

T

H E

 P

R O G R A M

 O

R G A N I Z E R

M A K E

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of June 3, 2002 1:41 pm Page 1 of 3

The Program Organizer make

Introduction

When writing large programs, compiling can be quite time consuming. Suppose you have to make a change to one
line in one function in your code; despite the fact that you made a small change you must wait to recompile the entire
program. Would it not be nice to be able to break the program up into several pieces and recompile just those that you
have changed? It would be even more convenient if there were an automated way to have the pieces that you have
changed recompiled and the pieces that had not changed left alone.

Make

 is a facility for automated maintenance of programs.

Make

 uses a file called a

makefile

 that specifies the depen-
dencies between component files, and the commands that will bring all component files up to date. Suppose you have
a program that is in 3 different files and you modify one of these files. If one of the other unmodified files depends on
something in the modified file, then the unmodified file should be recompiled as well as the one that was modified.
When there are many source files, and the dependencies between them are complex, it would be very helpful if there
were a way to specify these dependencies automatically. This is the role of the

make

 facility.

Make

 also serves to
document how the components fit together.

The makefile provides the following information:

• the names of the files that comprise the program system;
• the interdependencies of these files; and
• how to regenerate the program system.

Note that if file B depends on file A and file A is changed, then file B must be recompiled even though it was not
changed. This is the type of dependency that is specified in the makefile. The makefile must be in the current work-
ing directory; make assumes that the makefile is named

makefile

 or

Makefile

 unless told otherwise. To run

make

, type:

make

argument

where

argument

 is one of the targets given to the left of a “:” in a dependency rule (see below). If no argument is
specified,

make

 will start with the first dependency rule in the makefile. To tell

make

 that the makefile has a name
other than the default , use the –f flag to pass the name of the makefile. If the makefile were called

dactmake

, the
command:

make -f dactmake dact

will run

make

 with the desired makefile, starting with the dependency rule that begins with

dact

.

Description File

A typical entry for a “description file” is of the form

target : components list
TAB command1
TAB command2

where

TAB

 means the tab character, not the word

TAB

; it must come first on a command line. The target is the name
of the file to be created; the components list is a list of files that are used to create the target file. This line is called a

dependence rule

. If

make

 determines that the target needs to be updated, the commands following the dependence
rule will be executed.

Make

 terminates if any of the commands is unsuccessful. An example is:

dact: main.o init.o process.o process2.o
gcc -ansi -o dact main.o init.o process.o process2.o

The first line tells make that dact needs to be remade if any of the files to the right of the ':' are changed. Before check-
ing the time the files were last changed, make will look for any dependence rule lines that start with each of compo-
nents (

main.o

,

init.o

,

process.o

, and

process2.o

). If it finds any such lines, it will check if those components are up to
date.

Make

 determines which files have been changed by examining the time of last modification for each of the files.
After checking that all the component files are up to date, and remaking any that were not, make brings

dact

 up to
date. If any of the files to the right of the “:” (

main.o

,

init.o

,

process.o

, or

process2.o

), were modified after the file to
the left of the “:” (

dact

), then that file needs to be remade.

T

H E

 P

R O G R A M

 O

R G A N I Z E R

M A K E

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of June 3, 2002 1:41 pm Page 2 of 3

The second line tells make how it should remake the target

dact

, instructing it to link together the four object files.

If the component list has 0 elements then the commands given on the following lines will be executed only if you type

make target

Make

 will execute only those commands and then exit; for example, see the target

clean

 in the example section below.

Example

A complete example description file follows. .

makefile for dact
the sharp sign means the rest or the line is a comment
dact: main.o init.o process.o process2.o

gcc -ansi main.o init.o process.o process2.o -o dact

the next line says main.o depends on main.c
the line after it says to create main.o with the command
gcc -ansi -c main.c
main.o: main.c

gcc -ansi -c main.c

process.o depends on both process.c and process.h
and is created with the command gcc -ansi -c process.c
process.o: process.c process.h

gcc -ansi -c process.c

process2.o: process2.c
gcc -ansi -c process2.c

clean is a target with no components; when you make it, the
files main.o, init.o, process.o, and process2.o are removed
clean:

rm main.o init.o process.o process2.o

Remember that

make

 will only continue if no errors are reported by the commands it executes. If nothing needs to be
updated or remade,

make

 will report that the target is up to date:

make dact
dact is up to date

The above example does not fully exploit the capabilities of the make facility. Three of the four types of statements in
a description file have been discussed above. The fourth and final type of statement is a macro definition. This state-
ment has the form:

NAME = value

The value of a macro is accessed by

${NAME}

. Macros are simply parameters used in the makefile. Lines 3-4 in the
example above could be replaced with:

OBJS = mail.o init.o process.o process2.o

dact : $(OBJS)
gcc -ansi $(OBJS) -o main.o

and the last line of the makefile could be replaced with

rm $(OBJS)

Touch

The command

touch

(1) updates the modification date of a file to the current time and can be used to force the remak-
ing of a target. Just type

touch

filename

T

H E

 P

R O G R A M

 O

R G A N I Z E R

M A K E

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of June 3, 2002 1:41 pm Page 3 of 3

and the modification date of the file

filename

 will be changed. In the above example, even if no files had actually been
modified, the command

touch process.h

would cause

process.o

 to be remade, which would in turn require dact to be remade.

Acknowledgement

This document was originally written by Kendrick Mock, and modified by Matt Bishop.

