

Network Security

Chapter 28

Outline

- Introduction to the Drib
- Policy Development
- Network Organization
- Availability
- Anticipating Attacks

Introduction

- Goal: apply concepts, principles, mechanisms discussed earlier to a particular situation
 - Focus here is on securing network
 - Begin with description of company
 - Proceed to define policy
 - Show how policy drives organization

The Drib

- Builds and sells dribbles
- Developing network infrastructure allowing it to connect to Internet to provide mail, web presence for consumers, suppliers, other partners

Specific Problems

- Internet presence required
 - E-commerce, suppliers, partners
 - Drib developers need access
 - External users cannot access development sites
- Hostile takeover by competitor in progress
 - Lawyers, corporate officers need access to development data
 - Developers cannot have access to some corporate data

Goals of Security Policy

- Data related to company plans to be kept secret
 - Corporate data such as what new products are being developed is known on a need-to-know basis only
- When customer supplies data to buy a dribble, only folks who fill the order can access that information
 - Company analysts may obtain statistics for planning
- Lawyers, company officials must approve release of any sensitive data

Policy Development

- Policy: minimize threat of data being leaked to unauthorized entities
- Environment: 3 internal organizations
 - Customer Service Group (CSG)
 - Maintains customer data
 - Interface between clients, other internal organizations
 - Development Group (DG)
 - Develops, modifies, maintains products
 - Relies on CSG for customer feedback
 - Corporate Group (CG)
 - Handles patents, lawsuits, etc.

Nature of Information Flow

- Public
 - Specs of current products, marketing literature
- CG, DG share info for planning purposes
 - Problems, patent applications, budgets, etc.
- Private
 - CSG: customer info like credit card numbers
 - CG: corporate info protected by attorney privilege
 - DG: plans, prototypes for new products to determine if production is feasible before proposing them to CG

Data Classes

- Public data (PD): available to all
- Development data for existing products (DDEP): available to CG, DG only
- Development data for future products (DDFP): available to DG only
- Corporate data (CpD): available to CG only
- Customer data (CuD): available to CSG only

Data Class Changes

- DDFP → DDEP: as products implemented
- DDEP → PD: when deemed advantageous to publicize some development details
 - For marketing purposes, for example
- CpD → PD: as privileged info becomes public through mergers, lawsiut filings, etc.
- Note: no provision for revealing CuD directly
 - This protects privacy of Drib's customers

User Classes

- Outsiders (O): members of public
 - Access to public data
 - Can also order, download drivers, send email to company
- Developers (D): access to DDEP, DDFP
 - Cannot alter development data for existing products
- Corporate executives (C): access to CD
 - Can read DDEP, DDFP, CuD but not alter them
 - Sometimes can make sensitive data public
- Employees (E): access to CuD only

Access Control Matrix for Policy

	0	D	С	Е
PD	r	r	r	r
DDEP		r	r	
DDFP		r, w	r	
СрD			r, w	
CuD	W		r	r, w

r is read right, w is write right

Type of Policy

- Mandatory policy
 - Members of O, D, C, E cannot change permissions to allow members of another user class to access data
- Discretionary component
 - Within each class, individuals may have control over access to files they own
 - View this as an issue internal to each group and not of concern at corporate policy level
 - At corporate level, discretionary component is "allow always"

Reclassification of Data

- Who must agree for each?
 - C, D must agree for DDFP → DDEP
 - C, E must agree for DDEP \rightarrow PD
 - C can do CpD \rightarrow PD
 - But two members of C must agree to this
- Separation of privilege met
 - At least two different people must agree to the reclassification
 - When appropriate, the two must come from different user classes

Availability

- Drib world-wide multinational corp
 - Does business on all continents
- Imperative anyone be able to contact Drib at any time
 - Drib places very high emphasis on customer service
 - Requirement: Drib's systems be available 99% of the time
 - 1% allowed for planned maintenance, unexpected downtime

Consistency Check: Goal 1

- Goal 1: keep sensitive info confidential
 - Developers
 - Need to read DDEP, DDFP, and to alter DDFP
 - No need to access CpD, CuD as don't deal with customers or decide which products to market
 - Corporate executives
 - Need to read, alter CpD, and read DDEP
- This matches access permissions

