
Intrusion Detection
Chapter 25

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-1

Overview

• Principles
• Basics
• Models of Intrusion Detection
• Architecture of an IDS
• Organization
• Incident Response

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-2

Principles of Intrusion Detection

• Characteristics of systems not under attack
• User, process actions conform to statistically predictable pattern
• User, process actions do not include sequences of actions that subvert the

security policy
• Process actions correspond to a set of specifications describing what the

processes are allowed to do
• Systems under attack do not meet at least one of these

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-3

Example

• Goal: insert a back door into a system
• Intruder will modify system configuration file or program
• Requires privilege; attacker enters system as an unprivileged user and must

acquire privilege
• Nonprivileged user may not normally acquire privilege (violates #1)
• Attacker may break in using sequence of commands that violate security policy (violates

#2)
• Attacker may cause program to act in ways that violate program’s specification

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-4

Basic Intrusion Detection

• Attack tool is automated script designed to violate a security policy
• Example: rootkit
• Includes password sniffer
• Designed to hide itself using Trojaned versions of various programs (ps, ls,

find, netstat, etc.)
• Adds back doors (login, telnetd, etc.)
• Has tools to clean up log entries (zapper, etc.)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-5

Detection

• Rootkit configuration files cause ls, du, etc. to hide information
• ls lists all files in a directory

• Except those hidden by configuration file
• dirdump (local program to list directory entries) lists them too

• Run both and compare counts
• If they differ, ls is doctored

• Other approaches possible

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-6

Key Point

• Rootkit does not alter kernel or file structures to conceal files,
processes, and network connections
• It alters the programs or system calls that interpret those structures
• Find some entry point for interpretation that rootkit did not alter
• The inconsistency is an anomaly (violates #1)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-7

Denning’s Model

• Hypothesis: exploiting vulnerabilities requires abnormal use of
normal commands or instructions
• Includes deviation from usual actions
• Includes execution of actions leading to break-ins
• Includes actions inconsistent with specifications of privileged programs

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-8

Goals of Intrusion Detection Systems

• Detect wide variety of intrusions
• Previously known and unknown attacks
• Suggests need to learn/adapt to new attacks or changes in behavior

• Detect intrusions in timely fashion
• May need to be be real-time, especially when system responds to intrusion

• Problem: analyzing commands may impact response time of system
• May suffice to report intrusion occurred a few minutes or hours ago

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-9

Goals of Intrusion Detection Systems

• Present analysis in simple, easy-to-understand format
• Ideally a binary indicator
• Usually more complex, allowing analyst to examine suspected attack
• User interface critical, especially when monitoring many systems

• Be accurate
• Minimize false positives, false negatives
• Minimize time spent verifying attacks, looking for them

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-10

Models of Intrusion Detection

• Anomaly detection
• What is usual, is known
• What is unusual, is bad

• Misuse detection
• What is bad, is known
• What is not bad, is good

• Specification-based detection
• What is good, is known
• What is not good, is bad

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-11

Anomaly Detection

• Analyzes a set of characteristics of system, and compares their values
with expected values; report when computed statistics do not match
expected statistics
• Threshold metrics
• Statistical moments
• Markov model

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-12

Threshold Metrics

• Counts number of events that occur
• Between m and n events (inclusive) expected to occur
• If number falls outside this range, anomalous

• Example
• Windows: lock user out after k sequential failed login attempts

• Range is (0, k–1).
• k or more failed logins deemed anomalous

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-13

Difficulties

• Appropriate threshold may depend on non-obvious factors
• Typing skill of users
• If keyboards are US keyboards, and most users are French, typing errors very

common
• Dvorak vs. non-Dvorak within the US

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-14

Statistical Moments

• Analyzer computes standard deviation (first two moments), other
measures of correlation (higher moments)
• If measured values fall outside expected interval for particular moments,

anomalous

• Potential problem
• Profile may evolve over time; solution is to weigh data appropriately or alter

rules to take changes into account

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-15

Example: IDES

• Developed at SRI International to test Denning’s model
• Represent users, login session, other entities as ordered sequence of statistics

<q0,j, …, qn,j>

• qi,j (statistic i for day j) is count or time interval

• Weighting favors recent behavior over past behavior
• Ak,j sum of counts making up metric of kth statistic on jth day

