

User Security

Chapter 30

Outline

- Policy
- Access
- Files, devices
- Processes
- Electronic communications

Policy

- Assume user is on Drib development network
 - Policy usually highly informal and in the mind of the user
- Our users' policy:
 - U1 Only users have access to their accounts
 - U2 No other user can read, change file without owner's permission
 - U3 Users shall protect integrity, confidentiality, availability of their files
 - U4 Users shall be aware of all commands that they enter or that are entered on their behalf

Access

- U1: users must protect access to their accounts
 - Consider points of entry to accounts
- Passwords
- Login procedure
- Leaving system

Passwords

- Theory: writing down passwords is BAD!
- Reality: choosing passwords randomly makes them hard to remember
 - If you need passwords for many systems, assigning random passwords and not writing something down won't work
- Problem: Someone can read the written password
- Reality: degree of danger depends on environment, how you record password

Isolated System

- System used to create boot DVD
 - In locked room; system can only be accessed from within that room
 - No networks, modems, etc.
 - Only authorized users have keys
- Write password on whiteboard in room
 - Only people who will see it are authorized to see it

Multiple Systems

- Non-infrastructure systems: have users use same password
 - Done via centralized user database shared by all non-infrastructure systems
- Infrastructure systems: users may have multiple accounts on single system, or may not use centralized database
 - Write down transformations of passwords

Infrastructure Passwords

- Drib devnet has 10 infrastructure systems, 2 lead admins (Anne, Paul)
 - Both require privileged access to all systems
 - root, Administrator passwords chosen randomly
- How to remember? Memorize an algorithm!
 - Anne: "change case of 3rd letter, delete last char"
 - Paul: "add 2 mod 10 to first digit, delete first letter"
- Each gets printout of transformed password

Papers for Anne and Paul

Actual password

IbhEpZqYre<7RCPI
t/?rctp*e(V(R9v(tY8t#'M!8J,8?gc
Ym=.P.sIwW*u2F!j
P8%KJ'TiGx@9P+j.
IOKFsnNS=m:1Xuqe
kaE6el#:?[ODeSDJ
I.Jc&G/+zXXd4(Au
@pa/63yb*:vaR2UD
8dpq:L9;'5wW<RY7</pre>

Anne's version capitalize 2nd letter, delete last letter

IbHEpZqYre<7RCPI\$
t/?rCtp*e(V(R9v-p)
(tY8T#'M!8J,8?gc%
Ym=.p.sIwW*u2F!j(
P8%Kj'TiGx@9P+j.r
IOkFsnNS=m:1Xuqe,
kae6el#:?[ODeSDJ;
I.JC&G/+zXXd4(Au*
@pa/63Yb*:vaR2UD=
8dpQ:L9;'5wW<RY7+</pre>

Paul's version delete first letter, add 2 mod 10 to first digit

QIbhEpZqYre<5RCPI Rt/?rctp*e(V(R7v-(mtY8t#'M!6J,8?gc sYm=.P.sIwW*u0F!j aP6%KJ'TiGx@9P+j. TIOKFsnNS=m:9Xuqe nkaE4el#:?[ODeSDJ fI.Jc&G/+zXXd2(Au @Vpa/43yb*:vaR2UD g6dpq:L9;'5wW<RY7

Non-Infrastructure Passwords

- Users can pick
 - Proactive password checker vets proposed password
- Recommended method: passwords based on obscure poems or sayings
 - Example: "ttrsvmbi&see+deet22" from first letter of second, fourth words of each line, then last letter of third, fifth word of each line, various non-alphanumerics in there, and age (22) at the end:

He took his vorpal sword in hand:

Long time the manxome foe he sought—

So rested he by the Tumtum tree,

And stood awhile in thought.

