ECS 36A, April 9, 2024

Statements

e variable = something; or control action (for example, printf, return)
e Examples: x = y + 9; return; printf (“sf %d\n”, £, qg);

“u,n

* Semicolon “;” ends statements; it does not separate them
* Right:x = v + 9; printf (“%d\n”, x);
* Wrong: x = y + 9; printf (“%d\n”,
* Wrong: x = y + 9, printf (“%d\n”,

[compiler error]

X)
x); [unexpected result]

* Expressions can be statements; they have value
* Example:x = y = 0; isx = (y = 0); sobothxandyaresettoO

Logical Constants and Operators

* In C, O is false and anything non-zero is true
* If the compiler evaluates an expression that is true, the value is 1

* Operators

greater than: x>y

greater than orequalto: x>=y
equal to: x ==

less than: x < y

less than or equalto: x<=y

* notequalto:x =y

e Example:x = 7; v = 19; z = (x >= y); [herezisO (false)]
e Example:x = 7; v = 19; z = (x !'= y); [herezis1 (true)]

Logical Combination Operators

Logical and: x && y (1 if both x and y are true)
Logical or: x || y (1 if either x or y (or both) are true)
Logical not: Ix (1 if x is false, O if x is true)

—_“

y
T T T F
T F F T F
F T F T T
F F F F T

April 9, 2024 ECS 36A, Spring Quarter 2024 4

Precedence and Associativity

| has highest precedence, associates right to left
* && comes next, associates left to right
* || comes next, associates left to right

e | comes before the arithmetic operators
 && and || come after

Lazy Evaluation

* C evaluates logical operators left to right
* It stops as soon as it can determine the result

* Examples: let x =12;y=29; z=-1; then

* (x > v || (y < z && x < z)) =20
[x >y is false, so evaluate the &&; y < z is false, so && is
false, so || is false, stop]

* (x> v ||l v >z && x > 2z) =1
[x >y is false, so evaluate the &&;y >z, x > z are true, so &&
is true, so || is true, stop]

*x >y & y >z =0
[x >y is false, && is false, stop]

Conditional Branching: it

if (condition){
statements

e Test condition
* If true, execute the statements
* If false, do not execute the statements

* Note: if there is only one statement, you can omit the { }

Example

x = 12;
1f (x == 12)
printf (“x 1s 12!7);
1f (x < 12)
printf (“x 1s less than 12!7);

*x is indeed 12, so print “xis 12!”
* X is not less than 12, so the second if prints nothing

Conditional Branching: if/else

if (condition){
if statements

}

else {
else_statements

}

* Test condition

* |f true, execute the if statements

* |f false, do not execute the else _statements

* Note: if there is only one statement in the if or else, you can omit the { }

Examples

x = 12; X = =33
if (x == 12) if (x == 12)

printf (Y“x 1is 12!7); printf (Y“x 1is 12!7);
else else

printf (Yx 1s not 12!"7); printf (Yx 1s not 12!”7);
*x isindeed 12, so print * X isnot 12, so print

“xis 121”7 “xis not 12!”

Conditional Branching: Nested ifs

if (condition1){ e Test conditionl
if1_statements * If true, execute the if1_statements
i e |f false, go to else and test
else { condition2
if (condition2){ * |f true, execute the if2_statements
if2_statements e If false, execute the
} else_statements
else {

else_statements

}

Example

HEemm) e If xis 12, prints “x is 12!”
printf (“x 1is 12!"7);
else(° IfX IS 11’ prlnts UX is 11!)}
if (x == 11) . . - "
brintf (“x is 1117); If x is 10, prints “x is 10!
stsel * If x is 28, prints
if (x == 10)

“xisnot 10, 11, or 12!

printf (“x i1s 10!");
else

printf(“*x is not 10, 11, or 12!”7);

Conditional Branching: A Cleaner Way

if (condition1){ Test condition1
if1_statements * If true, execute the

} if1 _statements

else if (condition2){ * If false, go to else and test
if2_statements condition2

} * If true, execute the

else { if2_statements
else _statements * |f false, execute the

] else statements

Example

R e e If xis 12, prints “x is 121"
printf (“x is 12!7);
else if (x == 11) * If xis 11, prints “x is 111"
printf (“x is 11!7); _ . Y "
else if (x —= 10) If x is 10, prints “x is 10!
pranti (e i 20 * If x is 28, prints
o “Xi 10, 11, or 12"
printf(“x is not 10, 11, or 12!”7); X IS not)) or .

Conditional Branching: switch Statement

switch(expression){ * Evaluate expression
case Casilli 1. |f it evaluates to casel, execute
Sba ekmen >4 statements1 and leave the switch
reak; :
case cased: * If it evaluates to case2, execut.e
, statements2 and leave the switch
statements2;
break: * Otherwise, execute statementsd
default: and leave the switch
statementsd; e Each of the cases must be different
break;

e casel, case2 must be a constant —
J no variables or expressions

Example

switch (x) {
case 12:
printf (“'x
break;
case 11:
printf (“'x
break;
case 10:
printf (“x
break;
default:
printf (“x
}

is

is

is

is

1217);

11!'7);

10!17) 5

not 10, 11, oxr 12!");

e If xis 12, prints “xis 121"
e If xis 11, prints “xis 1117
* If xis 10, prints “xis 10!”
* If x is 28, prints
“xisnot 10, 11, or 12"

Example

switch (x) {

case 12:
printf (%

case 11:
printf (%
break;

case 10:
printf (%
break;

default:
printf (%

}

April 9, 2024

]

X

X

X

X

But Omitting break

is

is

is

is

e If xis 12, prints “xis 121xis 11”

1217) ; e If xis 11, prints “x is 111"
1117y e If x is 10, prints “x is 10!”
* If xis 28, prints
1027 “xisnot 10, 11, or 12!”

Note: leaving off the “break” at
the end works, but is very bad
form (because someone may add
a case after it and not notice there
is no break in the one above)

not 10, 11, or 12!");

ECS 36A, Spring Quarter 2024 17

Loops in C

* for loop
* When you know where you will stop

* while loop

* do ... while loop
* When termination depends on a condition being satisfied

for loop

for (initialization; condition; increment)

e Examples:
for(1 = 1; 1 < 10; 1++)
for(; j < 10; j += 3)
for(; x < 10;)

(7 7)

for

while loop
while (condition)

* Examples:
while (i < 10)
1 =1 + 1;
while (j != 13)
3 =3 - 17
while (1)

e condition goes at top of loop; if condition is initially false, the loop is skipped

do ... while loop

dof

} while (condition)

* Examples:
do {
1 =1 + 1;
} while (1 !'= 13);

do {

} while (1),
» condition goes at bottom of loop, which is always executed at least once

