
Analysis of ptrstew.c
Matt Bishop

For ECS 36A, Fall Quarter 2019

Matt Bishop, UC Davis; ECS 36A, Fall 2019 1

The Program

#include <stdio.h>

char *c[] = {
"ENTER",
"NEW",
"POINT",
"FIRST"

};
char **cp[] = { c+3, c+2, c+1, c };
char ***cpp = cp;
int main(void)
{

printf("%s", **++cpp);
printf("%s ", *--*++cpp+3);
printf("%s", *cpp[-2]+3);
printf("%s\n", cpp[-1][-1]+1);
return(0);

}

This very short, very confusing
program is an excellent exercise in
using pointers; if you can figure
out what this prints, you will be
able to understand (almost) any
use of C pointers!

This is from Alan Feuer’s
marvelous book The C Puzzle Book

Matt Bishop, UC Davis; ECS 36A, Fall 2019 2

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

char *c[] = {
"ENTER",
"NEW",
"POINT",
"FIRST"

};
char **cp[] = { c+3, c+2, c+1, c };
char ***cpp = cp;

Matt Bishop, UC Davis; ECS 36A, Fall 2019 3

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

**++cpp: configuration after ++cpp

Matt Bishop, UC Davis; ECS 36A, Fall 2019 4

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

**++cpp: configuration after *++cpp; red dashed arrow
indicates the dereference (what *++cpp points to)

Matt Bishop, UC Davis; ECS 36A, Fall 2019 5

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

**++cpp: configuration after **++cpp; red dashed
arrow indicates the dereferences, so **++cpp points to
a pointer to “POINT”

So printf(“%s”, **++cpp) prints POINT

What is printed (in blue)

POINT

Matt Bishop, UC Davis; ECS 36A, Fall 2019 6

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

Configuration after previous printf; note cpp is not
returned to its original value but remains pointing at
the second element of cp (that is, cp[1])

What is printed (in blue)

POINT

Matt Bishop, UC Davis; ECS 36A, Fall 2019 7

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

--++cpp+3: parenthesized, (*(--(*(++(cpp)))))+3
This shows the order of precedence

What is printed (in blue)

POINT

Matt Bishop, UC Davis; ECS 36A, Fall 2019 8

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

--++cpp+3: parenthesized, (*(--(*(++(cpp)))))+3
After ++(cpp)

What is printed (in blue)

POINT

Matt Bishop, UC Davis; ECS 36A, Fall 2019 9

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

--++cpp+3: parenthesized, (*(--(*(++(cpp)))))+3
After *(++(cpp)); red dashed arrow indicates the
dereference (what *++cpp points to)

What is printed (in blue)

POINT

Matt Bishop, UC Davis; ECS 36A, Fall 2019 10

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

--++cpp+3: parenthesized, (*(--(*(++(cpp)))))+3
After --(*(++(cpp))); red dashed arrow indicates the
dereference (what *++cpp points to)

What is printed (in blue)

POINT

Matt Bishop, UC Davis; ECS 36A, Fall 2019 11

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

--++cpp+3: parenthesized, (*(--(*(++(cpp)))))+3
After *(--(*(++(cpp)))); red dashed arrow indicates the
dereferences

What is printed (in blue)

POINT

Matt Bishop, UC Davis; ECS 36A, Fall 2019 12

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

--++cpp+3: parenthesized, (*(--(*(++(cpp)))))+3
After *(--(*(++(cpp))))+3; red dashed arrow indicates
the dereferences, the purple arrow after the “+3”, so
this points to “ER”

So printf(“%s ”, *--*++cpp+3) prints ER_
where _ represents a blank

What is printed (in blue)

POINTER_

Matt Bishop, UC Davis; ECS 36A, Fall 2019 13

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

Configuration after previous printf; note cpp is not
returned to its original value but remains pointing at
the third element of cp (that is, cp[2])

What is printed (in blue)

POINTER_

Matt Bishop, UC Davis; ECS 36A, Fall 2019 14

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

cpp[-2]+3: parenthesized, ((cpp[-2]))+3
Red dashed arrow shows cpp[-2]

What is printed (in blue)

POINTER_

Matt Bishop, UC Davis; ECS 36A, Fall 2019 15

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

cpp[-2]+3: parenthesized, ((cpp[-2]))+3
Red dashed arrow shows (*(cpp[-2]))

What is printed (in blue)

POINTER_

Matt Bishop, UC Davis; ECS 36A, Fall 2019 16

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

cpp[-2]+3: parenthesized, ((cpp[-2]))+3
Purple arrow shows (*(cpp[-2]))+3

So printf(“%s”, *cpp[-2] + 3) prints ST

What is printed (in blue)

POINTER_ST

Matt Bishop, UC Davis; ECS 36A, Fall 2019 17

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

cpp[-1][-1]+1: red arrow shows deference of cpp[-1] What is printed (in blue)

POINTER_ST

Matt Bishop, UC Davis; ECS 36A, Fall 2019 18

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

cpp[-1][-1]+1: red arrow shows deference of cpp[-1][-1] What is printed (in blue)

POINTER_ST

Matt Bishop, UC Davis; ECS 36A, Fall 2019 19

cpp cp c
E N T E R \0

N E W \0

P O I N T \0

F I R S T \0

cpp[-1][-1]+1: this shown the final result, with the
purple arrow after the “+1”, so this points to “ER”

So printf(“%s ”, cpp[-1][-1]+1) prints EW

What is printed (in blue)

POINTER_STEW

Matt Bishop, UC Davis; ECS 36A, Fall 2019 20

