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Overview

• Principles
• Basics
• Models of Intrusion Detection
• Architecture of an IDS
• Organization
• Incident Response
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Principles of Intrusion Detection

• Characteristics of systems not under attack
• User, process actions conform to statistically predictable pattern
• User, process actions do not include sequences of actions that subvert the 

security policy
• Process actions correspond to a set of specifications describing what the 

processes are allowed to do
• Systems under attack do not meet at least one of these
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Example

• Goal: insert a back door into a system
• Intruder will modify system configuration file or program
• Requires privilege; attacker enters system as an unprivileged user and must 

acquire privilege
• Nonprivileged user may not normally acquire privilege (violates #1)
• Attacker may break in using sequence of commands that violate security policy (violates 

#2)
• Attacker may cause program to act in ways that violate program’s specification
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Basic Intrusion Detection

• Attack tool is automated script designed to violate a security policy
• Example: rootkit
• Includes password sniffer
• Designed to hide itself using Trojaned versions of various programs (ps, ls, 

find, netstat, etc.)
• Adds back doors (login, telnetd, etc.)
• Has tools to clean up log entries (zapper, etc.)
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Detection

• Rootkit configuration files cause ls, du, etc. to hide information
• ls lists all files in a directory

• Except those hidden by configuration file
• dirdump (local program to list directory entries) lists them too

• Run both and compare counts
• If they differ, ls is doctored

• Other approaches possible
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Key Point

• Rootkit does not alter kernel or file structures to conceal files, 
processes, and network connections
• It alters the programs or system calls that interpret those structures
• Find some entry point for interpretation that rootkit did not alter
• The inconsistency is an anomaly (violates #1)
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Denning’s Model

• Hypothesis: exploiting vulnerabilities requires abnormal use of 
normal commands or instructions
• Includes deviation from usual actions
• Includes execution of actions leading to break-ins
• Includes actions inconsistent with specifications of privileged programs
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Goals of Intrusion Detection Systems

• Detect wide variety of intrusions
• Previously known and unknown attacks
• Suggests need to learn/adapt to new attacks or changes in behavior

• Detect intrusions in timely fashion
• May need to be be real-time, especially when system responds to intrusion

• Problem: analyzing commands may impact response time of system
• May suffice to report intrusion occurred a few minutes or hours ago
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Goals of Intrusion Detection Systems

• Present analysis in simple, easy-to-understand format
• Ideally a binary indicator
• Usually more complex, allowing analyst to examine suspected attack
• User interface critical, especially when monitoring many systems 

• Be accurate
• Minimize false positives, false negatives
• Minimize time spent verifying attacks, looking for them
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Models of Intrusion Detection

• Anomaly detection
• What is usual, is known
• What is unusual, is bad

• Misuse detection
• What is bad, is known
• What is not bad, is good

• Specification-based detection
• What is good, is known
• What is not good, is bad
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Anomaly Detection

• Analyzes a set of characteristics of system, and compares their values 
with expected values; report when computed statistics do not match 
expected statistics
• Threshold metrics
• Statistical moments
• Markov model
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Threshold Metrics

• Counts number of events that occur
• Between m and n events (inclusive) expected to occur
• If number falls outside this range, anomalous

• Example
• Windows: lock user out after k sequential failed login attempts

• Range is (0, k–1).
• k or more failed logins deemed anomalous
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Difficulties

• Appropriate threshold may depend on non-obvious factors
• Typing skill of users
• If keyboards are US keyboards, and most users are French, typing errors very 

common
• Dvorak vs. non-Dvorak within the US
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Statistical Moments

• Analyzer computes standard deviation (first two moments), other 
measures of correlation (higher moments)
• If measured values fall outside expected interval for particular moments, 

anomalous

• Potential problem
• Profile may evolve over time; solution is to weigh data appropriately or alter 

rules to take changes into account
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Example: IDES

• Developed at SRI International to test Denning’s model
• Represent users, login session, other entities as ordered sequence of statistics 

<q0,j, …, qn,j> 

• qi,j (statistic i for day j) is count or time interval

• Weighting favors recent behavior over past behavior
• Ak,j sum of counts making up metric of kth statistic on jth day

