ECS 36A, Programming and Problem Solving Fall Quarter 2019

Processes and the Shell

Introduction

This document describes features of UNIX and Linux systems. The examples are taken from the CSIF systems, which
run Ubuntu 18.04.2 LTS Linux. The Linux interface is based on the UNIX interface, and much of what is here applies
to UNIX systems such as FreeBSD, OpenBSD, and other variants. Throughout, we will refer to these systems as
“Linux systems” for brevity. Also, in the examples in this document, what the computer outputs is in Roman Courier
typeface and what you type is in bold Courier typeface. When interacting with the shell, a “%” at the
beginning of the line is a shell prompt.

A shell is a command interpreter used to manage processes and the environment in which they execute. The most
widely used shells are the C Shell (csh(1)) and the Bourne-Again shell (bash(1)). Both provide a very fine degree
of control over the environment and its subprocesses. This handout discusses the C Shell syntax and commands
along with how to manage UNIX processes. The Bourne-Again shell syntax differs somewhat, but the functionality is
(essentially) the same.

A shell is simply a process, and any command you run is executed on your behalf by the shell. So, let’s start with
what a process is.

Processes

A Linux process or job is the result of executing a Linux command. Processes are created by Linux commands,
program executions (including gcc(1)) and programs you write and compile), and the shell command interpreter itself.
At any moment a process may be either running or stopped. The Linux operating system provides many ways to
control these processes, such as suspending, resuming and terminating.

Every time you issue a command, the Linux operating system starts a new process and suspends the current process
(the shell) until the new process completes. For example, consider compiling a program. When you type

gcc program.c

you cannot issue other commands in that same window (or to that same shell) until the compilation has completed. The
shell is waiting for gcc to finish before continuing; we say that the compiler is executing or running in the foreground.
If we tell the shell to continue to accept new commands even while the compiler is running, we say that the compiler
is executing or running in the background. In the sections below we will discuss how to cause jobs to run in the
background.

Associated with each process is a unique process identification number, or PID, which is assigned when the process
is initiated. When we want to perform an operation on a process we usually refer to it by its PID.

Determining PIDs

The command
pPs —-x

tells the system to list all your jobs currently running on the machine that you are logged in to:

5 pPs —x
PID TTY STAT TIME COMMAND
11954 2 Ss 0:00 /usr/lib/systemd/systemd --user
11962 ? S 0:00 (sd-pam)
11969 2 R 0:00 sshd: bishop@pts/0
11971 pts/0 Ss 0:00 -tcsh
14957 pts/0 S 0:00 bash
16224 pts/0 0:00 ssh pcl2.cs.ucdavis.edu
16256 pts/0 R+ 0:00 ps -x

Table|[T|says what the columns contain. Table 2]says what the first letter in the STAT column means.

Version of September 20, 2019 at 8:27pm Page 1 of

ECS 36A, Programming and Problem Solving Fall Quarter 2019

PID process identification number

TT controlling terminal (usually, where you ran this from)
STAT process status

TIME amount of CPU time the process has used

COMMAND command that produced the process

Figure 1: Columns in ps listing

D non-interruptible wait (usually short-term waits for network or disk I/O to complete)
I idle (sleeping more than 20 seconds)
R running or runnable
S sleeping (usually waiting for something to finish)
T suspended by a job control signal
Z zombie process (terminated, but parents not yet notified)
Figure 2: Meaning of the first letter in the STAT column
C Shell Variables

The environment in which a subprocess executes has two components: the local environment, which applies only to
that subprocess, and the global environment, which applies to all subprocesses. The shell’s environment is controlled
by environment variables which may be local (and then apply only to that shell process) or global (and apply not only
to that shell process but also to all subprocesses).

C Shell distinguishes between the two very simply. To set a local environment variable called THISVAR to the
value 12345, just say

% set THISVAR=12345

If you run a subprocess, this value will be invisible to the subordinate processes (note that “#” begins a comment that
runs to the end of the line; when you try these, don’t type that comment):

% set THISVAR=12345

% echo $THISVAR

12345

% csh # start a subshell
% echo $THISVAR

THISVAR: Undefined variable.

On the other hand, if you want to make THISVAR global (or, as is sometimes said, make it exportable, or visible
to subprocesses, or inherited), use the setenv command:

% setenv THISVAR 12345
Note there is no equals sign. Now:

% setenv THISVAR 12345

echo $THISVAR

12345

csh # start a subshell
% echo $THISVAR

12345

o\©

o\

Version of September 20, 2019 at 8:27pm Page 2 of

