THE DYNAMIC DEBUGGER GDB ECS 30-A — SPRING 2002

The Dynamic Debugger gdb

I ntroduction

This handout introduces the basics of using gdb, avery powerful dynamic debugging tool. No-one always writes pro-
grams that execute perfectly every time, and while reading the program source can help fiind bugs, some can only be
discovered by running the program and seeing what happens. That's where a dynamic debugger comesin; it lets you
stop execution during the run and look at variables.

Setting It Up
To use gdb, you must compile your program using gcc and give the —g flag:
gcc -ansi -g programc -0 program
The -g flag tells the compiler to add information for the debugger. To debug your program, simply say:
gdb program
If you omit program, gdb looks for an a.out file.

Therest of this handout contains several sample programs and how to use gdb to find the bugs. | recommend you use
gdb to get used to it; in particular, make extensive use of its help command! Just type

hel p

to its prompt, and it will tell you what to do. One of the featuresthat | did not show which you will find particularly
useful is the backtrace facility, which shows you what routines have been called and the values of the parameters.

Example 1

Here's aprogram that is supposed to add 2 to avariablej every time through the for loop:
#i ncl ude <stdi o. h>

mai n()
int i, j =
for(i = 0O;
jo+= 2
printf("The value of | is: %\n", j);

< 100; i++);

NTR

}

| compile and runit, and it does not work:

% gcc -ansi -g -0 sanplel sanplel.c
% sanpl el
The value of j is: 2

Oops! Let's get out gdb and see what happens. Inwhat follows, what | typeisin boldface, what the computer prints
isin plain face, and my comments arein italics.

% gdb sampl el

GNU gdb 5.0rh-5 Red Hat Linux 7.1

Copyri ght 2001 Free Software Foundation, Inc.

GB is free software, covered by the GNU General Public License, and you are
wel cone to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i 386-redhat-I|inux"...

(gdb) | list 10 lines
1 #i ncl ude <stdio. h>
2

Version of June 2, 2002 10:40 pm Page 1 of 8

THE DYNAMIC DEBUGGER GDB ECS 30-A — SPRING 2002

3 mai n()

4 {

5 int i, j =0;

6 for(i = 0; i < 100; i++);

7 jo+=2

8 printf("The value of j is: %\n", j);

9 }

(gdb) b main put in a breakpoint; the programw Il stop at nmain when it

i s executed
Breakpoi nt 1 at 0x8048466: file sanplel.c, line 5.
(gdb) r run the program
Starting program /usr/home/ bi shop/sanpl el

Breakpoint 1, main () at sanmplel.c:5

5 int i, j = 0;

(gdb) n do the next statenent
6 for(i = 0; i < 100; i++);
(gdb) n

7 jo+=2;

(gdb) p i print i's value

$1 = 100

(gdb) p j print j's value

$2 = 0

aha! why is it not 200? It's not getting increnented right,
so let's check the for |oop ...and sure enough, that's where
the problemis

(gdb) q
The programis running. Exit anyway? (y or n) y
Example 2

Now for amore complex example. Here's a program that's supposed to multiply s by 2 until s is greater than 100:
#i ncl ude <stdio. h>

mai n()
{
int i =1, s;
s = 3;
while(i = 1){
S += s;
if (s > 100)
i = 0;
}
}

| compile and runiit, and it hangs; | need to kill it with control-C:

% gcc -ansi -g -0 sanmple2 sample2.c
% sanpl e2

"C

Again, let's use gdb to figure out what happened:

% gdb sanpl e2
G\U gdb 5.0rh-5 Red Hat Linux 7.1
Copyri ght 2001 Free Software Foundation, Inc.

Version of June 2, 2002 10:40 pm Page 2 of 8

THE DYNAMIC DEBUGGER GDB ECS 30-A — SPRING 2002

GDB is free software, covered by the GNU General Public License, and you are
wel come to change it and/or distribute copies of it under certain conditions.
Type "show copying"” to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i 386-redhat-1inux"..

(gdb) |

1 #i ncl ude <stdi o. h>

2

3 mai n()

4 {

5 int i =1, s;

6

7 s = 3;

8 while(i = 1){

9 S += s;

10 if (s > 100)
(gdb) b 9

Breakpoi nt 1 at 0x804844b: file sanple2.c, line 9.
(gdb) r

Starting program /usr/export/hone/bi shop/ ECS- 40/ gdb/ sanpl e2

Breakpoint 1, main () at sanple2.c:9
9 S += S;

(gdb) p s

$1 =3

(gdb) n

10 if (s > 100)

(gdb) c continue the run
Cont i nui ng.

Breakpoint 1, main () at sanple2.c:9
9 S += S;
(gdb) p s
$2 = 6
seens to be doubling s okay
(gdb) c
Cont i nui ng.