• qk,l+1 = Ak,l+1 – Ak,l + 2–rtqk,l where t is number of log entries/total time since start, r factor 
determined through experience
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Example: Haystack

• Let An be nth count or time interval statistic
• Defines bounds TL and TU such that 90% of values for Ais lie between 

TL and TU

• Haystack computes An+1
• Then checks that TL ≤ An+1 ≤ TU
• If false, anomalous

• Thresholds updated
• Ai can change rapidly; as long as thresholds met, all is well
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Potential Problems

• Assumes behavior of processes and users can be modeled statistically
• Ideal: matches a known distribution such as Gaussian or normal
• Otherwise, must use techniques like clustering to determine moments, 

characteristics that show anomalies, etc.

• Real-time computation a problem too
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Markov Model

• Past state affects current transition
• Anomalies based upon sequences of events, and not on occurrence of 

single event
• Problem: need to train system to establish valid sequences
• Use known, training data that is not anomalous
• The more training data, the better the model
• Training data should cover all possible normal uses of system
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Example: TIM

• Time-based Inductive Learning

• Sequence of events is abcdedeabcabc
• TIM derives following rules:

R1: ab®c (1.0) R2: c®d (0.5) R3: c®e (0.5)
R4: d®e (1.0) R5: e®a (0.5) R6: e®d (0.5)

• Seen: abd; triggers alert
• c always follows ab in rule set

• Seen: acf; no alert as multiple events can follow c
• May add rule R7: c®f (0.33); adjust R2, R3
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Sequences of System Calls

• Forrest: define normal behavior in terms of sequences of system calls 
(traces)

• Experiments show it distinguishes sendmail and lpd from other 
programs

• Training trace is:
open read write open mmap write fchmod close

• Produces following database:
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Traces

open read write open
read write open mmap
write open mmap write
open mmap write fchmod
mmap write fchmod close
write fchmod close
fchmod close
close
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Analysis

• A later trace is:
open read read open mmap write fchmod close

• Sliding a window comparing this to the 5 sequences above:
• Sequence beginning with first open: item 3 is read, should be write
• Sequence beginning with first read: item 2 is read, should be write
• Sequence beginning with second read: item 2 is open, should be write; item 3 

is mmap, should be open; item 4 is write, should be mmap

• 18 possible places of difference
• Mismatch rate 5/18 » 28%
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Machine Learning

• These anomaly detection methods all assume some statistical 
distribution of underlying data
• IDES assumes Gaussian distribution of events, but experience indicates not 

right distribution
• Use machine learning techniques to classify data as anomalous
• Does not assume a priori distribution of data

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-24



Types of Learning

• Supervised learning methods: begin with data that has already been 
classified, split it into “training data”, “test data”; use first to train 
classifier, second to see how good the classifier is
• Unsupervised learning methods: no pre-classified data, so learn by 

working on real data; implicit assumption that anomalous data is 
small part of data
• Measures used to evaluate methods based on:
• TP: true positives (correctly identify anomalous data)
• TN: true negatives (correctly identify non-anomalous data)
• FP: false positives (identify non-anomalous data as anomalous)
• FN: false negatives (identify anomalous data as non-anomalous)
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Measuring Effectiveness

• Accuracy: percentage (or fraction) of events classified correctly
• ((TP + TN) / (TP + TN + FP + FN)) * 100%

• Detection rate: percentage (or fraction) of reported attack events that 
are real attack events
• (TP / (TP + FN)) * 100%
• Also called the true positive rate

• False alarm rate: percentage (or fraction) of non-attack events 
reported as attack events
• (FP / (FP + TN)) * 100%
• Also called the false positive rate
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Usefulness of Measurement

• Data at installation should be similar to that used to measure effectiveness

• Example: military, academic network traffic different
• KDD-CUP-99 dataset derived from unclassified and classified network traffic on an Air 

Force Base
• Network data captured at Florida Institute of Technology

• FIT data showed anomalies not in KDD-CUP-99
• FIT data: TCP ACK field nonzero when ACK flag not set
• KDD-CUP-99 data: HTTP requests all regular, all used GET, version 1.0; in FIT data, 

HTTP requests showed inconsistencies, some commands not GET, versions 1.0, 1.1

• Conclusion: using KDD-CUP-99 data would show some techniques 
performing better than they would on the FIT data
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Clustering