• qk,l+1 = Ak,l+1 – Ak,l + 2–rtqk,l where t is number of log entries/total time since start, r factor
determined through experience

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-16

Example: Haystack

• Let An be nth count or time interval statistic
• Defines bounds TL and TU such that 90% of values for Ais lie between

TL and TU

• Haystack computes An+1
• Then checks that TL ≤ An+1 ≤ TU
• If false, anomalous

• Thresholds updated
• Ai can change rapidly; as long as thresholds met, all is well

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-17

Potential Problems

• Assumes behavior of processes and users can be modeled statistically
• Ideal: matches a known distribution such as Gaussian or normal
• Otherwise, must use techniques like clustering to determine moments,

characteristics that show anomalies, etc.

• Real-time computation a problem too

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-18

Markov Model

• Past state affects current transition
• Anomalies based upon sequences of events, and not on occurrence of

single event
• Problem: need to train system to establish valid sequences
• Use known, training data that is not anomalous
• The more training data, the better the model
• Training data should cover all possible normal uses of system

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-19

Example: TIM

• Time-based Inductive Learning

• Sequence of events is abcdedeabcabc
• TIM derives following rules:

R1: ab®c (1.0) R2: c®d (0.5) R3: c®e (0.5)
R4: d®e (1.0) R5: e®a (0.5) R6: e®d (0.5)

• Seen: abd; triggers alert
• c always follows ab in rule set

• Seen: acf; no alert as multiple events can follow c
• May add rule R7: c®f (0.33); adjust R2, R3

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-20

Sequences of System Calls

• Forrest: define normal behavior in terms of sequences of system calls
(traces)

• Experiments show it distinguishes sendmail and lpd from other
programs

• Training trace is:
open read write open mmap write fchmod close

• Produces following database:

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-21

Traces

open read write open
read write open mmap
write open mmap write
open mmap write fchmod
mmap write fchmod close
write fchmod close
fchmod close
close

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-22

Analysis

• A later trace is:
open read read open mmap write fchmod close

• Sliding a window comparing this to the 5 sequences above:
• Sequence beginning with first open: item 3 is read, should be write
• Sequence beginning with first read: item 2 is read, should be write
• Sequence beginning with second read: item 2 is open, should be write; item 3

is mmap, should be open; item 4 is write, should be mmap

• 18 possible places of difference
• Mismatch rate 5/18 » 28%

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-23

Machine Learning

• These anomaly detection methods all assume some statistical
distribution of underlying data
• IDES assumes Gaussian distribution of events, but experience indicates not

right distribution
• Use machine learning techniques to classify data as anomalous
• Does not assume a priori distribution of data

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-24

Types of Learning

• Supervised learning methods: begin with data that has already been
classified, split it into “training data”, “test data”; use first to train
classifier, second to see how good the classifier is
• Unsupervised learning methods: no pre-classified data, so learn by

working on real data; implicit assumption that anomalous data is
small part of data
• Measures used to evaluate methods based on:
• TP: true positives (correctly identify anomalous data)
• TN: true negatives (correctly identify non-anomalous data)
• FP: false positives (identify non-anomalous data as anomalous)
• FN: false negatives (identify anomalous data as non-anomalous)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-25

Measuring Effectiveness

• Accuracy: percentage (or fraction) of events classified correctly
• ((TP + TN) / (TP + TN + FP + FN)) * 100%

• Detection rate: percentage (or fraction) of reported attack events that
are real attack events
• (TP / (TP + FN)) * 100%
• Also called the true positive rate

• False alarm rate: percentage (or fraction) of non-attack events
reported as attack events
• (FP / (FP + TN)) * 100%
• Also called the false positive rate

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-26

Usefulness of Measurement

• Data at installation should be similar to that used to measure effectiveness

• Example: military, academic network traffic different
• KDD-CUP-99 dataset derived from unclassified and classified network traffic on an Air

Force Base
• Network data captured at Florida Institute of Technology

• FIT data showed anomalies not in KDD-CUP-99
• FIT data: TCP ACK field nonzero when ACK flag not set
• KDD-CUP-99 data: HTTP requests all regular, all used GET, version 1.0; in FIT data,

HTTP requests showed inconsistencies, some commands not GET, versions 1.0, 1.1

• Conclusion: using KDD-CUP-99 data would show some techniques
performing better than they would on the FIT data

