£CS 36A, May 14, 2024



Announcements

 We'll post the grades for midterms some time tomorrow
* Thursday and Friday discussion sections will go through the midterm
* Homework 3 will be out later today



Another Recursive Program: sort.c

 This sorts integers by finding the smallest number and putting it at
the beginning

e Basic idea:

1f number of elements in list 1is 1 or 0:
list 1s sorted - just return

find the smallest number in the list

swap 1t and the first number

sort the rest of the list



Problem

* sort.c reads from an array of known length
* User must enter numbers into the program
* The compiler can compute the length (or the user can enter it)

So how do we get around this?



Dynamic Memory Allocation

e Static memory allocation occurs when you declare a variable
int num;
 Compiler creates space for this variable

* There is also a pool of memory (the “heap”) that is available but initially
unused

* Dynamic memory occurs when you obtain memory space from the heap
» Allocate: obtain the space from the pool
* Allocation: the space you get
* Deallocate, free: releaseg memory that has been allocated; it goes back to the heap



A Useful Operator

* To get the number of bytes in a data type, use sizeof

* Example: on a 32-but machine:
e sizeof(char)is 1
* sizeof(int) is 4
 sizeof(float) is 4
 sizeof(double) is 8

* Works for variables, too
e if ais an int, sizeof(a) is 4



Allocation Functions: malloc()

e Basic function
vold *malloc(slze t space)

* Allocate space bytes of memory, returning its address; returns NULL if
not available

* Type size_t is same as unsigned int
* Declared void * so that it can be coerced into any type of pointer
char *p;
1f ((p = (char *) malloc(100)) == NULL)

error handling



Allocation Functions: realloc()

* Enlargening space already allocated (say pmem points to it):
volid *realloc (void *pmem, size t nbytes)

* This allocates nbytes of space, and the contents of *pmem are copied
into the beginning of the new space

* The new space may simply extend what pmem points to

* Or, it may be completely new space, in which case what pmem points to is
deallocated

* |f insufficient memory available, returns NULL and leaves the space pmem
points to untouched, neither moved nor deallocated



Allocation Functions: calloc()

e Variant

volid *calloc(size t nelt, size t space)
 Like malloc, but:

* Gives you space in terms of elements and size of element, rather than a
number of bytes

 Memory is zeroed out; malloc() does not do so, and whatever is in that
memory before call to malloc() is there once allocated



Allocation Functions: realloc()

« Common way to use this:

1f ((pmem = realloc (pmem, 1000)) == NULL)
* On success, pmem now points to a chunk of memory of size 1000 bytes

* On failure, pomem is now NULL — and you lose the address of the memory
pmem used to point to

* Here’s the right way:
tempptr = realloc (pmem, 1000);
1f (tempptr == NULL) error handling;

else pmem = tempptr;



Deallocation Function: free()

* To release memory allocated by one of the allocation functions, use:
volid free(vold *pmem)
* If pmem is NULL, this does nothing

* Do not free memory that has already been freed!

* Called a double free error and can often be a vulnerability
* In all cases, the result is undefined



But Be Careful!

char a[l1l00]
* You can get the size of an array like this:
sizeof (a)

* This works because a is a pointer constant



However . ..

char *a;
1f ((a = malloc(sizeof (char) * 100)) == NULL)

perror ("bad malloc™");

* Tempting to get the size of the allocated space like this:

sizeof (a)
* Here, a is a pointer variable, so sizeof returns the number of bytes in that pointer,
not the size of the array!

* To get the number of bytes in an array, use
sizeof (a[0]) * 100

where 100 is the number of elements in the array
* The a[0] is one element; works as all elements are of the same type



Another Recursive Program: usortl.c

* Problem with earlier sort.c: numbers are embedded in program
* Better: have users enter the numbers
* Basic idea:

ask user how many numbers they want sorted
allocate the space

read in that many integers - if EOF entered, quit at once



Another Recursive Program: usortl5.c

* Problem with usortl.c: users have to say how many numbers they
want sorted

e Better: let users enter the numbers to be sorted and have the
computer count

e Basic idea:

allocate initial space

read i1n that many integers - if EOF entered, sort what you have
check that there is room to add the entered number
1f not, reallocate space to increase room



Example: Dynamically Allocated Input Buffer

* Problem: fgets requires a maximum length to input
e So it will fit into the input buffer without overflow
* May read only part of a line

* Solution: write a function that will allocate space for any length line



Requirements

* Function must be able to input line of any length without knowing
what that length may be

* Interface needs to be as similar to that of fgets as possible



Solution #1: For Interface

char *dyngets (char *buf, 1nt n, FILE *fp)

* char *butf
* If non-NULL, pointer to input buffer; dyngets acts exactly like fgets
* If NULL, one line is stored in allocated space
* 1nt n
e size of array buf
* ignored if buf is NULL
e FILE *fp
* File pointer to source of input



Solution #2: Allocation

* Create a buffer that is preserved across calls
* Use a static variable to point to this and the size of the buffer

e Static variable in function keeps variable and its value around after
function returns



General Structure

* If buf is not NULL, call fgets and return its value

* Otherwise:
1. Read a character; if end of file, go to step 6
2. If thereis room in the internal buffer, put character in and go to step 1

3. If there is not room in the internal buffer, allocate (or reallocate) an internal
buffer of length INCREMENT + length of current internal buffer

4. Add the new INCREMENT to the length of the internal buffer
Go to step 2
6. Return pointer to internal buffer

.



Program Structure

* Main routine is dyngets

* It calls a function to insert the character
e Allocation is done here



Main Routine

* Check to see if buf is non-NULL; if so, call fgets and return its return
value

* Read characters, calling the insertion function for each
* If EOF is read as the first character of the line, return NULL
* Otherwise, tack on a newline if it is present
* Terminate the internal buffer with ‘\0’

* Return pointer to internal space



Character Insertion Routine

* First, see if internal buffer is completely full
* |f so, increment the allocated space number
* If nothing allocated yet, use malloc() to allocate the desired space
* Otherwise, use realloc() to reallocate the space

* Append the character to the input line



Compiling With a Program

List multiple files for gcc

* For dyngets:
gcc —ansil —pedantic —-Wall —g —-o mcat mcat.c dyngets.c

* What is happening: for each file
* Run the C preprocessor on the file to handle thee macros
* Compile the file to produce an assembly language “.s” file
* Assemble the resulting “.s” file to produce an object “.0” file

 Then for all files:

* The linking loader merges all the “.0” files and some system libraries into an
executable



Another Recursive Program: usortl.c

* Problem with earlier sort.c: numbers are embedded in program
* Better: have users enter the numbers
* Basic idea:

ask user how many numbers they want sorted
allocate the space

read in that many integers - if EOF entered, quit at once