• Clustering
• Does not assume a priori distribution of data
• Obtain data, group into subsets (clusters) based on some property (feature)
• Analyze the clusters, not individual data points
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Example: Clustering

proc user value percent clus#1 clus#2
p1 matt 359 100% 4 2

p2 holly 10 3% 1 1

p3 heidi 263 73% 3 2

p4 steven 68 19% 1 1

p5 david 133 37% 2 1

p6 mike 195 54% 3 2

• Cluster 1: break into 4 groups (25% each); 2, 4 may be anomalous (1 entry each)

• Cluster 2: break into 2 groups (50% each)
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Finding Features

• Which features best show anomalies?
• CPU use may not, but I/O use may

• Use training data
• Anomalous data marked
• Feature selection program picks features, clusters that best reflects 

anomalous data
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Example

• Analysis of network traffic for features enabling classification as 
anomalous
• 7 features 
• Index number
• Length of time of connection
• Packet count from source to destination
• Packet count from destination to source
• Number of data bytes from source to destination
• Number of data bytes from destination to source
• Expert system warning of how likely an attack
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Feature Selection

• 3 types of algorithms used to select best feature set
• Backwards sequential search: assume full set, delete features until error rate 

minimized
• Best: all features except index (error rate 0.011%)

• Beam search: order possible clusters from best to worst, then search from 
best
• Random sequential search: begin with random feature set, add and delete 

features
• Slowest
• Produced same results as other two
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Results

• If following features used:

• Length of time of connection

• Number of packets from destination

• Number of data bytes from source

Classification error less than 0.02%

• Identifying type of connection (like SMTP)

• Best feature set omitted index, number of data bytes from destination (error 

rate 0.007%)

• Other types of connections done similarly, but used different sets
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Neural Nets

• Structure with input layer, output layer, at least 1 layer between them
• Each node (neuron) in layer connected to all nodes in previous, 

following layer
• Nodes have an internal function transforming inputs into outputs
• Each connection has associated weight

• Net given training data as input
• Compare resulting outputs to ideal outputs
• Adjust weights according to a function that takes into account the 

discrepancies between actual, ideal outputs
• Iterate until actual output matches ideal output
• Called “back propagation"
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Neural Net
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O

Neural net:
• 2 inputs I1, I2
• 3 hidden layers of 3 

neurons each (Hij)
• 1 output O

Note neurons in a layer 
are not connected

Weights on connections 
not shown



Example

• Neural nets used to analyze KDD-CUP-99 dataset
• Dataset had 41 features, so neural nets had 41 inputs,, 1 output
• Split into training data (7312 elements), test data (6980 elements)

• Net 1: 3 hidden layers of 20 neurons each; accuracy, 99.05%

• Net 2: 2 hidden layers of 40 neurons each; accuracy, 99.5%

• Net 3: 2 hidden layers, one of 25 neurons, other of 20 neurons; 
accuracy, 99%
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Self-Organizing Maps

• Unsupervised learning methods that map nonlinear statistical 
relationships between data points to geometric relationships 
between points in a 2-dimensional map
• Set of neurons arranged in lattice, each input neuron connected to 

every neuron in lattice
• Each lattice neuron given vector of n weights, 1 for each of n input features

• Input fed to each neuron
• Neuron with highest output is “winner”; input classified as belonging to that 

neuron
• Neuron adjusts weights on incoming edges so weights on edges with weaker 

values move to edges with stronger signals
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Self-Organizing Maps
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Self-organizing map with 2 inputs

Each input connected to each neuron 
in lattice

No lattice neurons connected to any 
other lattice neuron



Example

• SOM used to examining DNS, HTTP traffic on academic network

• For DNS, lattice of 19 x 25 neurons initialized using 8857 sample DNS 

connections

• Tested using set of DNS traffic with known exploit injected, and exploit 

correctly identified

• For HTTP, lattice of 16 x 27 neurons initialized using 7194 HTTP 

connections

• Tested using HTTP traffic with an HTTP tunnel through which telnet was run, 

and the commands setting up tunnel were identified as anomalous
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Distance to Neighbor

• Anomalies defined by distance from neighborhood elements
• Different measured used for this