Consistency Check: Goal 2

- Goal 2: only employees who handle purchases can access customer data, and only they and customer can alter it
 - Outsiders
 - Need to alter CuD, do not need to read it
 - Customer support
 - Need to read, alter CuD
 - This matches access permissions

Consistency Check: Goal 3

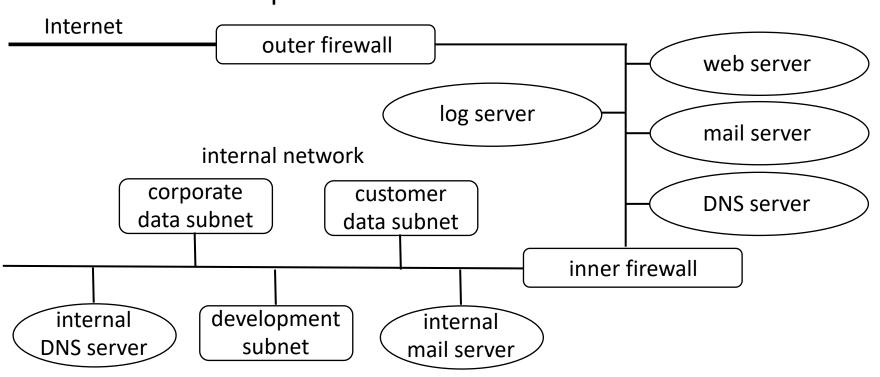
- Goal 3: releasing sensitive info requires corporate approval
 - Corporate executives
 - Must approve any reclassification
 - No-one can write to PD, except through reclassification
- This matches reclassification constraints

Consistency Check: Transitive Closure

	0	D	С	Ε
PD	r	r	r	r
DDEP		r	r	
DDFP		r, w	r	
СрD		W	r, w	W
CuD	W		r	r, w

r is read right, w is write right

Interpretation


- From transitive closure:
 - Only way for data to flow into PD is by reclassification
 - Key point of trust: members of C
 - By rules for moving data out of DDEP, DDFP, someone other than member of C must also approve
 - Satisfies separation of privilege
- Conclusion: policy is consistent

Network Organization

Partition network into several subnets

Guards between them prevent leaks

DMZ

DMZ

- Portion of network separating purely internal network from external network
 - Allows control of accesses to some trusted systems inside the corporate perimeter
 - If DMZ systems breached, internal systems still safe
 - Can perform different types of checks at boundary of internal, DMZ networks and DMZ, Internet network

Firewalls

- Host that mediates access to a network
 - Allows, disallows accesses based on configuration and type of access
- Example: block botnet agents
 - Agent allows external users to control systems
 - Requires commands to be sent to a particular port (say, 25345)
 - Firewall can block all traffic to or from that port
 - So even if agent installed, outsiders can't use it
- Drib uses proxy firewalls

Analysis of Drib Network

- Security policy: "public" entities on outside but may need to access corporate resources
 - Those resources provided in DMZ
- No internal system communicates directly with systems on Internet
 - Restricts flow of data to "public"
 - For data to flow out, must pass through DMZ
 - Firewalls, DMZ are "pump"

Implementation

- Conceal all internal addresses
 - Make them all on 10., 172., or 192.168. subnets
 - Inner firewall uses NAT to map addresses to firewall's address
 - Give each host a non-private IP address
 - Inner firewall never allows those addresses to leave internal network
- Easy as all services are proxied by outer firewall
 - Email is a bit tricky ...

Email

- Problem: DMZ mail server must know address in order to send mail to internal destination
 - Could simply be distinguished address that causes inner firewall to forward mail to internal mail server
- Internal mail server needs to know DMZ mail server address
 - Same comment

DMZ Web Server

- In DMZ so external customers can access it without going onto internal network
 - If data needs to be sent to internal network (such as for an order), transmission is made separately and not as part of transaction

Application of Principles

- Least privilege
 - Containment of internal addresses
- Complete mediation
 - Inner firewall mediates every access to DMZ
- Separation of privilege
 - Going to Internet must pass through inner, outer firewalls and DMZ servers

Application of Principles

- Least common mechanism
 - Inner, outer firewalls distinct; DMZ servers separate from inner servers
 - DMZ DNS violates this principle
 - If it fails, multiple systems affected
 - Inner, outer firewall addresses fixed, so they do not depend on DMZ DNS