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-27

Clustering

• Clustering
• Does not assume a priori distribution of data
• Obtain data, group into subsets (clusters) based on some property (feature)
• Analyze the clusters, not individual data points

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-28

Example: Clustering

proc user value percent clus#1 clus#2
p1 matt 359 100% 4 2

p2 holly 10 3% 1 1

p3 heidi 263 73% 3 2

p4 steven 68 19% 1 1

p5 david 133 37% 2 1

p6 mike 195 54% 3 2

• Cluster 1: break into 4 groups (25% each); 2, 4 may be anomalous (1 entry each)

• Cluster 2: break into 2 groups (50% each)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-29

Finding Features

• Which features best show anomalies?
• CPU use may not, but I/O use may

• Use training data
• Anomalous data marked
• Feature selection program picks features, clusters that best reflects

anomalous data

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-30

Example

• Analysis of network traffic for features enabling classification as
anomalous
• 7 features
• Index number
• Length of time of connection
• Packet count from source to destination
• Packet count from destination to source
• Number of data bytes from source to destination
• Number of data bytes from destination to source
• Expert system warning of how likely an attack

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-31

Feature Selection

• 3 types of algorithms used to select best feature set
• Backwards sequential search: assume full set, delete features until error rate

minimized
• Best: all features except index (error rate 0.011%)

• Beam search: order possible clusters from best to worst, then search from
best
• Random sequential search: begin with random feature set, add and delete

features
• Slowest
• Produced same results as other two

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-32

Results

• If following features used:

• Length of time of connection

• Number of packets from destination

• Number of data bytes from source

Classification error less than 0.02%

• Identifying type of connection (like SMTP)

• Best feature set omitted index, number of data bytes from destination (error

rate 0.007%)

• Other types of connections done similarly, but used different sets

Version 1.0 Computer Security: Art and Science, 2
nd

Edition Slide 26-33

Neural Nets

• Structure with input layer, output layer, at least 1 layer between them
• Each node (neuron) in layer connected to all nodes in previous,

following layer
• Nodes have an internal function transforming inputs into outputs
• Each connection has associated weight

• Net given training data as input
• Compare resulting outputs to ideal outputs
• Adjust weights according to a function that takes into account the

discrepancies between actual, ideal outputs
• Iterate until actual output matches ideal output
• Called “back propagation"

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-34

Neural Net

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-35

I1

I2

H11

H12

H13

H21

H22

H23

H31

H32

H33

O

Neural net:
• 2 inputs I1, I2
• 3 hidden layers of 3

neurons each (Hij)
• 1 output O

Note neurons in a layer
are not connected

Weights on connections
not shown

Example

• Neural nets used to analyze KDD-CUP-99 dataset
• Dataset had 41 features, so neural nets had 41 inputs,, 1 output
• Split into training data (7312 elements), test data (6980 elements)

• Net 1: 3 hidden layers of 20 neurons each; accuracy, 99.05%

• Net 2: 2 hidden layers of 40 neurons each; accuracy, 99.5%

• Net 3: 2 hidden layers, one of 25 neurons, other of 20 neurons;
accuracy, 99%

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-36

Self-Organizing Maps

• Unsupervised learning methods that map nonlinear statistical
relationships between data points to geometric relationships
between points in a 2-dimensional map
• Set of neurons arranged in lattice, each input neuron connected to

every neuron in lattice
• Each lattice neuron given vector of n weights, 1 for each of n input features

• Input fed to each neuron
• Neuron with highest output is “winner”; input classified as belonging to that

neuron
• Neuron adjusts weights on incoming edges so weights on edges with weaker

values move to edges with stronger signals

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-37

Self-Organizing Maps

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-38

Self-organizing map with 2 inputs

Each input connected to each neuron
in lattice

No lattice neurons connected to any
other lattice neuron

Example

• SOM used to examining DNS, HTTP traffic on academic network

• For DNS, lattice of 19 x 25 neurons initialized using 8857 sample DNS

connections

• Tested using set of DNS traffic with known exploit injected, and exploit

correctly identified

• For HTTP, lattice of 16 x 27 neurons initialized using 7194 HTTP

connections

• Tested using HTTP traffic with an HTTP tunnel through which telnet was run,

and the commands setting up tunnel were identified as anomalous

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-39

Distance to Neighbor

• Anomalies defined by distance from neighborhood elements
• Different measured used for this