Third verse of Jabberwocky, from Alice in Wonderland

Two-Factor Authentication

- Every system has a fingerprint scanner
- To log in, user supplies a password and a scan of their fingerprint
 - Both always required before any indication of success or failure

Login Procedure

- User obtains a prompt at which to enter name
- Then comes password prompt
- Attacks:
 - Lack of mutual authentication
 - Reading password as it is entered
 - Untrustworthy trusted hosts

Lack of Mutual Authentication

- How does user know she is interacting with legitimate login procedure?
 - Attacker can have Trojan horse emulate login procedure and record name, password, then print error message and spawn real login
- Simple approach: if name, password entered incorrectly, prompt for retry differed
 - In UNIX V6, it said "Name" rather than "login"

More Complicated

- Attack program feeds name, password to legitimate login program on behalf of user, so user logged in without realizing attack program is an intermediary
- Approach: trusted path
 - Example: to log in, user hits specified sequence of keys; this traps to kernel, which then performs login procedure; key is that no application program can disable this feature, or intercept or modify data sent along this path

Reading Password As Entered

- Attacker remembers it, uses it later
 - Sometimes called "shoulder surfing"
 - Can also read chars from kernel tables, passive wiretapping, etc.
- Approach: encipher all network traffic to defeat passive wiretapping
 - Drib: firewalls block traffic to and from Internet, internal hosts trusted not to capture network traffic
 - Elsewhere: use SSH, SSL, TLS to provide encrypted tunnels for other protocols or to provide encrypted login facilities

Noticing Previous Logins

- Many systems print time, location (terminal) of last login
 - If either is wrong, probably someone has unauthorized access to account; needs to be investigated
- Requires user to be somewhat alert during login

Untrustworthy Trusted Hosts

- Idea: if two hosts under same administrative control, each can rely on authentication from other
- Drib does this for backups
 - Backup system logs into workstation as user "backup"
 - If password required, administrator password needs to be on backup system; considered unacceptable risk
 - Solution: all systems trust backup server
- Requires accurate identification of remote host
 - Usually IP address
 - Drib uses challenge-response based on cryptography

Analysis

- Isolated system meets U1
 - Only authorized users can enter room, read password, access system
- Infrastructure systems meet U1
 - Actual passwords not written down
 - Anne, Paul don't write down algorithms
 - Stealing papers does not reveal passwords
 - Second factor (fingerprint) adds assurance
- Non-infrastructure systems meet U1
 - Proactive password checker rejects easy to guess passwords
 - Even if password is compromised, biometric (fingerprint) prevents authentication

Analysis

- Mutual authentication meets U1
 - Trusted path used when available; other times, system prints time, place of last login
- Protecting passwords meets U1
 - Unencrypted passwords only placed on trusted network; also, system prints time, place of last login
- Trusted hosts meets U1
 - Based on cryptography, not IP addresses; number of trusted systems minimal (backup system only)

Leaving the System

- People not authorized to use systems have access to rooms where systems are
 - Custodians, maintenance workers, etc.
- Once authenticated, users must control access to their session until it ends
 - What to do when one goes to bathroom?
- Procedures used here

Walking Away

- Procedures require user to lock monitor
 - Example: X window system: xlock
 - Only user, system administrator can unlock monitor
 - Note: be sure locking program does not have master override
 - Example: one version of lock program allowed anyone to enter "Hasta la vista!" to unlock monitor

Modems

- Terminates sessions when remote user hangs up
 - Problem: this is configurable; may have to set physical switch
 - If not done, next to call in connects to previous user's session
 - Problem: older telephone systems may mishandle propagation of call termination
 - New connection arrives at telco switch and is forwarded before termination signal arrives at modem
 - Same effect as above
- Drib: no modems connected to development systems

Analysis

- Procedures about walking away meet U1
 - Screen locking programs required, as is locking doors when leaving office;
 failure to do so involves disciplinary action
 - If screen locking password forgotten, system administrators can remotely access system and terminate program
- Procedures about modems meet U1
 - No modems allowed; hooking one up means getting fired (or similar nasty action)