• Example: k nearest neighbor algorithm uses clustering algorithm to 
partition data into disjoint subsets
• Then computes upper, lower bounds for distances of elements in each 

partition
• Determine which partitions are likely to contain outliers
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Example

• Experiment looked at system call data from processes
• Training data used to construct matrix with rows representing system calls, columns 

representing processes
• Elements calculated using weighting taking into account system call frequency over 

all processes, and compensates for some processes using fewer system calls than 
others

• New process tested using a similarity function to compute distance to 
processes
• k closest selected; average distance computed and compared to threshold

• Experiment tested values of k between 5, 25
• k = 10, threshold value of 0.72 detected all attacks, false positive rate 0.44%

• Conclusion: this method could detect attacks with acceptably low false 
positive rate
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Support Vector Machines

• Works best when data can be divided into 2 distinct classes

• Dataset has n features, so map each data point into n-dimensional 

space, each dimension representing a feature

• SVM is supervised machine learning method that splits dataset in 2

• Technically, it derives a hyperplane bisecting the space

• Use kernel function to derive similarity of points

• Common one: Gaussian radial base function (RBF), !"# $"% &
where x, y are 

points, ' constant function, ||x–y||2 =∑)*+, -) − /) 0

• New data mapped into space, and so falls into either class
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Example

• SVM used to analyze KDD-CUP-99 dataset
• Dataset had 41 features, so used 41-dimensional space
• Split into training data (7312 elements), test data (6980 elements)

• Accuracy of 99.5%
• SVM training time 18 seconds; neural net training time 18 minutes
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Misuse Modeling

• Determines whether a sequence of instructions being executed is 
known to violate the site security policy

• Descriptions of known or potential exploits grouped into rule sets
• IDS matches data against rule sets; on success, potential attack found

• Cannot detect attacks unknown to developers of rule sets

• No rules to cover them
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Example: IDIOT

• Event is a single action, or a series of actions resulting in a single 
record
• Five features of attacks:
• Existence: attack creates file or other entity
• Sequence: attack causes several events sequentially
• Partial order: attack causes 2 or more sequences of events, and events form 

partial order under temporal relation
• Duration: something exists for interval of time
• Interval: events occur exactly n units of time apart
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IDIOT Representation

• Sequences of events may be interlaced
• Use colored Petri automata to capture this
• Each signature corresponds to a particular CPA
• Nodes are tokens; edges, transitions
• Final state of signature is compromised state

• Example: mkdir attack
• Edges protected by guards (expressions)
• Tokens move from node to node as guards satisfied
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IDIOT Analysis
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this[euid] != 0 &&
this[ruid] != 0 &&
FILE1 == this[obj]

s1

true_name(this[obj]) ==
true_name(“/etc/passwd”)
&& FILE2 == this[obj]

s2t1

unlink

s3

this[euid] != 0 &&
this[ruid] != 0 &&
FILE2 == this[obj]

s6t2
t3

link

chown

s4 t4

mknod

s5

this[euid] == 0 && this[ruid] != 0 &&
FILE1 == true_name(this[obj])



IDIOT Features

• New signatures can be added dynamically
• Partially matched signatures need not be cleared and rematched

• Ordering the CPAs allows you to order the checking for attack 
signatures
• Useful when you want a priority ordering
• Can order initial branches of CPA to find sequences known to occur often
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Example: STAT

• Analyzes state transitions
• Need keep only data relevant to security
• Example: look at process gaining root privileges; how did it get them?

• Example: attack giving setuid to root shell (here, target is a setuid-to-
roots shell script)
ln target ./–s
–s
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State Transition Diagram

• Now add postconditions for attack under the appropriate state
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s1 s2
link(f1, f2) exec(f1)



Final State Diagram

• Conditions met when system enters states s1 and s2; USER is effective UID of 
process
• Note final postcondition is that USER is no longer effective UID; usually done 

with new EUID of 0 (root) but works with any EUID
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s1 s2

link(f1, f2) exec(f1)

name(f1) == “-*”
not owner(f1) == USER

shell_script(f1)
permitted(SUID, f1)

permitted(XGROUP, f1) or permitted(XWORLD, f1)

not EUID == USER



USTAT

• USTAT is prototype STAT system

• Uses BSM to get system records

• Preprocessor gets events of interest, maps them into USTAT’s internal 
representation
• Failed system calls ignored as they do not change state