• Example: k nearest neighbor algorithm uses clustering algorithm to
partition data into disjoint subsets
• Then computes upper, lower bounds for distances of elements in each

partition
• Determine which partitions are likely to contain outliers

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-40

Example

• Experiment looked at system call data from processes
• Training data used to construct matrix with rows representing system calls, columns

representing processes
• Elements calculated using weighting taking into account system call frequency over

all processes, and compensates for some processes using fewer system calls than
others

• New process tested using a similarity function to compute distance to
processes
• k closest selected; average distance computed and compared to threshold

• Experiment tested values of k between 5, 25
• k = 10, threshold value of 0.72 detected all attacks, false positive rate 0.44%

• Conclusion: this method could detect attacks with acceptably low false
positive rate

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-41

Support Vector Machines

• Works best when data can be divided into 2 distinct classes

• Dataset has n features, so map each data point into n-dimensional

space, each dimension representing a feature

• SVM is supervised machine learning method that splits dataset in 2

• Technically, it derives a hyperplane bisecting the space

• Use kernel function to derive similarity of points

• Common one: Gaussian radial base function (RBF), !"# $"% &
where x, y are

points, ' constant function, ||x–y||2 =∑)*+, -) − /) 0

• New data mapped into space, and so falls into either class

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-42

Example

• SVM used to analyze KDD-CUP-99 dataset
• Dataset had 41 features, so used 41-dimensional space
• Split into training data (7312 elements), test data (6980 elements)

• Accuracy of 99.5%
• SVM training time 18 seconds; neural net training time 18 minutes

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-43

Misuse Modeling

• Determines whether a sequence of instructions being executed is
known to violate the site security policy

• Descriptions of known or potential exploits grouped into rule sets
• IDS matches data against rule sets; on success, potential attack found

• Cannot detect attacks unknown to developers of rule sets

• No rules to cover them

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-44

Example: IDIOT

• Event is a single action, or a series of actions resulting in a single
record
• Five features of attacks:
• Existence: attack creates file or other entity
• Sequence: attack causes several events sequentially
• Partial order: attack causes 2 or more sequences of events, and events form

partial order under temporal relation
• Duration: something exists for interval of time
• Interval: events occur exactly n units of time apart

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-45

IDIOT Representation

• Sequences of events may be interlaced
• Use colored Petri automata to capture this
• Each signature corresponds to a particular CPA
• Nodes are tokens; edges, transitions
• Final state of signature is compromised state

• Example: mkdir attack
• Edges protected by guards (expressions)
• Tokens move from node to node as guards satisfied

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-46

IDIOT Analysis

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-47

this[euid] != 0 &&
this[ruid] != 0 &&
FILE1 == this[obj]

s1

true_name(this[obj]) ==
true_name(“/etc/passwd”)
&& FILE2 == this[obj]

s2t1

unlink

s3

this[euid] != 0 &&
this[ruid] != 0 &&
FILE2 == this[obj]

s6t2
t3

link

chown

s4 t4

mknod

s5

this[euid] == 0 && this[ruid] != 0 &&
FILE1 == true_name(this[obj])

IDIOT Features

• New signatures can be added dynamically
• Partially matched signatures need not be cleared and rematched

• Ordering the CPAs allows you to order the checking for attack
signatures
• Useful when you want a priority ordering
• Can order initial branches of CPA to find sequences known to occur often

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-48

Example: STAT

• Analyzes state transitions
• Need keep only data relevant to security
• Example: look at process gaining root privileges; how did it get them?

• Example: attack giving setuid to root shell (here, target is a setuid-to-
roots shell script)
ln target ./–s
–s

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-49

State Transition Diagram

• Now add postconditions for attack under the appropriate state

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-50

s1 s2
link(f1, f2) exec(f1)

Final State Diagram

• Conditions met when system enters states s1 and s2; USER is effective UID of
process
• Note final postcondition is that USER is no longer effective UID; usually done

with new EUID of 0 (root) but works with any EUID

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-51

s1 s2

link(f1, f2) exec(f1)

name(f1) == “-*”
not owner(f1) == USER

shell_script(f1)
permitted(SUID, f1)

permitted(XGROUP, f1) or permitted(XWORLD, f1)

not EUID == USER

USTAT

• USTAT is prototype STAT system

• Uses BSM to get system records

• Preprocessor gets events of interest, maps them into USTAT’s internal
representation
• Failed system calls ignored as they do not change state