Outer Firewall Configuration

- Goals: restrict public access to corporate network; restrict corporate access to Internet
- Required: public needs to send, receive email; access web services
 - So outer firewall allows SMTP, HTTP, HTTPS
 - Outer firewall uses its address for those of mail, web servers

Details

- Proxy firewall
- SMTP: mail assembled on firewall
 - Scanned for malicious logic; dropped if found
 - Otherwise forwarded to DMZ mail server
- HTTP, HTTPS: messages checked
 - Checked for suspicious components like very long lines; dropped if found
 - Otherwise, forwarded to DMZ web server
- Note: web, mail servers different systems
 - Neither same as firewall

Attack Analysis

- Three points of entry for attackers:
 - Web server ports: proxy checks for invalid, illegal HTTP, HTTPS requests, rejects them
 - Mail server port: proxy checks email for invalid, illegal SMTP requests, rejects them
 - Bypass low-level firewall checks by exploiting vulnerabilities in software, hardware
 - Firewall designed to be as simple as possible
 - Defense in depth

Defense in Depth

- Form of separation of privilege
- To attack system in DMZ by bypassing firewall checks, attacker must know internal addresses
 - Then can try to piggyback unauthorized messages onto authorized packets
- But the rewriting of DMZ addresses prevents this

Inner Firewall Configuration

- Goals: restrict access to corporate internal network
- Rule: block all traffic except for that specifically authorized to enter
 - Principle of fail-safe defaults
- Example: Drib uses NFS on some internal systems
 - Outer firewall disallows NFS packets crossing
 - Inner firewall disallows NFS packets crossing, too
 - DMZ does not need access to this information (least privilege)
 - If inner firewall fails, outer one will stop leaks, and vice versa (separation of privilege)

More Configuration

- Internal folks require email
 - SMTP proxy required
- Administrators for DMZ need login access
 - So, allow SSH through provided:
 - Destination is a DMZ server
 - Originates at specific internal host (administrative host)
 - Violates least privilege, but ameliorated by above
- DMZ DNS needs to know address of administrative host
 - More on this later

DMZ

- Look at servers separately:
 - Web server: handles web requests with Internet
 - May have to send information to internal network
 - Email server: handles email with Internet
 - Must forward email to internal mail server
 - DNS
 - Used to provide addresses for systems DMZ servers talk to
 - Log server
 - DMZ systems log info here

DMZ Mail Server

- Performs address, content checking on all email
- Goal is to hide internal information from outside, but be transparent to inside
- Receives email from Internet, forwards it to internal network
- Receives email from internal network, forwards it to Internet

Mail from Internet

- Reassemble messages into header, letter, attachments as files
- Scan header, letter, attachments looking for "bad" content
 - "Bad" = known malicious logic
 - If none, scan original letter (including attachments and header) for violation of SMTP spec
- Scan recipient address lines
 - Address rewritten to direct mail to internal mail server
 - Forward letter there

Mail to Internet

- Like mail from Internet with 2 changes:
 - Step 2: also scan for sensitive data (like proprietary markings or content, etc.)
 - Step 3: changed to rewrite all header lines containing host names, email addresses, and IP addresses of internal network
 - All are replaced by "drib.org" or IP address of external firewall

Administrative Support

- Runs SSH server
 - Configured to accept connections only from trusted administrative host in internal network
 - All public keys for that host fixed; no negotiation to obtain those keys allowed
 - Allows administrators to configure, maintain DMZ mail host remotely while minimizing exposure of host to compromise

DMZ Web Server

- Accepts, services requests from Internet
- Never contacts servers, information sources in internal network
- CGI scripts checked for potential attacks
 - Hardened to prevent attacks from succeeding
 - Server itself contains no confidential data
- Server is www.drib.org and uses IP address of outer firewall when it must supply one

Updating DMZ Web Server

- Clone of web server kept on internal network
 - Called "WWW-clone"
- All updates done to WWW-clone
 - Periodically admins copy contents of WWW-clone to DMZ web server
- DMZ web server runs SSH server
 - Used to do updates as well as maintenance, configuration
 - Secured like that of DMZ mail server