Files and Devices

- File protection allows users to refine protection afforded their data
 - Policy component U2 requires this
- Users manipulate system through devices, so their protection affects user protection as well
 - Policy components U1, U4 require this

Files

- Often different ways to do one thing
 - UNIX systems: Pete wants to allow Deb to read file design, but no-one else to do so
 - If Pete, Deb have their own group, make file owned by that group and group readable but not readable by others
 - If Deb only member of a group, Pete can give group ownership of file to Deb and set permissions appropriately
 - Pete can set permissions of containing directory to allow himself, Deb's group search permission
 - Windows 10: same problem
 - Use ACL with entries for Pete, Deb only:

```
{ ( Pete, full control ), ( Deb, read ) }
```


File Permission on Creation

- Use template to set or modify permissions when file created
 - Windows 10: new directory inherits parent's ACL
 - UNIX systems: identify permissions to be denied
 - umask contains permissions to be disabled, so can say "always turn off write permission for everyone but owner when file created"

Group Access

- Provides set of users with same rights
- Advantage: use group as role
 - All folks working on Widget-NG product in group widgetng
 - All files for that product group readable, writable by widgetng
 - Membership changes require adding users to, dropping users from group
 - No changes to file permissions required

Group Access

- Disadvantage: use group as abbreviation for set of users; changes to group may allow unauthorized access or deny authorized access
 - Maria wants Anne, Joan to be able to read movie
 - System administrator puts all in group maj
 - Later: sysadmin needs to create group with Maria, Anne, Joan, and Lorraine
 - Adds Lorraine to group maj
 - Now Lorraine can read movie even though Maria didn't want her to be able to do so

File Deletion

- Is the *name* or the *object* deleted?
- Terms
 - File attribute table: contains information about file
 - File mapping table: contains information allowing OS to access disk blocks belonging to file
 - Direct alias: directory entry naming file
 - Indirect alias: directory entry naming special file containing name of target file
- Each direct alias is alternative name for same file

Rights and Aliases

- Each direct alias can have different permissions
 - Owner must change access modes of each alias in order to control access
- Generally false
 - File attribute table contains access permissions for each file
 - So users can use any alias; rights the same

Deletion

- Removes directory entry of file
 - If no more directory entries, data blocks and table entries released too
 - Note: deleting directory entry does not mean file is deleted!

Example

- Anna on UNIX wants to delete file x, setuid to herself
 - rm x works if no-one else has a direct alias to it
 - Sandra has one, so file not deleted (but Anna's directory entry is deleted)
 - File still is setuid to Anna
- How to do this right:
 - Turn off all permissions on file
 - *Then* delete it
 - Even if others have direct links, they are not the owners and so can't change permissions or access file

Persistence

- Disk blocks of deleted file returned to pool of unused disk blocks
- When reassigned, new process may be able to read previous contents of disk blocks
 - Most systems offer a "wipe" or "cleaning" procedure that overwrites disk blocks with zeros or random bit patterns as part of file deletion
 - Useful when files being deleted contain sensitive data

Direct, Indirect Aliases

- Some commands act differently on these
 - Angie executes command to add permission to file to let Lucy read it
 - If file name direct alias, works
 - If file name indirect alias, does it add permission to the indirect alias or the file itself?
- Semantics of systems, commands on systems differ
 - Example: on Linux systems, when given indirect alias of file, chmod changes permissions of actual file, rm deletes indirect alias

Analysis

- Use of ACLs, umask meet U2
 - Both set to deny permission to"other" and "group" by default; user can add permissions back
- Group access controls meet U2
 - Membership in groups tightly controlled, based on least privilege
- Deletion meets U2
 - Procedures require sensitive files be wiped when deleted

Devices

- Must be protected so user can control commands sent, others cannot see interactions
- Writable devices
- Smart terminals
- Monitors and window systems

Writable Devices

- Restrict access to these as much as possible
- Example: tapes
 - When process begins writing, ACL of device changes to prevent other processes from writing
 - Between mounting of media, process execution, another process can begin writing
 - Moral: write protect all mounted media unless it is to be written to
- Example: terminals
 - Write control sequence to erase screen—send repeatedly