• Inference engine determines when compromising transition occurs

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-52

How Inference Engine Works

• Constructs series of state table entries corresponding to transitions

• Example: rule base has single rule above

• Initial table has 1 row, 2 columns (corresponding to s1 and s2)

• Transition moves system into s1

• Engine adds second row, with “X” in first column as in state s1

• Transition moves system into s2

• Rule fires as in compromised transition

• Does not clear row until conditions of that state false

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-53

State Table

s1 s2

1
2 Xnow in s1

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-54

Example: Bro

• Built to make adding new rules easily

• Architecture:

• Event engine: reads packets from network, processes them, passes results up

• Uses variety of protocol analyzers to map network flows into events

• Does no evaluation of whether something is good or bad

• Policy script interpreter evaluates results based on scripts that determine
what is bad

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-55

Example Script (Detect SSH Servers)

holds a list of SSH servers
global ssh_hosts: set[addr];

event connection_established(c: connection)
{

local responder = cidresp_h; # address of responder (server)
local service = cidresp_p; # port on server
if (service != 22/tcp) # SSH port is 22

return;
if you get here, it’s SSH
if (responder in ssh_hosts) # see if we saw this already

return;
we didn’t -- add it to the list and say so
add ssh_hosts[responder];
print "New SSH host found", responder;

}

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-56

Specification Modeling

• Determines whether execution of sequence of instructions violates
specification
• Only need to check programs that alter protection state of system
• System traces, or sequences of events t1, … ti, ti+1, …, are basis of this
• Event ti occurs at time C(ti)
• Events in a system trace are totally ordered

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-57

System Traces

• Notion of subtrace (subsequence of a trace) allows you to handle
threads of a process, process of a system
• Notion of merge of traces U, V when trace U and trace V merged into

single trace
• Filter p maps trace T to subtrace T¢ such that, for all events ti Î T¢, p(ti)

is true

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-58

Examples

• Subject S composed of processes p, q, r, with traces Tp, Tq, Tr has Ts =
TpÅTqÅ Tr

• Filtering function: apply to system trace
• On process, program, host, user as 4-tuple

< ANY, emacs, ANY, bishop >
lists events with program “emacs”, user “bishop”

< ANY, ANY, nobhill, ANY >
list events on host “nobhill”

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-59

Example: Apply to rdist

• Ko, Levitt, Ruschitzka defined PE-grammar to describe accepted
behavior of program
• rdist creates temp file, copies contents into it, changes protection

mask, owner of it, copies it into place
• Attack: during copy, delete temp file and place symbolic link with same name

as temp file
• rdist changes mode, ownership to that of program

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-60

Relevant Parts of Spec

SE: <rdist>
<rdist> -> <valid_op> <rdist> |.
<valid_op> -> open_r_worldread

…
| chown
{ if !(Created(F) and M.newownerid = U)

then violation(); fi; }
…

END
• Chown of symlink violates this rule as M.newownerid ≠ U (owner of file

symlink points to is not owner of file rdist is distributing)

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-61

Comparison and Contrast

• Misuse detection: if all policy rules known, easy to construct rulesets
to detect violations
• Usual case is that much of policy is unspecified, so rulesets describe attacks,

and are not complete
• Anomaly detection: detects unusual events, but these are not

necessarily security problems
• Specification-based vs. misuse: spec assumes if specifications

followed, policy not violated; misuse assumes if policy as embodied in
rulesets followed, policy not violated

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-62

IDS Architecture

• Basically, a sophisticated audit system
• Agent like logger; it gathers data for analysis
• Director like analyzer; it analyzes data obtained from the agents according to

its internal rules
• Notifier obtains results from director, and takes some action

• May simply notify security officer
• May reconfigure agents, director to alter collection, analysis methods
• May activate response mechanism

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-63

Agents

• Obtains information and sends to director
• May put information into another form
• Preprocessing of records to extract relevant parts

• May delete unneeded information
• Director may request agent send other information

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-64

Example

• IDS uses failed login attempts in its analysis
• Agent scans login log every 5 minutes, sends director for each new

login attempt:
• Time of failed login
• Account name and entered password

• Director requests all records of login (failed or not) for particular user
• Suspecting a brute-force cracking attempt