Internet Ordering

- Orders for Drib merchandise from Internet
 - Customer enters data, which is saved to file
 - After user confirms order, web server checks format, content of file and then uses public key of system on internal customer subnet to encipher it
 - This file is placed in a spool area not accessible to web server program
 - Original file deleted
 - Periodically, internal trusted administrative host uploads these files, and forwards them to internal customer subnet system

Analysis

- If attacker breaks into web server, cannot get order information
 - There is a slight window where the information of customers still on system can be obtained
- Attacker can get enciphered files, public key used to encipher them
 - Use of public key cryptography means it is computationally infeasible for attacker to determine private key from public key

DMZ DNS Server

- Supplies DNS information for some hosts to DMZ:
 - DMZ mail, web, log hosts
 - Internal trusted administrative host
 - Inner firewall
 - Outer firewall
- Note: Internal server addresses not present
 - Inner firewall can get them, so DMZ hosts do not need them

DMZ Log Server

- DMZ systems all log information
 - Useful in case of problems, attempted compromise
- Problem: attacker will delete or alter them if successful
 - So log them off-line to this server
- Log server saves logs to file, also to write-once media
 - Latter just in case log server compromised
- Runs SSH server
 - Constrained in same way server on DMZ mail server is

Summary

- Each server knows only what is needed to do its task
 - Compromise will restrict flow of information but not reveal info on internal network
- Operating systems and software:
 - All unnecessary features, servers disabled
 - Better: create custom systems
- Proxies prevent direct connection to systems
 - For all services except SSH from internal network to DMZ, which is itself constrained by source, destination

Internal Network

- Goal: guard against unauthorized access to information
 - "read" means fetching file, "write" means depositing file
- For now, ignore email, updating of DMZ web server, internal trusted administrative host
- Internal network organized into 3 subnets, each corresponding to Drib group
 - Firewalls control access to subnets

Internal Mail Server

- Can communicate with hosts on subnets
- Subnet may have mail server
 - Internal DNS need only know subnet mail server's address
- Subnet may allow mail to go directly to destination host
 - Internal DNS needs to know addresses of all destination hosts
- Either satisfies policy

WWW-clone

- Provides staging area for web updates
- All internal firewalls allow access to this
 - WWW-clone controls who can put and get what files and where they can be put
- Synchronized with web pages on server
 - Done via internal trusted administrative host
- Used as testbed for changes in pages
 - Allows corporate review before anything goes public
 - If DMZ web server trashed or compromised, all web pages can be restored quickly

Trusted Administrative Host

- Access tightly controlled
 - Only system administrators authorized to administer DMZ systems have access
- All connections to DMZ through inner firewall must use this host
 - Exceptions: internal mail server, possibly DNS
- All connections use SSH
 - DMZ SSH servers accept connections from this host only

Analysis

- DMZ servers never communicate with internal servers
 - All communications done via inner firewall
- Only client to DMZ that can come from internal network is SSH client from trusted administrative host
 - Authenticity established by public key authentication
- Only data non-administrative folks can alter are web pages
 - Even there, they do not access DMZ

Analysis

- Only data from DMZ is customer orders and email
 - Customer orders already checked for potential errors, enciphered, and transferred in such a way that it cannot be executed
 - Email thoroughly checked before it is sent to internal mail server

Wireless Networks

- First one is for guests who need access to Internet and are not authorized to access Drib data or resources
 - Access point bypasses firewalls in internal subnets, connecting directly to the inner firewall via a virtual private network (VPN)
- Second is for Drib employees
 - Three subnets, one for each of internal subnets
 - Each access point connected to the subnet's firewall via a VPN

Mobile Devices

- Personal devices (cell phones, laptops, etc.) can connect to guest wireless network but not the other wireless networks
- Drib-controlled mobile devices can connect to the Drib wireless network
 - All software on them installed and maintained by Drib administrators
 - "Internal" mobile devices may not leave the physical premises
 - "External" mobile devices can, but any network connection is tunneled to the outer firewall, from there to the inner firewall, and then to the internal VPN server

