
ECS 36A, April 11, 2024

April 9, 2024 ECS 36A, Spring Quarter 2024 1

Announcements

• Be sure you use this command to run your program in the CSIF before
submitting it to Gradescope:
gcc –ansi –pedantic –Wall filename.c –o filename

• Some compilers allow // to comment out the rest of the line
• Not part of the C90 standard

April 14, 2023 ECS 36A, Spring Quarter 2023 2

Announcements

My office hours:
• Tuesday 12:30pm–1:30pm, 2203 Watershed Sciences
• Wednesday 12:00pm–1:00pm, 2203 Watershed Sciences
• Friday 1:00pm–2:00pm, 2209 Watershed Sciences
• I’m trying to get 2203 Watershed Sciences and will post an announcement

if/when I do

April 14, 2023 ECS 36A, Spring Quarter 2023 3

Detail of –53 Being unsigned int 429496724

• Assume we are working on a 32-bit system
• Here is –53 represented as a 32-bit number:
 11111111111111111111111111001011
• But if you read it as unsigned, this represents a positive number, here

4294967243
• Why? Because it is represented as 232 – 53, not 53.

April 12, 2023 ECS 36A, Spring Quarter 2023 4

Functions

• Perform some task the program will do repeatedly
• Helpful for organizing programs
• Improves readability

April 14, 2023 ECS 36A, Spring Quarter 2023 5

Format

• Here is a function definition:
int add17(int num){

 int y; /* used to hold sum */

 y = num + 17;

 return(y);

}

• Here is a function call:
. . .

 sum1 = add17(53);

. . .

 sum2 = add17(-12);

. . .

April 14, 2023 ECS 36A, Spring Quarter 2023 6

In Detail – Function Definition

int funct(int par1, float par2, char par3){ . . .

April 14, 2023 ECS 36A, Spring Quarter 2023 7

type of what function returns;
if it doesn’t return anything, use

void here

name of function

type of first
parameter

variable representing
first parameter

type of second
parameter

variable representing
second parameter

type of third
parameter

variable representing
third parameter

In Detail – Function Call

int x;
float fx;
x = funct(7, fx, ‘a’);

April 14, 2023 ECS 36A, Spring Quarter 2023 8

variable holding
return value of

function

function call
first argument

second argument

third argument

• Arguments are matched with
parameters in order
• Here, from previous slide:
• par1 is 7
• par2 is the value contained in fx
• par3 is ‘a’

• Note parameter types matches
argument types

Prototypes or Forward Declarations

• Functions must be declared before use
• If defined before use, the function type, name, and parameter list

serves as the declaration
• If defined after use, compiler makes assumptions about the types of

parameters and function
• And gcc will give you a warning

• A function prototype looks exactly lke the first line of a function
definition
• int funct(int par1, float par2, char par3);
• Note the “;” at the end!

April 14, 2023 ECS 36A, Spring Quarter 2023 9

More About Functions

void swap(int a, int b)

{

 int tmp;

 tmp = a;

 a = b;

 b = tmp;

}

April 14, 2023 ECS 36A, Spring Quarter 2023 10

a b tmp

13 5

a b tmp

13 5 13

a b tmp

5 5 13

a b tmp

5 13 13

And On The Calling End

x = 13;

y = 5;

printf(“x = %d, y = %d\n”, x, y);

swap(a, b);

printf(“x = %d, y = %d\n”, x, y);

April 14, 2023 ECS 36A, Spring Quarter 2023 11

x y

13 5

x y

13 5

The Stack

April 14, 2023 ECS 36A, Spring Quarter 2023 12

void swap(int a, int b)

{

 int tmp;

 tmp = a;

 a = b;

 b = tmp;

}

. . .

x = 3; y = 13;

swap(x, y);

. . .

print(“x = %d; y = %d\n”, x, y);

13

. . .

a 3

b

x 3

y 13

tmp

13

. . .

3

3

13

3

13

. . .

3

3

13

13

3

. . .

3

3

13

13

3

13

Pointers

• A variable containing the address of another variable
• Example:
 int x = 0;

 int *px;

 px = &x;

 printf(“x = %d, px = %p, *px = %d\n”, x, (void *)px, *px);

• Operators:
• &variable: address of variable
• *variable: what is in the memory location with the address stored in variable

April 17, 2023 ECS 36A, Spring Quarter 2023 13

In Pictures

April 17, 2023 ECS 36A, Spring Quarter 2023 14

v 0x7fff34293234

0x7fff34293pv

print(“v = %d\n”, v);
• prints “234” (without the “s, ending in newline)
print(“pv = %p\n”, (void *)pv);
• prints “0x7fff34826” (without the “s, ending in

newline)
print(“*pv = %d\n”, *pv);
• prints “234” (without the “s, ending in newline)

0x7fff34826

Function Arguments (No Pointers)

void swap(int a, int b)

{

 int tmp;

 tmp = a;

 a = b;

 b = tmp;

}

April 17, 2023 ECS 36A, Spring Quarter 2023 15

a b tmp

13 5

a b tmp

13 5 13

a b tmp

5 5 13

a b tmp

5 13 13

Function Arguments (Pointers)
void swap(int *a, int *b)

{

 int tmp;

 tmp = *a;

 *a = *b;

 *b = tmp;

}

April 17, 2023 ECS 36A, Spring Quarter 2023 16

13

5

x

y

a

b

tmp 13

5

13

And On The Calling End (No Pointers)

x = 13;

y = 5;

printf(“x = %d, y = %d\n”, x, y);

swap(x, y);

printf(“x = %d, y = %d\n”, x, y);

April 17, 2023 ECS 36A, Spring Quarter 2023 17

x y

13 5

x y

13 5

And On The Calling End (With Pointers)

x = 13;

y = 5;

printf(“x = %d, y = %d\n”, x, y);

swap(&x, &y);

printf(“x = %d, y = %d\n”, x, y);

April 17, 2023 ECS 36A, Spring Quarter 2023 18

x y

13 5

x y

5 13

Scope

• When multiple variables have the same name, which one is used?
• Rule #1: two variables cannot have the same name in a block (e.g., function)

• Use the variable that is “nearest” to the reference
• That’s the one in scope

April 17, 2023 ECS 36A, Spring Quarter 2023 19