Breakpoint 1, main () at sanple2.c:9

9 S += S;

(gdb) p s

$3 = 12
I"'mtired of always typing "p s" when the program stops, so
| associate commands with that breakpoint

(gdb) comands 1

Type commands for when breakpoint 1 is hit, one per line.

End with a |ine saying just "end"

p s
end

(gdb) c
Cont i nui ng.

Breakpoint 1, main () at sanple2.c:9
9 S += S;

Version of June 2, 2002 10:40 pm Page 3 of 8

THE DYNAMIC DEBUGGER GDB ECS 30-A — SPRING 2002

$4 = 24
(gdb) c
Cont i nui ng.

Breakpoint 1, main () at sanple2.c:9
9 S += S;

$5 = 48

(gdb) ¢

Cont i nui ng.

Breakpoint 1, main () at sanple2.c:9
9 S += s;

$6 = 96

(gdb) p i

$7 = 1

(gdb) c

Cont i nui ng.

Breakpoint 1, main () at sanple2.c:9

9 S += s;
$8 = 192
wait ...s is high here. Let's watch the val ue of
(gdb) watch i break whenever i changes
Har dwar e wat chpoi nt 2:
(gdb) c
Cont i nui ng.
Har dwar e wat chpoint 2, i i just changed val ue
ad value =1
New value = 0
main () at sanple2.c: 12
12 }
(gdb) c
Har dwar e wat chpoi nt 2:
ad value =0
New value = 1
main () at sanple2.c:9
9 S += s;
(gdb) c
Cont i nui ng.
Har dwar e wat chpoint 2, i why does i change -- the "if" is not executed
Look in the while expression; we used = not ==
ad value =1
New val ue = 0
main () at sanple2.c: 12
12 }
(gdb) q

The programis running. Exit anyway? (y or n) y

Example 3

Thisoneisacharacter counter (with apologiesto Kernighan and Ritchie, from whose book it was mangled):

Version of June 2, 2002 10:40 pm Page 4 of 8

THE DYNAMIC DEBUGGER GDB ECS 30-A — SPRING 2002

#i ncl ude <stdi o. h>

mai n() /* counts digits, white space, others */
{

int ¢, i, numdigits[10], numwhite, num other

num white = num ot her = 0O;

for(i = 0; i < 10; i++) /[* initialize */

numdigits[i] = O;

while(c = getchar() !'= EOF){
switch(c){
case '0': case '1': case '2': case '3':
case '4': case '5' : case '6': case '7':
case '8': case '9':

numdigits[fc - "0]++;
br eak;
case ' ': case '\t': case '\n':
num whi t e++
br eak;
defaul t:
num ot her ++;
br eak;
}

}
printf("digits =");
for(i = 0; i < 10; i++)
printf(" %", numdigits[i]);
printf("white space = %, other = %\ n",
num whi te, num ot her);

}
Here'sadatafile for our testing and debugging pleasure:

748866 347878234
57 3 21 123952

| compile and run it on a Sun workstation (not on the Linux workstations in the CSIF), and it hangs:

% gcc -ansi -g -0 sanpl e3 sanple3.c
% sanpl e3 < sanpl e3. dat a
"C %
So | run gdb:
% gdb sanpl e3
GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying"” to see the conditions.
There is absolutely no warranty for CGDB; type "show warranty"” for details.
GDB 4.10.pl 1 (sparc-sun-sunos4.1),
Copyright 1993 Free Software Foundation, Inc..

(gdb) |

1 #i ncl ude <stdio. h>

2

3 mai n() /* counts digits, white space, others */
4 {

5 int ¢, i, numdigits[10], numwhite, num other
6 num white = num ot her = 0O;

7 for(i = 0; i <= 10; i++) /[* initialize */
8 numdigits[i] = O;

9 while(c = getchar() !'= EOF){

Version of June 2, 2002 10:40 pm Page 5 of 8

THE DYNAMIC DEBUGGER GDB ECS 30-A — SPRING 2002

10 switch(c){

(gdb) b 8

Breakpoint 1 at 0x22f0: file sanmple3.c, |ine 8.
(gdb) comm 1

Type commands for when breakpoint 1 is hit, one per line.
End with a |ine saying just "end"

p

end

(gdb) r

Starting program /usr/export/hone/bi shop/ ECS- 40/ gdb/ sanpl e3

Breakpoint 1, main () at sanple3.c:8

8 numdigits[i] = O;

$1 =0

(gdb) s s neans to skip to the next statenent; if it calls a
function, you'll stop in that function. n nmeans to skip to

the next statenent in this function; you skip over any
functions that are call ed.

7 for(i = 0; i <= 10; i++) /[* initialize */

(gdb) n

Breakpoint 1, main () at sanple3.c:8

8 numdigits[i] = O;

$2 = 1

(gdb) cond 1 i>=9 this nmeans to skip breakpoint 1 until i >= 9 is true.

(gdb) c

Cont i nui ng.