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-65

Host-Based Agent

• Obtain information from logs
• May use many logs as sources
• May be security-related or not
• May be virtual logs if agent is part of the kernel

• Very non-portable

• Agent generates its information
• Scans information needed by IDS, turns it into equivalent of log record
• Typically, check policy; may be very complex

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-66

Network-Based Agents

• Detects network-oriented attacks
• Denial of service attack introduced by flooding a network

• Monitor traffic for a large number of hosts
• Examine the contents of the traffic itself
• Agent must have same view of traffic as destination
• TTL tricks, fragmentation may obscure this

• End-to-end encryption defeats content monitoring
• Not traffic analysis, though

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-67

Network Issues

• Network architecture dictates agent placement
• Ethernet or broadcast medium: one agent per subnet
• Point-to-point medium: one agent per connection, or agent at

distribution/routing point

• Focus is usually on intruders entering network
• If few entry points, place network agents behind them
• Does not help if inside attacks to be monitored

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-68

Aggregation of Information

• Agents produce information at multiple layers of abstraction
• Application-monitoring agents provide one view (usually one line) of an event
• System-monitoring agents provide a different view (usually many lines) of an

event
• Network-monitoring agents provide yet another view (involving many

network packets) of an event

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-69

Director

• Reduces information from agents
• Eliminates unnecessary, redundant records

• Analyzes remaining information to determine if attack under way
• Analysis engine can use a number of techniques, discussed before, to do this

• Usually run on separate system
• Does not impact performance of monitored systems
• Rules, profiles not available to ordinary users

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-70

Example

• Jane logs in to perform system maintenance during the day
• She logs in at night to write reports
• One night she begins recompiling the kernel
• Agent #1 reports logins and logouts
• Agent #2 reports commands executed
• Neither agent spots discrepancy
• Director correlates log, spots it at once

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-71

Adaptive Directors

• Modify profiles, rule sets to adapt their analysis to changes in system
• Usually use machine learning or planning to determine how to do this

• Example: use neural nets to analyze logs
• Network adapted to users’ behavior over time
• Used learning techniques to improve classification of events as anomalous

• Reduced number of false alarms

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-72

Notifier

• Accepts information from director
• Takes appropriate action
• Notify system security officer
• Respond to attack

• Often GUIs
• Well-designed ones use visualization to convey information

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-73

GrIDS GUI

• GrIDS interface showing the progress of a worm as it spreads
through network
• Left is early in spread
• Right is later on

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-74

A

C

B

E

D

Other Examples

• Credit card companies alert customers when fraud is believed to have
occurred
• Configured to send email or SMS message to consumer

• IDIP protocol coordinates IDSes to respond to attack
• If an IDS detects attack over a network, notifies other IDSes on co-operative

firewalls; they can then reject messages from the source

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-75

Organization of an IDS

• Monitoring network traffic for intrusions
• NSM system

• Combining host and network monitoring
• DIDS

• Making the agents autonomous
• AAFID system

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-76

Monitoring Networks: NSM

• Develops profile of expected usage of network, compares current
usage
• Has 3-D matrix for data
• Axes are source, destination, service
• Each connection has unique connection ID
• Contents are number of packets sent over that connection for a period of

time, and sum of data
• NSM generates expected connection data
• Expected data masks data in matrix, and anything left over is reported as an

anomaly

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-77

Problem

• Too much data!
• Solution: arrange data

hierarchically into groups
• Construct by folding axes of matrix

• Analyst could expand any group
flagged as anomalous

(S1, D1, SMTP)
(S1, D1, FTP)

…

(S1, D1)

(S1, D2, SMTP)
(S1, D2, FTP)

…

(S1, D2)

S1

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-78

Signatures

• Analyst can write rule to look for specific occurrences in matrix
• Repeated telnet connections lasting only as long as set-up indicates failed

login attempt
• Analyst can write rules to match against network traffic
• Used to look for excessive logins, attempt to communicate with non-existent

host, single host communicating with 15 or more hosts

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-79

Other

• Graphical interface independent of the NSM matrix analyzer
• Detected many attacks
• But false positives too

• Still in use in some places
• Signatures have changed, of course

• Also demonstrated intrusion detection on network is feasible
• Did no content analysis, so would work even with encrypted connections