• Inference engine determines when compromising transition occurs
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How Inference Engine Works

• Constructs series of state table entries corresponding to transitions

• Example: rule base has single rule above

• Initial table has 1 row, 2 columns (corresponding to s1 and s2)

• Transition moves system into s1

• Engine adds second row, with “X” in first column as in state s1

• Transition moves system into s2

• Rule fires as in compromised transition

• Does not clear row until conditions of that state false
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State Table

s1 s2

1
2 Xnow in s1
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Example: Bro

• Built to make adding new rules easily

• Architecture:

• Event engine: reads packets from network, processes them, passes results up

• Uses variety of protocol analyzers to map network flows into events

• Does no evaluation of whether something is good or bad

• Policy script interpreter evaluates results based on scripts that determine 
what is bad
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Example Script (Detect SSH Servers)

# holds a list of SSH servers
global ssh_hosts: set[addr];

event connection_established(c: connection)
{

local responder = c$id$resp_h; # address of responder (server)
local service = c$id$resp_p; # port on server
if ( service != 22/tcp ) # SSH port is 22

return;
# if you get here, it’s SSH
if ( responder in ssh_hosts ) # see if we saw this already

return;
# we didn’t -- add it to the list and say so
add ssh_hosts[responder];
print "New SSH host found", responder;

}
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Specification Modeling

• Determines whether execution of sequence of instructions violates 
specification
• Only need to check programs that alter protection state of system
• System traces, or sequences of events t1, … ti, ti+1, …, are basis of this
• Event ti occurs at time C(ti)
• Events in a system trace are totally ordered
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System Traces

• Notion of subtrace (subsequence of a trace) allows you to handle 
threads of a process, process of a system
• Notion of merge of traces U, V when trace U and trace V merged into 

single trace
• Filter p maps trace T to subtrace T¢ such that, for all events ti Î T¢, p(ti) 

is true
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Examples

• Subject S composed of processes p, q, r, with traces Tp, Tq, Tr has Ts = 
TpÅTqÅ Tr

• Filtering function: apply to system trace
• On process, program, host, user as 4-tuple

< ANY, emacs, ANY, bishop >
lists events with program “emacs”, user “bishop”

< ANY, ANY, nobhill, ANY >
list events on host “nobhill”
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Example: Apply to rdist

• Ko, Levitt, Ruschitzka defined PE-grammar to describe accepted 
behavior of program
• rdist creates temp file, copies contents into it, changes protection 

mask, owner of it, copies it into place
• Attack: during copy, delete temp file and place symbolic link with same name 

as temp file
• rdist changes mode, ownership to that of program
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Relevant Parts of Spec

SE: <rdist>
<rdist> -> <valid_op> <rdist> |.
<valid_op> -> open_r_worldread

…
| chown
{ if !(Created(F) and M.newownerid = U)

then violation(); fi; }
…

END
• Chown of symlink violates this rule as M.newownerid ≠ U (owner of file 

symlink points to is not owner of file rdist is distributing)
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Comparison and Contrast

• Misuse detection: if all policy rules known, easy to construct rulesets 
to detect violations
• Usual case is that much of policy is unspecified, so rulesets describe attacks, 

and are not complete
• Anomaly detection: detects unusual events, but these are not 

necessarily security problems
• Specification-based vs. misuse: spec assumes if specifications 

followed, policy not violated; misuse assumes if policy as embodied in 
rulesets followed, policy not violated

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-62



IDS Architecture

• Basically, a sophisticated audit system
• Agent like logger; it gathers data for analysis
• Director like analyzer; it analyzes data obtained from the agents according to 

its internal rules
• Notifier obtains results from director, and takes some action

• May simply notify security officer
• May reconfigure agents, director to alter collection, analysis methods
• May activate response mechanism
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Agents

• Obtains information and sends to director
• May put information into another form
• Preprocessing of records to extract relevant parts

• May delete unneeded information
• Director may request agent send other information
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Example

• IDS uses failed login attempts in its analysis
• Agent scans login log every 5 minutes, sends director for each new 

login attempt:
• Time of failed login
• Account name and entered password

• Director requests all records of login (failed or not) for particular user
• Suspecting a brute-force cracking attempt
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Host-Based Agent