Smart Terminals

- Has built-in mechanism for performing special functions
 - Most important one: block send
 - The sequence of chars initiating block send do not appear on screen
- Write Trojan horse to send command from user's terminal
- Next slide: example in mail message sent to Craig
 - When Craig reads letter, his startup file becomes world writable

Trojan Horse Letter

```
Dear Craig,

Please be careful. Someone may ask you to execute chmod 666 .profile

You shouldn't do it!

Your friend,

Robert

<BLOCK SEND (-2,18), (-2,18)><BLOCK SEND

(-3,0),(3,18)><CLEAR>
```


Why So Dangerous?

- With writable terminal, someone must trick user of that terminal into executing command; both attacker and user must enter commands
- With smart terminal, only attacker need enter command; if user merely reads the wrong thing, the attacker's compromise occurs

Monitors and Window Systems

- Window manager controls what is displayed
 - Input from input devices
 - Clients register with manager, can then receive input, send output through manager
- How does manager determine client to get input?
 - Usually client in whose window input occurs
- Attack: overlay transparent window on screen
 - Now all input goes through this window
 - So attacker sees all input to monitor, including passwords, cryptographic keys

Access Control

- Use ACLs, C-Lists, etc.
- Granularity varies by windowing system
- X window system: host name or token
 - Host name, called xhost method
 - Manager determines host on which client runs
 - Checks ACL to see if host allowed to connect

X Windows Tokens

- Called xauth method
 - X window manager given random number (*magic cookie*)
 - Stored in file ".Xauthority" in user's home directory
 - Any client trying to connect to manager must supply this magic cookie to succeed
 - Local processes run by user can access this file
 - Remote processes require special set-up by user to work

Analysis

- Writable devices meet U1, U4
 - Devnet users have default settings denying all write access to devices except the user
- Smart terminals meet U1, U4
 - Drib does not allow use of smart terminals except on systems where all control sequences (such as BLOCK SEND) are shown as printable chars
- Window managers meet U1, U4
 - Drib uses either xhost or token (xhost by default) on a trusted network, so IP spoofing not an issue

Processes

- Manipulate objects, including files
 - Policy component U3 requires users to be aware of how
- Copying, moving files
- Accidentally overwriting or erasing files
- Encryption, keys, passwords
- Start-up settings
- Limiting privileges
- Malicious logic

Copying Files

- Duplicates contents
- Semantics determines whether attributes duplicated
 - If not, may need to set them to prevent compromise
- Example: Mona Anne copies xyzzy on UNIX system to plugh:

cp xyzzy plugh

- If plugh doesn't exist, created with attributes of xyzzy except any setuid, setgid discarded; contents copied
- If plugh exists, attributes not altered; contents copied

Moving Files

- Semantics determines attributes
- Example: Mona Anne moves xyzzy to /tmp/plugh
 - If both on same file system, attributes unchanged
 - If on different file systems, semantically equivalent to:

```
cp xyzzy /tmp/plugh
rm xyzzy
```

Permissions may change ...

Accidentally Overwriting Files

- Protect users from themselves
- Example: deleting by accident
 - Intends to delete all files ending in ".o"; pattern is "*.o", "*" matching any string
 - Should type rm *.o
 - Instead types rm * .o
 - All files in directory disappear!
- Use modes to protect yourself
 - Give –i option to rm to prevent this

Encryption

- Must trust system
 - Cryptographic keys visible in kernel buffers, swap space, and/or memory
 - Anyone who can alter programs used to encrypt, decrypt can acquire keys and/or contents of encrypted files
- Example: PGP, a public key encryption program
 - Protects private key with an enciphering key ("pass-phrase"), which user supplies to authenticate file
 - If keystroke monitor installed on system, attacker gets pass-phrase, then private key, then message

