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Announcements

• Be sure you use this command to run your program in the CSIF before 
submitting it to Gradescope:
gcc –ansi –pedantic –Wall filename.c –o filename

• Some compilers allow // to comment out the rest of the line
• Not part of the C90 standard
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Announcements

My office hours:
• Tuesday 12:30pm–1:30pm, 2203 Watershed Sciences
• Wednesday 12:00pm–1:00pm, 2203 Watershed Sciences
• Friday 1:00pm–2:00pm, 2209 Watershed Sciences
• I’m trying to get 2203 Watershed Sciences and will post an announcement 

if/when I do
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Detail of –53 Being unsigned int 429496724 

• Assume we are working on a 32-bit system
• Here is –53 represented as a 32-bit number:
  11111111111111111111111111001011
• But if you read it as unsigned, this represents a positive number, here 

4294967243
• Why? Because it is represented as 232 – 53, not 53.
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Functions 

• Perform some task the program will do repeatedly
• Helpful for organizing programs
• Improves readability
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Format

• Here is a function definition:
int add17(int num){

 int y;  /* used to hold sum */

 y = num + 17;

 return(y);

}

• Here is a function call:
. . .

 sum1 = add17(53);

. . . 

 sum2 = add17(-12);

. . .
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In Detail – Function Definition

int funct(int par1, float par2, char par3){ . . . 
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type of what function returns;
if it doesn’t return anything, use

void here
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In Detail – Function Call

int x;
float fx;
x = funct(7, fx, ‘a’);
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variable holding
return value of

function

function call
first argument

second argument

third argument

• Arguments are matched with 
parameters in order
• Here, from previous slide:
• par1 is 7
• par2 is the value contained in fx
• par3 is ‘a’

• Note parameter types matches 
argument types



Prototypes or Forward Declarations

• Functions must be declared before use
• If defined before use, the function type, name, and parameter list 

serves as the declaration
• If defined after use, compiler makes assumptions about the types of 

parameters and function
• And gcc will give you a warning

• A function prototype looks exactly lke the first line of a function 
definition
• int funct(int par1, float par2, char par3);
• Note the “;” at the end!
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More About Functions

void swap(int a, int b)

{

 int tmp;

 tmp = a;

 a = b;

 b = tmp;

}
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a b tmp

13 5

a b tmp

13 5 13

a b tmp

5 5 13

a b tmp

5 13 13



And On The Calling End

x = 13;

y = 5;

printf(“x = %d, y = %d\n”, x, y);

swap(a, b);

printf(“x = %d, y = %d\n”, x, y);
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x y

13 5

x y

13 5



The Stack
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void swap(int a, int b)

{

 int tmp;

 tmp = a;

 a = b;

 b = tmp;

}

. . .

x = 3; y = 13;

swap(x, y);

. . . 

print(“x = %d; y = %d\n”, x, y);

13

. . .

a 3

b

x 3

y 13

tmp

13

. . .

3

3

13

3

13

. . .

3

3

13

13

3

. . .

3

3

13

13

3

13



Pointers

• A variable containing the address of another variable
• Example:
 int x = 0;

 int *px;

 px = &x;

 printf(“x = %d, px = %p, *px = %d\n”, x, (void *)px, *px); 

• Operators:
• &variable: address of variable
• *variable: what is in the memory location with the address stored in variable
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In Pictures
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v 0x7fff34293234

0x7fff34293pv

print(“v = %d\n”, v);
• prints “234” (without the “s, ending in newline)
print(“pv = %p\n”, (void *)pv);
• prints “0x7fff34826” (without the “s, ending in 

newline)
print(“*pv = %d\n”, *pv);
• prints “234” (without the “s, ending in newline)

0x7fff34826



Function Arguments (No Pointers)

void swap(int a, int b)

{

 int tmp;

 tmp = a;

 a = b;

 b = tmp;

}
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a b tmp

13 5

a b tmp

13 5 13

a b tmp

5 5 13

a b tmp

5 13 13



Function Arguments (Pointers)
void swap(int *a, int *b)

{

 int tmp;

 tmp = *a;

 *a = *b;

 *b = tmp;

}

April 17, 2023 ECS 36A, Spring Quarter 2023 16

13

5

x

y

a

b

tmp 13

5

13



And On The Calling End (No Pointers)

x = 13;

y = 5;

printf(“x = %d, y = %d\n”, x, y);

swap(x, y);

printf(“x = %d, y = %d\n”, x, y);
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x y

13 5

x y

13 5



And On The Calling End (With Pointers)

x = 13;

y = 5;

printf(“x = %d, y = %d\n”, x, y);

swap(&x, &y);

printf(“x = %d, y = %d\n”, x, y);
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x y

13 5

x y

5 13



Scope

• When multiple variables have the same name, which one is used?
• Rule #1: two variables cannot have the same name in a block (e.g., function)

• Use the variable that is “nearest” to the reference
• That’s the one in scope
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