• Obtain information from logs
• May use many logs as sources
• May be security-related or not
• May be virtual logs if agent is part of the kernel

• Very non-portable

• Agent generates its information
• Scans information needed by IDS, turns it into equivalent of log record
• Typically, check policy; may be very complex
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Network-Based Agents

• Detects network-oriented attacks
• Denial of service attack introduced by flooding a network

• Monitor traffic for a large number of hosts
• Examine the contents of the traffic itself
• Agent must have same view of traffic as destination
• TTL tricks, fragmentation may obscure this

• End-to-end encryption defeats content monitoring
• Not traffic analysis, though
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Network Issues

• Network architecture dictates agent placement
• Ethernet or broadcast medium: one agent per subnet
• Point-to-point medium: one agent per connection, or agent at 

distribution/routing point

• Focus is usually on intruders entering network
• If few entry points, place network agents behind them
• Does not help if inside attacks to be monitored
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Aggregation of Information

• Agents produce information at multiple layers of abstraction
• Application-monitoring agents provide one view (usually one line) of an event
• System-monitoring agents  provide a different view (usually many lines) of an 

event
• Network-monitoring agents provide yet another view (involving many 

network packets) of an event
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Director

• Reduces information from agents
• Eliminates unnecessary, redundant records

• Analyzes remaining information to determine if attack under way
• Analysis engine can use a number of techniques, discussed before, to do this

• Usually run on separate system
• Does not impact performance of monitored systems
• Rules, profiles not available to ordinary users
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Example

• Jane logs in to perform system maintenance during the day
• She logs in at night to write reports
• One night she begins recompiling the kernel
• Agent #1 reports logins and logouts
• Agent #2 reports commands executed
• Neither agent spots discrepancy
• Director correlates log, spots it at once
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Adaptive Directors

• Modify profiles, rule sets to adapt their analysis to changes in system
• Usually use machine learning or planning to determine how to do this

• Example: use neural nets to analyze logs
• Network adapted to users’ behavior over time
• Used learning techniques to improve classification of events as anomalous

• Reduced number of false alarms
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Notifier

• Accepts information from director
• Takes appropriate action
• Notify system security officer
• Respond to attack

• Often GUIs
• Well-designed ones use visualization to convey information
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GrIDS GUI

• GrIDS interface showing the progress of a worm as it spreads 
through network
• Left is early in spread
• Right is later on
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Other Examples

• Credit card companies alert customers when fraud is believed to have 
occurred
• Configured to send email or SMS message to consumer

• IDIP protocol coordinates IDSes to respond to attack
• If an IDS detects attack over a network, notifies other IDSes on co-operative 

firewalls; they can then reject messages from the source
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Organization of an IDS

• Monitoring network traffic for intrusions
• NSM system

• Combining host and network monitoring
• DIDS

• Making the agents autonomous
• AAFID system
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Monitoring Networks: NSM

• Develops profile of expected usage of network, compares current 
usage
• Has 3-D matrix for data
• Axes are source, destination, service
• Each connection has unique connection ID
• Contents are number of packets sent over that connection for a period of 

time, and sum of data
• NSM generates expected connection data
• Expected data masks data in matrix, and anything left over is reported as an 

anomaly
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Problem

• Too much data!
• Solution: arrange data 

hierarchically into groups
• Construct by folding axes of matrix

• Analyst could expand any group 
flagged as anomalous

(S1, D1, SMTP)
(S1, D1, FTP)

…

(S1, D1)

(S1, D2, SMTP)
(S1, D2, FTP)

…

(S1, D2)

S1
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Signatures

• Analyst can write rule to look for specific occurrences in matrix
• Repeated telnet connections lasting only as long as set-up indicates failed 

login attempt
• Analyst can write rules to match against network traffic
• Used to look for excessive logins, attempt to communicate with non-existent 

host, single host communicating with 15 or more hosts

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-79



Other

• Graphical interface independent of the NSM matrix analyzer
• Detected many attacks
• But false positives too

• Still in use in some places
• Signatures have changed, of course

• Also demonstrated intrusion detection on network is feasible
• Did no content analysis, so would work even with encrypted connections
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Combining Sources: DIDS

