

T

H E

 D

Y N A M I C

 D

E B U G G E R

G D B

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of June 2, 2002 10:40 pm Page 1 of 8

The Dynamic Debugger

gdb

Introduction

This handout introduces the basics of using gdb, a very powerful dynamic debugging tool. No-one always writes pro-
grams that execute perfectly every time, and while reading the program source can help fiind bugs, some can only be
discovered by running the program and seeing what happens. That's where a dynamic debugger comes in; it lets you
stop execution during the run and look at variables.

Setting It Up

To use

gdb

, you must compile your program using

gcc

 and give the –g flag:

gcc -ansi -g program.c -o

program

The -g flag tells the compiler to add information for the debugger. To debug your program, simply say:

gdb

program

If you omit

program

, gdb looks for an

a.out

 file.

The rest of this handout contains several sample programs and how to use

gdb

 to find the bugs. I recommend you use
gdb to get used to it; in particular, make extensive use of its help command! Just type

help

to its prompt, and it will tell you what to do. One of the features that I did not show which you will find particularly
useful is the backtrace facility, which shows you what routines have been called and the values of the parameters.

Example 1

Here's a program that is supposed to add 2 to a variable

j

 every time through the for loop:

#include <stdio.h>

main()
{

int i, j = 0;
for(i = 0; i < 100; i++);

j += 2;
printf("The value of j is: %d\n", j);

}

I compile and run it, and it does not work:

% gcc -ansi -g -o sample1 sample1.c
% sample1
The value of j is: 2

Oops! Let's get out

gdb

 and see what happens. In what follows, what I type is in

boldface

, what the computer prints
is in plain face, and my comments are in

italics

.

%

gdb sample1

GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux"...
(gdb)

l

list 10 lines

1 #include <stdio.h>
2

T

H E

 D

Y N A M I C

 D

E B U G G E R

G D B

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of June 2, 2002 10:40 pm Page 2 of 8

3 main()
4 {
5 int i, j = 0;
6 for(i = 0; i < 100; i++);
7 j += 2;
8 printf("The value of j is: %d\n", j);
9 }
(gdb)

b main

put in a breakpoint; the program will stop at main when it
is executed

Breakpoint 1 at 0x8048466: file sample1.c, line 5.
(gdb)

r

run the program

Starting program: /usr/home/bishop/sample1

Breakpoint 1, main () at sample1.c:5
5 int i, j = 0;
(gdb)

n

do the next statement

6 for(i = 0; i < 100; i++);
(gdb) n
7 j += 2;
(gdb)

p i

print i's value

$1 = 100
(gdb)

p j

print j's value

$2 = 0

aha! why is it not 200? It's not getting incremented right,
so let's check the for loop … and sure enough, that's where
the problem is!

(gdb)

q

The program is running. Exit anyway? (y or n)

y

Example 2

Now for a more complex example. Here's a program that's supposed to multiply

s

 by 2 until

s

 is greater than 100:

#include <stdio.h>

main()
{

int i = 1, s;

s = 3;
while(i = 1){

s += s;
if (s > 100)

i = 0;
}

}

I compile and run it, and it hangs; I need to kill it with control-C:

% gcc -ansi -g -o sample2 sample2.c
% sample2
^C

Again, let's use

gdb

 to figure out what happened:

%

gdb sample2

GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.

T

H E

 D

Y N A M I C

 D

E B U G G E R

G D B

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of June 2, 2002 10:40 pm Page 3 of 8

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux"...
(gdb)

l

1 #include <stdio.h>
2
3 main()
4 {
5 int i = 1, s;
6
7 s = 3;
8 while(i = 1){
9 s += s;
10 if (s > 100)
(gdb)

b 9

Breakpoint 1 at 0x804844b: file sample2.c, line 9.
(gdb)

r

Starting program: /usr/export/home/bishop/ECS-40/gdb/sample2

Breakpoint 1, main () at sample2.c:9
9 s += s;
(gdb)

p s

$1 = 3
(gdb)

n

10 if (s > 100)
(gdb)

c

continue the run

Continuing.

Breakpoint 1, main () at sample2.c:9
9 s += s;
(gdb)

p s

$2 = 6

seems to be doubling s okay

(gdb)

c

Continuing.

