
ECS 36A, May 14, 2024

May 14, 2024 ECS 36A, Spring Quarter 2024 1

Announcements

• We'll post the grades for midterms some time tomorrow
• Thursday and Friday discussion sections will go through the midterm
• Homework 3 will be out later today

May 14, 2024 ECS 36A, Spring Quarter 2024 2

Another Recursive Program: sort.c

• This sorts integers by finding the smallest number and putting it at
the beginning
• Basic idea:

if number of elements in list is 1 or 0:
 list is sorted – just return
find the smallest number in the list
swap it and the first number
sort the rest of the list

May 14, 2024 ECS 36A, Spring Quarter 2024 3

Problem

• sort.c reads from an array of known length
• User must enter numbers into the program
• The compiler can compute the length (or the user can enter it)
So how do we get around this?

May 14, 2024 ECS 36A, Spring Quarter 2024 4

Dynamic Memory Allocation

• Static memory allocation occurs when you declare a variable
int num;

• Compiler creates space for this variable
• There is also a pool of memory (the “heap”) that is available but initially

unused
• Dynamic memory occurs when you obtain memory space from the heap

• Allocate: obtain the space from the pool
• Allocation: the space you get
• Deallocate, free: releaseg memory that has been allocated; it goes back to the heap

May 14, 2024 ECS 36A, Spring Quarter 2024 5

A Useful Operator

• To get the number of bytes in a data type, use sizeof
• Example: on a 32-but machine:
• sizeof(char) is 1
• sizeof(int) is 4
• sizeof(float) is 4
• sizeof(double) is 8

• Works for variables, too
• if a is an int, sizeof(a) is 4

May 14, 2024 ECS 36A, Spring Quarter 2024 6

Allocation Functions: malloc()

• Basic function
void *malloc(size_t space)

• Allocate space bytes of memory, returning its address; returns NULL if
not available
• Type size_t is same as unsigned int

• Declared void * so that it can be coerced into any type of pointer
char *p;

if ((p = (char *) malloc(100)) == NULL)

 error handling

May 14, 2024 ECS 36A, Spring Quarter 2024 7

Allocation Functions: realloc()

• Enlargening space already allocated (say pmem points to it):
void *realloc(void *pmem, size_t nbytes)

• This allocates nbytes of space, and the contents of *pmem are copied
into the beginning of the new space
• The new space may simply extend what pmem points to
• Or, it may be completely new space, in which case what pmem points to is

deallocated
• If insufficient memory available, returns NULL and leaves the space pmem

points to untouched, neither moved nor deallocated

May 14, 2024 ECS 36A, Spring Quarter 2024 8

Allocation Functions: calloc()

• Variant
void *calloc(size_t nelt, size_t space)

• Like malloc, but:
• Gives you space in terms of elements and size of element, rather than a

number of bytes
• Memory is zeroed out; malloc() does not do so, and whatever is in that

memory before call to malloc() is there once allocated

May 14, 2024 ECS 36A, Spring Quarter 2024 9

Allocation Functions: realloc()

• Common way to use this:
if ((pmem = realloc(pmem, 1000)) == NULL) . . .
• On success, pmem now points to a chunk of memory of size 1000 bytes
• On failure, pmem is now NULL — and you lose the address of the memory

pmem used to point to

• Here’s the right way:
tempptr = realloc(pmem, 1000);

if (tempptr == NULL) error handling;

else pmem = tempptr;

May 14, 2024 ECS 36A, Spring Quarter 2024 10

Deallocation Function: free()

• To release memory allocated by one of the allocation functions, use:
void free(void *pmem)

• If pmem is NULL, this does nothing
• Do not free memory that has already been freed!
• Called a double free error and can often be a vulnerability
• In all cases, the result is undefined

May 14, 2024 ECS 36A, Spring Quarter 2024 11

But Be Careful!

char a[100]

• You can get the size of an array like this:
sizeof(a)

• This works because a is a pointer constant

May 14, 2024 ECS 36A, Spring Quarter 2024 12

However . . .

char *a;
if ((a = malloc(sizeof(char) * 100)) == NULL)
 perror("bad malloc");
• Tempting to get the size of the allocated space like this:

sizeof(a)
• Here, a is a pointer variable, so sizeof returns the number of bytes in that pointer,
not the size of the array!

