
ECS 36A, Programming and Problem Solving Winter Quarter 2019

Top-Down Programming Example: Rock, Paper, Scissors

Step #1: Goal and General Algorithm Idea
Goal: write a game to play “rock, paper, scissors”

The user chooses one of these, the computer chooses the other
• If the pair is “rock, paper”, the paper wins
• If the pair is “scissors, paper”, the scissors wins
• If the pair is “scissors, rock”, the rock wins

Specification: user enters selection of rock, paper, scissors
Program prints computer’s selection, who wins
At end, computer prints number of games human won and it won

High-level design:
initialize score
loop

ask user for choice
if quit, exit loop
computer selects one
select winner and increment win count

endloop
print number of games user won, computer won, ties

Step #2: Data Representation and Program Structure
Part #1: Data

Represent the rock, paper, scissors using strings: “rock”, “paper”, “scissors” (sequence things)
Represent commands as strings as above, plus “quit” (sequence cmdlist)
Store the scores in a dictionary with keys “user”, “computer”, “tie” and integer values (initially set to 0)

Part #2: Functions
• get user input – getuser()
• get computer choice – getcomp()
• determine winner – whowins()

Part #3: Refine algorithm
while True:

userchoice = getuser();
if (userchoice == quit):

break
compchoice = getcomp();
winner = whowins(userchoice, compchoice)
score[winner] += 1

print You won, score[“user”], game(s), the computer won, score[“computer”], game(s)
print and you tied, score[“tie”], game(s)

Version of February 21, 2019 at 9:36pm Page 1 of 2

ECS 36A, Programming and Problem Solving Winter Quarter 2019

Step #3: Figure out who wins
Represent (ob ject1, ob ject2) where ob ject1 beats ob ject2 as list of tuples, winlist. To see if user won, see if the
(user-chosen object, computer-chosen object) tuple is in that list.

This leads to rps-prog1.py:

d e f whowins (use r , comp) :
i f u s e r == comp :

win = ” t i e ”
e l i f (u se r , comp) i n w i n l i s t :

win = ” u s e r ”
e l s e :

win = ” computer ”
r e t u r n win

Step #4: Get computer choice
Given the three objects in the sequence things, choose randomly.

This leads to rps-prog2.py:

d e f getcomp () :
p i c k = random . c h o i c e (t h i n g s)
p r i n t (” Computer p i c k s ” , p i c k)
r e t u r n p i c k

Step #5: Get user input
Loop until you get a valid input. If the user types an end of file (control-d) or an interrupt (control-c), act as though
the user typed “quit”; report any other exceptions and then act as though the user typed “quit”.

This leads to rps-prog3.py:

d e f g e t u s e r () :
w h i l e True :

t r y :
n = i n p u t (” Human : e n t e r rock , paper , s c i s s o r s , q u i t : ”)

e x c e p t (EOFError , K e y b o a r d I n t e r r u p t) :
n = ” q u i t ”
b r e a k

e x c e p t E x c e p t i o n as msg :
p r i n t (” Unknown e x c e p t i o n : ” , msg , ”−− q u i t t i n g ”)
n = ” q u i t ”
b r e a k

∗∗∗ check i n p u t ∗∗∗
r e t u r n n

To check input, we need to be sure it’s a valid command, so see if it’s in cmdlist:

i f n n o t i n c m d l i s t :
p r i n t (” Bad i n p u t ; t r y a g a i n ”)

e l s e :
b r e a k

Put these together to get the user input routine.

Version of February 21, 2019 at 9:36pm Page 2 of 2

