

L

I N K E D

 L

I S T S

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of April 29, 2002 10:17 am Page 1 of 3

Linked Lists

This reads numbers from the standard input, and sorts them in increasing numerical order. It then prints the sorted
numbers.

/*
 * LINKED LIST SORTER
 *
 * This program reads in numbers and sorts them in increasing numerical order
 * The data structure used is a linked list; each element looks like this:
 * +--------------+
 * | data field | <--- holds the integer that you read in
 * +--------------+
 * | next field | <--- holds pointer to next element in list
 * +--------------+ (NULL if nothing follows it)
 *
 * The pointer variable "head" contains a pointer to the first element in
 * the linked list (NULL if there are no elements in the linked list)
 */
#include <stdio.h>
#include <stdlib.h>

/*
 * structure for the list
 */
struct num {

int data; /* data field (the number to be sorted) */
struct num *next; /* points to next element in linked list */

/* (NULL pointer if no next element) */
};

/*
 * pointer to the first element (the head) of the list
 * NULL if there's nothing in the list
 */
struct num *head = NULL;

/*
 * create a new node
 * and initialize the two fields
 */
struct num *createnode(int n)
{

struct num *p; /* pointer to new space */

/* create the element, reporting errors */
if ((p = malloc(sizeof(struct num))) == NULL)

return(NULL);

/* initialize the element */
p->data = n;
p->next = NULL;

/* return a pointer to the new entity */

L

I N K E D

 L

I S T S

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of April 29, 2002 10:17 am Page 2 of 3

return(p);
}

/*
 * insert the element that new points to into the linked list,
 * and return a pointer to the (possibly new) head of the list
 */
struct num *insert(struct num *new)
{

struct num *prev, *temp; /* pointers used to insert new element */

/* empty list: put head at the front */
if (head == NULL)

return(new);

/* it goes before the first element */
if (head->data > new->data){

new->next = head;
return(new);

}

/*
 * now walk the list
 * from here on in, prev->next == temp
 * we'll insert after prev and before temp
 */
prev = head;
temp = head->next;
while(temp != NULL && temp->data < new->data){

/* advance prev and temp */
prev = temp;
temp = temp->next;

}

/*
 * here's the insertion
 * make prev->nect the new element
 * and new->next the one temp points to
 */
new->next = temp;
prev->next = new;

/* return the pointer to the head of the list */
return(head);

}

/*
 * the main routine
 * read in numbers and sort them
 */
int main(void)
{

int i; /* number of numbers read by scanf */
int n; /* what scanf read */

L

I N K E D

 L

I S T S

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of April 29, 2002 10:17 am Page 3 of 3

struct num *p; /* pointer to element for linked list */

/*
 * loop through the input
 */
while((i = scanf("%d", &n)) != EOF){

/* error check; was a number read? */
if (i == 0){

/* no; give error message and print rest of line */
fprintf(stderr, "illegal number: ");
while((i = getchar()) != EOF && i != '\n')

fputc(i, stderr);
fputc('\n', stderr);
continue;

}

/* create a new node, and print error message if failure */
if ((p = createnode(n)) == NULL){

fprintf(stderr, "no more memory on input %d\n", n);
return(EXIT_FAILURE);

}

/* insert new element into linked list */
head = insert(p);

}

/* skip to next line, for cleaner output */
putchar('\n');

/*
 * print the list
 * start at the head, print the data field of each element
 * and go on to the next
 */
for(p = head; p != NULL; p = p->next)

printf("%d\n", p->data);

/* bye-bye */
return(EXIT_SUCCESS);

}

