Applied in many areas beyond computer security:
• Used by NASA to analyze requirements for several spacecraft projects,

avionics control
• Used to verify microarchitectures, complex circuits, algorithms, protocols in

hardware devices
• Used to analyze fault-tolerant and distributed algorithms

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-41

SMV

• Based on Control Tree Logic that uses 2 letters for connectives:
• First letter: “A” (along all paths), “E” (along at least 1 path)
• Second letter: “F” (some future state), “G” (all future states), “U” (until), “X”

(next state)
• Examples: “AX” (along all possible paths to the next states), “EX” (along at

least 1 path to the next states)

• Represent model in CTL as a digraph
• Nodes represent states
• Propositional atoms holding in a state represented by node annotations
• Edges show possible state transitions

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-42

Example

• Model M specifies system with
states s0, s1, s2 and propositional
atoms p1, p2, p3

• Possible state transitions:
s0 ➝ s1, s0 ➝ s2, s1 ➝ s0,
s1 ➝ s2, s2 ➝ s2

• Suppose p1 true in s0 and s1, p2
true in s2, p3 true in s0, s2

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-43

p1, p3
s0

p1
s1

p2, p3
s2

Example

• Unwind the graph to create a
tree of all computational paths
beginning at s0

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-44

s0

s2

s2

s1

s2

s2

s0

s2

s2

SMV Language

• Program specifies system, properties to be verified
• SMV tool returns true (specs hold for all initial states), or a trail of

actions showing how it fails
• Module min identifies modules of program, forms root of model

hierarchy
• Individual module specifications describe set of variables
• May be parameterized, contain instances of other modules; can be reused as

needed

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-45

SMV Language

• VAR: defines variable, identifies type of variable
• SMV supports boolean, scalar, fixed array, structured data types

• ASSIGN: assigns initial, next values to variables
• Next values defined in terms of current values of variables

• DEFINE: assigns values to variables in terms of other variables,
constants, logical and arithmetic operators, case and set operators
• INVAR: invariant of state transition system
• SPEC: CTL specification to be proved about module
• Other features:
• Fairness contraints to rule our infinite executions

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-46

Example

• 2 concurrent processes share mutually exclusive resource
• Define critical section of process’ code, and protocol for entry

• Model M: processes p1, p2

• States for each process:
• ni: process not attempting entry
• ti: process trying to enter
• ci: process in critical section

• Allowed states: (n1, n2), (n1, t2), (n1, c2), (t1, n2), (t1, t2), (t1, c2), (c1, n2), (c1, t2)
• Omit (c1, c2) as both processes cannot be in critical section at the same

time

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-47

Building the model

• (t1, t2) occurs 2 times – one with the next state (c1, t2) and the other
with the next state (t1, c2)
• That is, first case is when p1 gets into the critical section, and the second

when p2 gets into the critical section

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-48

Graph of the Model

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-49

(n1,n2)

s0

(t1,n2)
s1

(n1,t2)
s5

(t1,t2)s3

(c1,t2)

s4

(c1,n2)

s2 (t1,t2) s8

(t1,c2)

s7

(n1,c2)

s6

What to Show

• Safety: only 1 process at a time can be in the critical section
• Liveness: a process trying to enter the critical section will eventually

do so
• Nonblocking: a process can always request to enter its critical section

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-50

From the Model . . .

• Safety requires that, for all paths, c1 and c2 cannot be true
simultaneously; in CTL, AG¬(c1 ∧ c2).
• State (c1, c2) not defined in model, so trivially true

• Liveness requires that for all paths, if ti is true, then there is some
future state on the same path in which ci is true; in CTL, AG(ti➝AFci)
• Inspection of graph shows this is true

• Nonblocking requires that, for every path, every state ni has a
successor state ti; that is, in CTL, AG(ni -> EXti)
• Inspection of graph shows this is true

