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Announcements

• We'll post the grades for midterms some time tomorrow
• Thursday and Friday discussion sections will go through the midterm
• Homework 3 will be out later today
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Another Recursive Program: sort.c

• This sorts integers by finding the smallest number and putting it at 
the beginning
• Basic idea:

if number of elements in list is 1 or 0:
 list is sorted – just return
find the smallest number in the list
swap it and the first number
sort the rest of the list 
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Problem

• sort.c reads from an array of known length
• User must enter numbers into the program
• The compiler can compute the length (or the user can enter it)
So how do we get around this?
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Dynamic Memory Allocation

• Static memory allocation occurs when you declare a variable
int num;

• Compiler creates space for this variable
• There is also a pool of memory (the “heap”) that is available but initially 

unused
• Dynamic memory occurs when you obtain memory space from the heap

• Allocate: obtain the space from the pool
• Allocation: the space you get
• Deallocate, free: releaseg memory that has been allocated; it goes back to the heap

May 14, 2024 ECS 36A, Spring Quarter 2024 5



A Useful Operator

• To get the number of bytes in a data type, use sizeof
• Example: on a 32-but machine:
• sizeof(char) is 1
• sizeof(int) is 4
• sizeof(float) is 4
• sizeof(double) is 8

• Works for variables, too
• if a is an int, sizeof(a) is 4
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Allocation Functions: malloc()

• Basic function
void *malloc(size_t space)

• Allocate space bytes of memory, returning its address; returns NULL if 
not available
• Type size_t is same as unsigned int

• Declared void * so that it can be coerced into any type of pointer
char *p;

if ((p = (char *) malloc(100)) == NULL)

  error handling
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Allocation Functions: realloc()

• Enlargening space already allocated (say pmem points to it):
void *realloc(void *pmem, size_t nbytes)

• This allocates nbytes of space, and the contents of *pmem are copied 
into the beginning of the new space
• The new space may simply extend what pmem points to
• Or, it may be completely new space, in which case what pmem points to is 

deallocated
• If insufficient memory available, returns NULL and leaves the space pmem 

points to untouched, neither moved nor deallocated
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Allocation Functions: calloc()

• Variant
void *calloc(size_t nelt, size_t space)

• Like malloc, but:
• Gives you space in terms of elements and size of element, rather than a 

number of bytes
• Memory is zeroed out; malloc() does not do so, and whatever is in that 

memory before call to malloc() is there once allocated
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Allocation Functions: realloc()

• Common way to use this:
if ((pmem = realloc(pmem, 1000)) == NULL) . . .
• On success, pmem now points to a chunk of memory of size 1000 bytes
• On failure, pmem is now NULL — and you lose the address of the memory 

pmem used to point to

• Here’s the right way:
tempptr = realloc(pmem, 1000);

if (tempptr == NULL) error handling;

else pmem = tempptr;
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Deallocation Function: free()

• To release memory allocated by one of the allocation functions, use:
void free(void *pmem)

• If pmem is NULL, this does nothing
• Do not free memory that has already been freed!
• Called a double free error and can often be a vulnerability
• In all cases, the result is undefined
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But Be Careful!

char a[100]

• You can get the size of an array like this:
sizeof(a)

• This works because a is a pointer constant

May 14, 2024 ECS 36A, Spring Quarter 2024 12



However . . .

char *a;
if ((a = malloc(sizeof(char) * 100)) == NULL)
 perror("bad malloc");
• Tempting to get the size of the allocated space like this:

sizeof(a)
• Here, a is a pointer variable, so sizeof returns the number of bytes in that pointer, 
not the size of the array!

• To get the number of bytes in an array, use
sizeof(a[0]) * 100

   where 100 is the number of elements in the array
• The a[0] is one element; works as all elements are of the same type
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Another Recursive Program: usort1.c

• Problem with earlier sort.c: numbers are embedded in program
• Better: have users enter the numbers
• Basic idea:

ask user how many numbers they want sorted
allocate the space
read in that many integers – if EOF entered, quit at once
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Another Recursive Program: usort15.c

• Problem with usort1.c: users have to say how many numbers they 
want sorted
• Better: let users enter the numbers to be sorted and have the 

computer count
• Basic idea:

allocate initial space
read in that many integers – if EOF entered, sort what you have
 check that there is room to add the entered number
 if not, reallocate space to increase room
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Example: Dynamically Allocated Input Buffer

• Problem: fgets requires a maximum length to input
• So it will fit into the input buffer without overflow
• May read only part of a line

• Solution: write a function that will allocate space for any length line
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Requirements

• Function must be able to input line of any length without knowing 
what that length may be
• Interface needs to be as similar to that of fgets as possible
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Solution #1: For Interface

char *dyngets(char *buf, int n, FILE *fp)
• char *buf
• If non-NULL, pointer to input buffer; dyngets acts exactly like fgets
• If NULL, one line is stored in allocated space

• int n
• size of array buf
• ignored if buf is NULL

• FILE *fp
• File pointer to source of input
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Solution #2: Allocation

• Create a buffer that is preserved across calls
• Use a static variable to point to this and the size of the buffer

• Static variable in function keeps variable and its value around after 
function returns
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General Structure

• If buf is not NULL, call fgets and return its value
• Otherwise:

1. Read a character; if end of file, go to step 6
2. If there is room in the internal buffer, put character in and go to step 1
3. If there is not room in the internal buffer, allocate (or reallocate) an internal 

buffer of length INCREMENT + length of current internal buffer
4. Add the new INCREMENT to the length of the internal buffer
5. Go to step 2
6. Return pointer to internal buffer
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Program Structure

• Main routine is dyngets
• It calls a function to insert the character
• Allocation is done here
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Main Routine

• Check to see if buf is non-NULL; if so, call fgets and return its return 
value
• Read characters, calling the insertion function for each
• If EOF is read as the first character of the line, return NULL
• Otherwise, tack on a newline if it is present
• Terminate the internal buffer with ‘\0’

• Return pointer to internal space
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Character Insertion Routine

• First, see if internal buffer is completely full
• If so, increment the allocated space number
• If nothing allocated yet, use malloc() to allocate the desired space
• Otherwise, use realloc() to reallocate the space

• Append the character to the input line
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Compiling With a Program

List multiple files for gcc
• For dyngets:
gcc –ansi –pedantic –Wall –g –o mcat mcat.c dyngets.c

• What is happening: for each file
• Run the C preprocessor on the file to handle thee macros
• Compile the file to produce an assembly language “.s” file
• Assemble the resulting “.s” file to produce an object “.o” file

• Then for all files:
• The linking loader merges all the “.o” files and some system libraries into an 

executable
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Another Recursive Program: usort1.c

• Problem with earlier sort.c: numbers are embedded in program
• Better: have users enter the numbers
• Basic idea:

ask user how many numbers they want sorted
allocate the space
read in that many integers – if EOF entered, quit at once
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