Breakpoint 1, main () at sample2.c:9
9 s += s;
(gdb)

p s

$3 = 12
I'm tired of always typing "p s" when the program stops, so
I associate commands with that breakpoint

(gdb)

commands 1

Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just "end".

p s
end

(gdb)

c
Continuing.

Breakpoint 1, main () at sample2.c:9
9 s += s;

T H E D Y N A M I C D E B U G G E R G D B E C S 3 0 - A — S P R I N G 2 0 0 2

Version of June 2, 2002 10:40 pm Page 4 of 8

$4 = 24
(gdb) c
Continuing.

Breakpoint 1, main () at sample2.c:9
9 s += s;
$5 = 48
(gdb) c
Continuing.

Breakpoint 1, main () at sample2.c:9
9 s += s;
$6 = 96
(gdb) p i
$7 = 1
(gdb) c
Continuing.

Breakpoint 1, main () at sample2.c:9
9 s += s;
$8 = 192

wait … s is high here. Let's watch the value of i
(gdb) watch i break whenever i changes
Hardware watchpoint 2: i
(gdb) c
Continuing.
Hardware watchpoint 2, i i just changed value

Old value = 1
New value = 0
main () at sample2.c:12
12 }
(gdb) c
Hardware watchpoint 2: i

Old value = 0
New value = 1
main () at sample2.c:9
9 s += s;
(gdb) c
Continuing.

Hardware watchpoint 2, i why does i change -- the "if" is not executed!
Look in the while expression; we used =, not ==

Old value = 1
New value = 0
main () at sample2.c:12
12 }
(gdb) q
The program is running. Exit anyway? (y or n) y

Example 3

This one is a character counter (with apologies to Kernighan and Ritchie, from whose book it was mangled):

T H E D Y N A M I C D E B U G G E R G D B E C S 3 0 - A — S P R I N G 2 0 0 2

Version of June 2, 2002 10:40 pm Page 5 of 8

#include <stdio.h>

main() /* counts digits, white space, others */
{

int c, i, num_digits[10], num_white, num_other;
num_white = num_other = 0;
for(i = 0; i < 10; i++) /* initialize */

num_digits[i] = 0;
while(c = getchar() != EOF){

switch(c){
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
case '8': case '9':

num_digits[c - '0']++;
break;

case ' ': case '\t': case '\n':
num_white++;
break;

default:
num_other++;
break;

}
}
printf("digits =");
for(i = 0; i < 10; i++)

printf(" %d", num_digits[i]);
printf("white space = %d, other = %d\n",

num_white, num_other);
}

Here's a data file for our testing and debugging pleasure:

7 4 88 6 6 3 4 7 87 8 2 34
 5 7 3 21 123q52

I compile and run it on a Sun workstation (not on the Linux workstations in the CSIF), and it hangs:

% gcc -ansi -g -o sample3 sample3.c
% sample3 < sample3.data
^C %
So I run gdb:
% gdb sample3
GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.10.pl1 (sparc-sun-sunos4.1),
Copyright 1993 Free Software Foundation, Inc...
(gdb) l
1 #include <stdio.h>
2
3 main() /* counts digits, white space, others */
4 {
5 int c, i, num_digits[10], num_white, num_other;
6 num_white = num_other = 0;
7 for(i = 0; i <= 10; i++) /* initialize */
8 num_digits[i] = 0;
9 while(c = getchar() != EOF){

T H E D Y N A M I C D E B U G G E R G D B E C S 3 0 - A — S P R I N G 2 0 0 2

Version of June 2, 2002 10:40 pm Page 6 of 8

10 switch(c){
(gdb) b 8
Breakpoint 1 at 0x22f0: file sample3.c, line 8.
(gdb) comm 1
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just "end".
p i
end
(gdb) r
Starting program: /usr/export/home/bishop/ECS-40/gdb/sample3

Breakpoint 1, main () at sample3.c:8
8 num_digits[i] = 0;
$1 = 0
(gdb) s s means to skip to the next statement; if it calls a

function, you'll stop in that function. n means to skip to
the next statement in this function; you skip over any
functions that are called.

7 for(i = 0; i <= 10; i++) /* initialize */
(gdb) n

Breakpoint 1, main () at sample3.c:8
8 num_digits[i] = 0;
$2 = 1
(gdb) cond 1 i>=9 this means to skip breakpoint 1 until i >= 9 is true.
(gdb) c
Continuing.