• Neither network-based nor host-based monitoring sufficient to detect 
some attacks
• Attacker tries to telnet into system several times using different account 

names: network-based IDS detects this, but not host-based monitor
• Attacker tries to log into system using an account without password: host-

based IDS detects this, but not network-based monitor

• DIDS uses agents on hosts being monitored, and a network monitor
• DIDS director uses expert system to analyze data

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-81



Attackers Moving in Network

• Intruder breaks into system A as alice
• Intruder goes from A to system B, and breaks into B’s account bob
• Host-based mechanisms cannot correlate these
• DIDS director could see bob logged in over alice’s connection; expert 

system infers they are the same user
• Assigns network identification number NID to this user
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Handling Distributed Data

• Agent analyzes logs to extract entries of interest
• Agent uses signatures to look for attacks

• Summaries sent to director
• Other events forwarded directly to director

• DIDS model has agents report:
• Events (information in log entries)
• Action, domain
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Actions and Domains

• Subjects perform actions
• session_start, session_end, read, write, execute, terminate, create, delete, 

move, change_rights, change_user_id

• Domains characterize objects
• tagged, authentication, audit, network, system, sys_info, user_info, utility, 

owned, not_owned
• Objects put into highest domain to which it belongs

• Tagged, authenticated file is in domain tagged
• Unowned network object is in domain network
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More on Agent Actions

• Entities can be subjects in one view, objects in another
• Process: subject when changes protection mode of object, object when 

process is terminated
• Table determines which events sent to DIDS director
• Based on actions, domains associated with event
• All NIDS events sent over so director can track view of system

• Action is session_start or execute; domain is network
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Layers of Expert System Model

1. Log records

2. Events (relevant information from log entries)

3. Subject capturing all events associated with a user; NID assigned to 
this subject

4. Contextual information such as time, proximity to other events
• Sequence of commands to show who is using the system
• Series of failed logins follow
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Top Layers

5. Network threats (combination of events in context)
• Abuse (change to protection state)
• Misuse (violates policy, does not change state)
• Suspicious act (does not violate policy, but of interest)

6. Score (represents security state of network)
• Derived from previous layer and from scores associated with rules

• Analyst can adjust these scores as needed
• A convenience for user
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Autonomous Agents: AAFID

• Distribute director among agents
• Autonomous agent is process that can act independently of the 

system of which it is part
• Autonomous agent performs one particular monitoring function
• Has its own internal model
• Communicates with other agents
• Agents jointly decide if these constitute a reportable intrusion
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Advantages

• No single point of failure
• All agents can act as director
• In effect, director distributed over all agents

• Compromise of one agent does not affect others
• Agent monitors one resource
• Small and simple

• Agents can migrate if needed
• Approach appears to be scalable to large networks
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Disadvantages

• Communications overhead higher, more scattered than for single 
director
• Securing these can be very hard and expensive

• As agent monitors one resource, need many agents to monitor 
multiple resources
• Distributed computation involved in detecting intrusions
• This computation also must be secured
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Example: AAFID

• Host has set of agents and transceiver
• Transceiver controls agent execution, collates information, forwards it to 

monitor (on local or remote system)

• Filters provide access to monitored resources
• Use this approach to avoid duplication of work and system dependence
• Agents subscribe to filters by specifying records needed
• Multiple agents may subscribe to single filter
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Transceivers and Monitors

• Transceivers collect data from agents
• Forward it to other agents or monitors
• Can terminate, start agents on local system

• Example: System begins to accept TCP connections, so transceiver turns on agent to 
monitor SMTP

• Monitors accept data from transceivers
• Can communicate with transceivers, other monitors

• Send commands to transceiver
• Perform high level correlation for multiple hosts
• If multiple monitors interact with transceiver, AAFID must ensure transceiver 

receives consistent commands
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Other

• User interface interacts with monitors
• Could be graphical or textual

• Prototype implemented in PERL for Linux and Solaris
• Proof of concept
• Performance loss acceptable
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Key Points

• Intrusion detection is a form of auditing
• Anomaly detection looks for unexpected events
• Misuse detection looks for what is known to be bad
• Specification-based detection looks for what is known not to be good
• Intrusion detection is used for hoist-based monitoring, network 

monitoring, or combination of these
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