Breakpoint 1, main () at sanple3.c:8

8 numdigits[i] = O;

$3 = 9

(gdb) c

Cont i nui ng.

Breakpoint 1, main () at sanple3.c:8

8 numdigits[i] = O;

$4 = 10 now we shoul d | eave the | oop

(gdb) c

Cont i nui ng.

Breakpoint 1, main () at sanple3.c:8

8 numdigits[i] = O;

$5 =9 huh? This probably neans we're overwiting i -- or our
array has one | ess el enent than we think.

(gdb) q

The programis running. Quit anyway (and kill it)? (y or n) y

We make the change, and run it:

% sanpl e3a < sanpl e3. data
digits =00000O0O0O0O Owite space = 0, other = 48

We're making progress, but are not done yet. Back to gdb!

% gdb sanpl e3
GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying"” to see the conditions.

Version of June 2, 2002 10:40 pm Page 6 of 8

THE DYNAMIC DEBUGGER GDB ECS 30-A — SPRING 2002

There is absolutely no warranty for CGDB; type "show warranty"” for details.
GDB 4.10.pl 1 (sparc-sun-sunos4.1),
Copyright 1993 Free Software Foundation, Inc..

(gdb) |

1 #i ncl ude <stdio. h>

2

3 mai n() /* counts digits, white space, others */
4 {

5 int ¢, i, numdigits[10], numwhite, num other
6 num white = num ot her = 0O;

7 for(i = 0; i < 10; i++) /[* initialize */
8 numdigits[i] = O;

9 while(c = getchar() !'= EOF){

10 switch(c){

(gdb) b 10 since the for | oop seens to work, it's probably in the while

Breakpoint 1 at 0x23ac: file sanple3.c, line 10.

(gdb) r < sanple3.data note | can redirect standard input, output, and error
as if | were in the shel

Starting program /usr/export/homne/bi shop/ ECS-40/ gdb/ sanpl e3 < sanpl e3. data

Breakpoint 1, main () at sanple3.c:10

10 switch(c){

(gdb) p c

$1 =1 oops ...there's no A (character 1) in the file
(gdb) c

Cont i nui ng.

Breakpoint 1, main () at sanple3.c:10

10 switch(c){

(gdb) p c

$2 = 1 again! |looks like I assign when |I should be comparing ..
(gdb) quit

The programis running. Quit anyway (and kill it)? (y or n) y
Example 4

Here'saprogram that | suspect everyonein this class can relate to. It's the word listing program of homework 3, done
with alinked list. | compileit and runit, and get a core dump. Thisis on aFreeBSD system, so the core dump goes
into afile called a.out.core. | now use gdb to find the problem.

> gdb a.out a.out.core

G\U gdb 4.18

Copyri ght 1998 Free Software Foundation, Inc.

GB is free software, covered by the GNU General Public License, and you are
wel cone to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i 386-unknown-freebsd"..

Core was generated by “a.out'.

Programtermnated with signal 11, Segnentation fault.

Readi ng synbols from/usr/lib/libc.so.4...done.

Readi ng synbols from/usr/libexec/ld-elf.so.1l...done.

#0 0x8048910 in Iprint (h=0x0) at ans3.c:182

182 printf("%\n", h->data);

(gdb) where This prints out the call stack, showi ng ne what

Version of June 2, 2002 10:40 pm Page 7 of 8

THE DYNAMIC DEBUGGER GDB ECS 30-A — SPRING 2002

#0 0x8048910
#1 0x804892f
#2 0x804892f
#3 0x804879%e
#4 0x80485f5

(gdb) p h->da
Cannot access
(gdb) p h

functions were active when the core dunp occurred

in lprint (h=0x0) at ans3.c:182

in |lprint (h=0x804f050) at ans3.c: 187

in |lprint (h=0x804f030) at ans3.c: 187

in min () at ans3.c: 95

in _start ()
mai n has called Iprint, which called Iprint, which
called Iprint. The third call to Iprint passed a NULL
poi nt er

ta try to print what woul d have been printed

menory at address 0xO.

see what the pointer was

$1 = (struct word *) 0xO

(gdb) |

177 voi d
178 {
179

180

181

182

183

184

185

186

(gdb) up

#1 0x804892f
187

(gdb) p h

I print(struct word *h)
/*
* print current contents
*/
printf("%\n", h->data);
/*
* recurse
*/

go to the caller of the routine
in lprint (h=0x804f050) at ans3.c: 187
| print(h->next);
this prints the pointer val ue

$2 = (struct word *) 0x804f 050

(gdb) p *h

$3 = {data =

(gdb) quit
>

this prints the structure pointed to and it’s passing
NULL. The invoked routine shoul d have stopped and not
tried to print. So we’'re m ssing a check

0x804f 060 "t here", next = 0xO0}

Version of June 2, 2002 10:40 pm Page 8 of 8