Breakpoint 1, main () at sample3.c:8
8 num_digits[i] = 0;
$3 = 9
(gdb) c
Continuing.

Breakpoint 1, main () at sample3.c:8
8 num_digits[i] = 0;
$4 = 10 now we should leave the loop
(gdb) c
Continuing.

Breakpoint 1, main () at sample3.c:8
8 num_digits[i] = 0;
$5 = 9 huh? This probably means we're overwriting i -- or our

array has one less element than we think.
(gdb) q
The program is running. Quit anyway (and kill it)? (y or n) y

We make the change, and run it:

% sample3a < sample3.data
digits = 0 0 0 0 0 0 0 0 0 0white space = 0, other = 48

We’re making progress, but are not done yet. Back to gdb!

% gdb sample3
GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.

T H E D Y N A M I C D E B U G G E R G D B E C S 3 0 - A — S P R I N G 2 0 0 2

Version of June 2, 2002 10:40 pm Page 7 of 8

There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.10.pl1 (sparc-sun-sunos4.1),
Copyright 1993 Free Software Foundation, Inc...
(gdb) l
1 #include <stdio.h>
2
3 main() /* counts digits, white space, others */
4 {
5 int c, i, num_digits[10], num_white, num_other;
6 num_white = num_other = 0;
7 for(i = 0; i < 10; i++) /* initialize */
8 num_digits[i] = 0;
9 while(c = getchar() != EOF){
10 switch(c){
(gdb) b 10 since the for loop seems to work, it's probably in the while
Breakpoint 1 at 0x23ac: file sample3.c, line 10.
(gdb) r < sample3.data note I can redirect standard input, output, and error

as if I were in the shell
Starting program: /usr/export/home/bishop/ECS-40/gdb/sample3 < sample3.data

Breakpoint 1, main () at sample3.c:10
10 switch(c){
(gdb) p c
$1 = 1 oops … there's no ^A (character 1) in the file!
(gdb) c
Continuing.

Breakpoint 1, main () at sample3.c:10
10 switch(c){
(gdb) p c
$2 = 1 again! looks like I assign when I should be comparing …
(gdb) quit
The program is running. Quit anyway (and kill it)? (y or n) y

Example 4

Here’s a program that I suspect everyone in this class can relate to. It’s the word listing program of homework 3, done
with a linked list. I compile it and run it, and get a core dump. This is on a FreeBSD system, so the core dump goes
into a file called a.out.core. I now use gdb to find the problem.

> gdb a.out a.out.core
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-unknown-freebsd"...
Core was generated by `a.out'.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /usr/lib/libc.so.4...done.
Reading symbols from /usr/libexec/ld-elf.so.1...done.
#0 0x8048910 in lprint (h=0x0) at ans3.c:182
182 printf("%s\n", h->data);
(gdb) where This prints out the call stack, showing me what

T H E D Y N A M I C D E B U G G E R G D B E C S 3 0 - A — S P R I N G 2 0 0 2

Version of June 2, 2002 10:40 pm Page 8 of 8

 functions were active when the core dump occurred
#0 0x8048910 in lprint (h=0x0) at ans3.c:182
#1 0x804892f in lprint (h=0x804f050) at ans3.c:187
#2 0x804892f in lprint (h=0x804f030) at ans3.c:187
#3 0x804879e in main () at ans3.c:95
#4 0x80485f5 in _start ()

main has called lprint, which called lprint, which
called lprint. The third call to lprint passed a NULL
pointer

(gdb) p h->data try to print what would have been printed
Cannot access memory at address 0x0.
(gdb) p h see what the pointer was
$1 = (struct word *) 0x0
(gdb) l
177 void lprint(struct word *h)
178 {
179 /*
180 * print current contents
181 */
182 printf("%s\n", h->data);
183
184 /*
185 * recurse
186 */
(gdb) up go to the caller of the routine
#1 0x804892f in lprint (h=0x804f050) at ans3.c:187
187 lprint(h->next);
(gdb) p h this prints the pointer value
$2 = (struct word *) 0x804f050
(gdb) p *h this prints the structure pointed to and it’s passing

NULL. The invoked routine should have stopped and not
tried to print. So we’re missing a check.

$3 = {data = 0x804f060 "there", next = 0x0}
(gdb) quit
>