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-51

Use of SVM

• Used to verify sequential circuit designs
• Used to verify IEEE Futurebus+ Logical Protocol Specification
• Also used to verify security protocols, finite state real-time systems,

concurrent systems

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-52

NPA

• Verification system for cryptographic protocols
• Written in Prolog

• Based on Dolev-Yao model of rewriting terms
• Underlying assumption: adversary can read, modify, destroy any message,

and can do any operation (encryption, decryption) that a legitimate user can
do
• Also assumes adversary does not know specific words (keys, messages)
• Goal: learn those specific words

• Approach based on interactions among a set of state machines
• User specifies nonsecure states and tries to prove they are unreachable

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-53

NPA Languages

• NPA Temporal Requirements Language (NPATRL) expresses generic
requirements of key distribution, agreement protocols
• Common Authentication Protocol Specification Language (CAPSL)
• High-level language for cryptographic authentication, key distribution

protocols
• Idea is to specify in this language, and then translators can translate it into

languages for various protocol verification systems
• NPA has CAPSL interface

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-54

CAPSL Language

• Protocol specification defines protocol
• Types specification describes encryption, decryption operations
• Environment specification provides specific details about the scenario

in which the protocol is to be used to help in finding a proof

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-55

Use of NPA

• Used to test and verify many protocols
• Internet Key Exchange protocol
• Needham-Schroeder public key protocol

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-56

Functional Programming Languages

• These languages use mathematical expressions that are evaluated
• Expressions only depend on inputs, so results (outputs, effects) not

dependent on global variables, local state
• Functions treated like any other value, so can be modified, used as input,

output parameters

• These languages are well-defined, well-0typed leading to simpler
analyses than programs unimplemented using nonfunctional
programming languages

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-57

Examples

• OCaml: programs verified by compiler prior to execution
• Reduces programming errors
• Used where speed, error-free functionality is critical

• Haskell: offers built-in memory management
• Strongly typed
• Programs tend to be shorter, leading to a program that is easier to verify

• Rust: combines speed of C programming language with functional
programming language characteristics
• Provides thread safety, prevents segmentation faults
• Formally proved that unsafe implementations are safely encapsulated

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-58

Formally Verified Products

• As computing power increases and formal verification methods
become more scalable, formally verifying products becomes more
feasible
• Example: open-source seL4 microkernel
• Designed using high assurance techniques
• Formally verified against its own specification, including ability to enforce

security properties

• Usually done by embedding hypotheses about program in the
program
• When one is encountered, it is checked; on failure, appropriate action taken

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-59

Example: SOAAP

• Security-Oriented Analysis of Application Programs uses annotations
• Based on compartmentalization of execution
• Describe what parts of program should be in sandbox, how they communicate

• Example: function to decipher file, put cleartext into second file
• Annotated functions compiled into intermediate representation
• All such file linked
• SOAAP performs both static, dynamic control, data flow analysis to identify

violations
• Also warns if overhead added by checking causes program not to meet

performance requirements

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-60

Example

__soaap_var_read("decipher")
int retval;

__soaap_sandbox_persistent("decipher")
void decipher(fdes in, fdes out)
{

char key[128] __soaap_private;
if (getkey("Key:", key) < 0)

retval = -1;
while ((n = read(buf, 1023, in)) > 0)

decrypt(buf, key);
if (write(buf, n, out) != n)

retval = -1;
retval = 0;

}

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-61

Example

• decipher to be run in sandbox:
__soaap_sandbox_persistent(“decipher”)

• key value should not be visible outside this function
__soaap_private

• retval used to communicate success (0) or failure (–1), so decipher
must be able to modify its value even though it is outside scope of
sandbox

__soaap_var_read(“decipher”)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-62

Key Points

• Formal verification based on formal specifications
• HDM, EHDM use hierarchy of abstract machines and mappings

between each layer
• Gypsy focused on proving properties of implementations
• PVS provides system to prove theorems about specifications using

interactive theorem prover
• SMV is a model-checking tool
• NRL Protocol Analyzer verifies protocols, can identify potential attacks

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 21-63