• To get the number of bytes in an array, use
sizeof(a[0]) * 100

 where 100 is the number of elements in the array
• The a[0] is one element; works as all elements are of the same type

May 14, 2024 ECS 36A, Spring Quarter 2024 13

Another Recursive Program: usort1.c

• Problem with earlier sort.c: numbers are embedded in program
• Better: have users enter the numbers
• Basic idea:

ask user how many numbers they want sorted
allocate the space
read in that many integers – if EOF entered, quit at once

May 8, 2023 ECS 36A, Spring Quarter 2023 14

Another Recursive Program: usort15.c

• Problem with usort1.c: users have to say how many numbers they
want sorted
• Better: let users enter the numbers to be sorted and have the

computer count
• Basic idea:

allocate initial space
read in that many integers – if EOF entered, sort what you have
 check that there is room to add the entered number
 if not, reallocate space to increase room

May 8, 2023 ECS 36A, Spring Quarter 2023 15

Example: Dynamically Allocated Input Buffer

• Problem: fgets requires a maximum length to input
• So it will fit into the input buffer without overflow
• May read only part of a line

• Solution: write a function that will allocate space for any length line

May 22, 2023 ECS 36A, Spring Quarter 2023 16

Requirements

• Function must be able to input line of any length without knowing
what that length may be
• Interface needs to be as similar to that of fgets as possible

May 22, 2023 ECS 36A, Spring Quarter 2023 17

Solution #1: For Interface

char *dyngets(char *buf, int n, FILE *fp)
• char *buf
• If non-NULL, pointer to input buffer; dyngets acts exactly like fgets
• If NULL, one line is stored in allocated space

• int n
• size of array buf
• ignored if buf is NULL

• FILE *fp
• File pointer to source of input

May 22, 2023 ECS 36A, Spring Quarter 2023 18

Solution #2: Allocation

• Create a buffer that is preserved across calls
• Use a static variable to point to this and the size of the buffer

• Static variable in function keeps variable and its value around after
function returns

May 22, 2023 ECS 36A, Spring Quarter 2023 19

General Structure

• If buf is not NULL, call fgets and return its value
• Otherwise:

1. Read a character; if end of file, go to step 6
2. If there is room in the internal buffer, put character in and go to step 1
3. If there is not room in the internal buffer, allocate (or reallocate) an internal

buffer of length INCREMENT + length of current internal buffer
4. Add the new INCREMENT to the length of the internal buffer
5. Go to step 2
6. Return pointer to internal buffer

May 22, 2023 ECS 36A, Spring Quarter 2023 20

Program Structure

• Main routine is dyngets
• It calls a function to insert the character
• Allocation is done here

May 22, 2023 ECS 36A, Spring Quarter 2023 21

Main Routine

• Check to see if buf is non-NULL; if so, call fgets and return its return
value
• Read characters, calling the insertion function for each
• If EOF is read as the first character of the line, return NULL
• Otherwise, tack on a newline if it is present
• Terminate the internal buffer with ‘\0’

• Return pointer to internal space

May 22, 2023 ECS 36A, Spring Quarter 2023 22

Character Insertion Routine

• First, see if internal buffer is completely full
• If so, increment the allocated space number
• If nothing allocated yet, use malloc() to allocate the desired space
• Otherwise, use realloc() to reallocate the space

• Append the character to the input line

May 22, 2023 ECS 36A, Spring Quarter 2023 23

Compiling With a Program

List multiple files for gcc
• For dyngets:
gcc –ansi –pedantic –Wall –g –o mcat mcat.c dyngets.c

• What is happening: for each file
• Run the C preprocessor on the file to handle thee macros
• Compile the file to produce an assembly language “.s” file
• Assemble the resulting “.s” file to produce an object “.o” file

• Then for all files:
• The linking loader merges all the “.o” files and some system libraries into an

executable

May 22, 2023 ECS 36A, Spring Quarter 2023 24

Another Recursive Program: usort1.c

• Problem with earlier sort.c: numbers are embedded in program
• Better: have users enter the numbers
• Basic idea:

ask user how many numbers they want sorted
allocate the space
read in that many integers – if EOF entered, quit at once

May 14, 2024 ECS 36A, Spring Quarter 2024 25