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-80

Combining Sources: DIDS

• Neither network-based nor host-based monitoring sufficient to detect
some attacks
• Attacker tries to telnet into system several times using different account

names: network-based IDS detects this, but not host-based monitor
• Attacker tries to log into system using an account without password: host-

based IDS detects this, but not network-based monitor

• DIDS uses agents on hosts being monitored, and a network monitor
• DIDS director uses expert system to analyze data

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-81

Attackers Moving in Network

• Intruder breaks into system A as alice
• Intruder goes from A to system B, and breaks into B’s account bob
• Host-based mechanisms cannot correlate these
• DIDS director could see bob logged in over alice’s connection; expert

system infers they are the same user
• Assigns network identification number NID to this user

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-82

Handling Distributed Data

• Agent analyzes logs to extract entries of interest
• Agent uses signatures to look for attacks

• Summaries sent to director
• Other events forwarded directly to director

• DIDS model has agents report:
• Events (information in log entries)
• Action, domain

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-83

Actions and Domains

• Subjects perform actions
• session_start, session_end, read, write, execute, terminate, create, delete,

move, change_rights, change_user_id

• Domains characterize objects
• tagged, authentication, audit, network, system, sys_info, user_info, utility,

owned, not_owned
• Objects put into highest domain to which it belongs

• Tagged, authenticated file is in domain tagged
• Unowned network object is in domain network

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-84

More on Agent Actions

• Entities can be subjects in one view, objects in another
• Process: subject when changes protection mode of object, object when

process is terminated
• Table determines which events sent to DIDS director
• Based on actions, domains associated with event
• All NIDS events sent over so director can track view of system

• Action is session_start or execute; domain is network

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-85

Layers of Expert System Model

1. Log records

2. Events (relevant information from log entries)

3. Subject capturing all events associated with a user; NID assigned to
this subject

4. Contextual information such as time, proximity to other events
• Sequence of commands to show who is using the system
• Series of failed logins follow

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-86

Top Layers

5. Network threats (combination of events in context)
• Abuse (change to protection state)
• Misuse (violates policy, does not change state)
• Suspicious act (does not violate policy, but of interest)

6. Score (represents security state of network)
• Derived from previous layer and from scores associated with rules

• Analyst can adjust these scores as needed
• A convenience for user

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-87

Autonomous Agents: AAFID

• Distribute director among agents
• Autonomous agent is process that can act independently of the

system of which it is part
• Autonomous agent performs one particular monitoring function
• Has its own internal model
• Communicates with other agents
• Agents jointly decide if these constitute a reportable intrusion

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-88

Advantages

• No single point of failure
• All agents can act as director
• In effect, director distributed over all agents

• Compromise of one agent does not affect others
• Agent monitors one resource
• Small and simple

• Agents can migrate if needed
• Approach appears to be scalable to large networks

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-89

Disadvantages

• Communications overhead higher, more scattered than for single
director
• Securing these can be very hard and expensive

• As agent monitors one resource, need many agents to monitor
multiple resources
• Distributed computation involved in detecting intrusions
• This computation also must be secured

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-90

Example: AAFID

• Host has set of agents and transceiver
• Transceiver controls agent execution, collates information, forwards it to

monitor (on local or remote system)

• Filters provide access to monitored resources
• Use this approach to avoid duplication of work and system dependence
• Agents subscribe to filters by specifying records needed
• Multiple agents may subscribe to single filter

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-91

Transceivers and Monitors

• Transceivers collect data from agents
• Forward it to other agents or monitors
• Can terminate, start agents on local system

• Example: System begins to accept TCP connections, so transceiver turns on agent to
monitor SMTP

• Monitors accept data from transceivers
• Can communicate with transceivers, other monitors

• Send commands to transceiver
• Perform high level correlation for multiple hosts
• If multiple monitors interact with transceiver, AAFID must ensure transceiver

receives consistent commands

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-92

Other

• User interface interacts with monitors
• Could be graphical or textual

• Prototype implemented in PERL for Linux and Solaris
• Proof of concept
• Performance loss acceptable

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-93

Key Points

• Intrusion detection is a form of auditing
• Anomaly detection looks for unexpected events
• Misuse detection looks for what is known to be bad
• Specification-based detection looks for what is known not to be good
• Intrusion detection is used for hoist-based monitoring, network

monitoring, or combination of these

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 26-94