More About External Mobile Devices

- All software on them installed and maintained by Drib administrators
- Drib employees can take these on trips
 - They cannot connect to any site disallowed by Drib policy as enforced by the inner and outer firewalls
- External mobile devices share public key pair with VPN server
 - Generated randomly, and reset whenever a laptop is returned or checked out
 - On return, Drib administrators extract log files, look for indications that the private key of the device, or public key of the VPN server, was copied
 - If so, investigate; concern is that these may be installed on another mobile device not under the Drib's control

Cloud

- Properties of interest to the Drib
 - Drib can obtain resources automatically (no manual intervention of cloud administrators needed)
 - Resources allocated as needed, deallocated when not needed
 - Network accessibility means it can be used remotely
- Types of cloud services
 - Software as a service: cloud provides software, client provides data
 - Drib uses its proprietary software, and don't want it visible to others on cloud or used by others
 - Platform as a service: client develops software using resources on the cloud
 - Same problems for the Drib as a software-as-a-service cloud

Infrastructure-as-a-Service Cloud

- Supports client execution of software on the cloud
 - Drib rejected this for reasons above
- Provides storage: upload unencrypted data, cloud encrypts and stores it
 - Drib rejected idea of having cloud encrypt its data as data is private to the company
- Provides storage: upload encrypted data, cloud stores it
 - Drib considered this seriously, to minimize need for (and hence cost of) local storage; but storage is cheap and Drib did not have enough data to warrant moving to cloud
 - Drib also thought of backups, but if provider has failures or cut off Drib's access, backups become unavailable; so Drib opted to handle their backups

Assumptions

- Software, hardware does what it is supposed to
 - If software compromised, or hardware does not work right, defensive mechanisms fail
 - Reason separation of privilege is critical
 - If component A fails, other components provide additional defenses
- Assurance is vital!

Availability

- Access over Internet must be unimpeded
 - Context: flooding attacks, in which attackers try to overwhelm system resources
- Example: SYN flood
 - Problem: server cannot distinguish legitimate handshake from one that is part of this attack
 - Only difference is whether third part of TCP handshake is sent
 - Flood can overwhelm communication medium
 - Flood can overwhelm resources on our system
- Drib uses routers and endpoint mechanisms

Intermediate Hosts

- Use routers to divert, eliminate illegitimate traffic
 - Goal: only legitimate traffic reaches firewall
 - Example: Cisco routers try to establish connection with source (TCP intercept mode)
 - On success, router does same with intended destination, merges the two
 - On failure, short time-out protects router resources and target never sees flood

Endpoint Hosts

- Control how TCP state is stored
 - When SYN received, entry in queue of pending connections created
 - Remains until an ACK received or time-out
 - In first case, entry moved to different queue
 - In second case, entry made available for next SYN
 - In SYN flood, queue is always full
 - So, assure legitimate connections space in queue to some level of probability
- Drib uses both SYN cookies and adaptive time-outs

Anticipating Attacks

- Drib realizes compromise may come through unanticipated means
 - Plans in place to handle this
- Extensive logging
 - DMZ log server does intrusion detection on logs

Against Outer Firewall

- Unsuccessful attacks
 - Logged, then ignored
 - Security folks use these to justify budget, train new personnel
- Successful attack against SMTP proxy
 - Proxy will start non-standard programs
 - Anomaly detection component of IDS on log server will report unusual behavior
 - Security officers monitor this around the clock

In the DMZ

- Very interested in attacks, successful or not
- Means someone who has obtained access to DMZ launched attack
 - Some trusted administrator shouldn't be trusted
 - Some server on outer firewall is compromised
 - Software on DMZ system not restrictive enough
- IDS system on DMZ log server looks for misuse (known attacks) to detect this

Ignoring Failed Attacks

- Sounds dangerous
 - Successful attacker probably tried and failed earlier
- Drib: "So what?"
 - Not sufficient personnel to handle all alerts
 - Focus is on what Drib cares most about
 - Successful attacks, or failed attacks where there should be none

Checking the IDS

- IDS allows Drib to add attack signatures and tune parameters to control reporting of events
 - Experimented to find good settings
 - Verify this every month by doing manual checks for two 1-hour periods (chosen at random) and comparing with reported events

Key Points

- Begin with policy
- Craft network architecture and security measures from it
- Assume failure will occur
 - Try to minimize it
 - Defend in depth
 - Have plan to handle failures