Saving Passwords

- Some systems allow users to put passwords for programs in files
 - May require file be read-protected but not use encryption
- Example: UNIX ftp clients
 - Users can store account names, host names, passwords in .netrc
 - Kathy did so but ftp ignored it
 - She found file was readable by anyone, meaning her passwords stored in it were now compromised

Start-Up Settings

- When programs start, often take state info, commands from environment or start-up files
 - Order of access affects execution
- Example: UNIX command interpreter sh
 - When it starts, it does the following:
 - Read start-up file /etc/profile
 - Read start-up file .profile in user's home directory
 - Read start-up file named in environment variable ENV
 - Problem: if any of these files can be altered by untrusted user, sh may execute undesirable commands or enter undesirable state on start

Limiting Privileges

- Users should know which of their programs grant privileges to others
 - Also the implications of granting these
- Example: Toni reads email for her boss, Fran
 - Fran knew not to share passwords, so she made a setuid-to-Fran shell that Toni could use
 - Bad idea; gave Toni too much power
 - On Toni's suggestion, Fran began to forward to Toni a copy of every letter
 - Toni no longer needed access to Fran's account

Malicious Logic

- Watch out for search paths
- Example: Paula wants to see John's confidential designs
 - Paula creates a Trojan horse that copies design files to /tmp; calls it *ls*
 - Paula places copies of this in all directories she can write to
 - John changes to one of these directories, executes *ls*
 - John's search path begins with current working directory
 - Paula gets her information

Search Paths

- Search path to locate program to execute
- Search path to locate libraries to be dynamically loaded when program executes
- Search path for configuration files

• ...

Analysis

- Copying, moving files meets U3
 - Procedures are to warn users about potential problems
- Protections against accidental overwriting and erasing meet U3
 - Users' startup files set protective modes on login
- Passwords not being stored unencrypted meets U3
 - In addition to policy, Drib modified programs that accept passwords from disk files to ignore those files

Analysis (con't)

- Publicizing start up procedures of programs meets U3
 - Startup files created when account created have restrictive permissions
- Publicizing dangers of setuid, giving extra privileges meets U3
 - When account created, no setuid/setgid programs
- Default search paths meet U4
 - None include world writable directories; this includes symbol for current working directory

Electronic Communications

- Checking for malicious content at firewall can make mistakes
 - Perfect detectors require solving undecidable problem
 - Users may unintentionally send out material they should not
- Automated e-mail processing
- Failing to check certificates
- Sending unexpected content

Automated E-mail Processing

- Be careful it does not automatically execute commands or programs on behalf of other users
- Example: WannaCry ransomware, embedded in email attachment
 - When user opens attachment, WannaCry executed, and it begins to encrypt files

Failure to Check Certificates

- If certificate invalid or expired, email signed by that certificate may be untrustworthy
 - Mail readers must check that certificates are valid, or enable user to determine whether to trust certificate of questionable validity
- Example: Someone obtained certificates under the name of Microsoft
 - When discovered, issuer immediately revoked both
 - Had anyone obtained ActiveX applets signed by those certificates, would have been trusted

Sending Unexpected Content

- Arises when data sent in one format is viewed in another
- Example: sales director sent sales team chart showing effects of proposed reorganization
 - Spreadsheet also contained confidential information deleted from spreadsheet but still in the file
 - Employees used different system to read file, seeing the spreadsheet data and also the "deleted" date
- Rapid saves often do not delete information, but rearrange pointers so information appears deleted

Analysis

- Automated e-mail processing meets U4
 - All programs configured not to execute attachments, contents of letters
- Certificate handling procedures meet U4
 - Drib enhanced all mail reading programs to validate certificates as far as possible, and display certificates it could not validate so user can decide how to proceed
- Publicizing problems with risk of "deleted" data meets U4
 - Also, progams have "rapid saves" disabled by default

Key Points

- Users have policies, although usually informal ones
- Aspects of system use affect security even at the user level
 - System access issues
 - File and device issues
 - Process management issues
 - Electronic communications issues