
ECS 36A, May 21, 2024

May 21, 2024 ECS 36A, Spring Quarter 2024 1

Announcements

• If you want something regraded, please click on "Request Regrade" in
Gradescope.
• Extra Credit 2 has been released. It does not ask you to write a

program; it asks you to analyze one. Please be sure you use the
template so we can grade it on Gradescope.

May 21, 2024 ECS 36A, Spring Quarter 2024 2

The following will give errors in Gradescope:
• Using "//" to start a comment

// a comment going to the end of the line

• Declaring a variable anywhere except at the beginning of a block
for(int n = 3; n < 10; n++) printf("%d\n", n);

• If Gradescope doesn't compile your program, please check for these
before asking us for help

Really Common Errors

May 21, 2024 ECS 36A, Spring Quarter 2024 3

This also causes an error

This causes an error

About That Midterm

1. Midterm statistics: mean, 77.69; median, 71; max, 127; min, 41;
standard deviation 23.17

2. Do not panic! Even though the midterm grades are not curved, the
final course grade will be, and the curving method will be
independent of your class standing; it will solely depend on your
grade.

May 21, 2024 ECS 36A, Spring Quarter 2024 4

Midterm Question 2

What does the Linux/UNIX command “rm xyzzy” do when “xyzzy” is a directory?

a) Move the directory “xyzzy” to the directory “Trash” in the user’s home directory.

b) Copy the directory “xyzzy” to the user’s home directory.

c) Delete the directory “xyzzy”.

d) Delete the files in the directory “xyzzy”.

e) It gives an error message.

May 21, 2024 ECS 36A, Spring Quarter 2024 5

a) Moving the directory "xyzzy" to directory "Trash" in home directory: mv xyzzy $HOME/Trash

b) Copying the directory "xyzzy" to the user's home directory: cp -r xyzzy $HOME/Trash

c) Deleting the directory "xyzzy": rmdir xyzzy

d) Deleting files in the directory "xyzzy": rm –r xyzzy/*

Midterm Question 4

If a = 0, b = 5, and c = −1, what are the values of (a || (b && c++)) and c?

a) (a || (b && c++)) is 0 and c is -1

b) (a || (b && c++)) is 0 and c is 0

c) (a || (b && c++)) is 0 and c is 1

d) (a || (b && c++)) is 1 and c is -1

e) (a || (b && c++)) is 1 and c is 0

May 21, 2024 ECS 36A, Spring Quarter 2024 6

a = 0 (false), so result is result of (b && c++)

b = 5 (true) so result is that of c++

c = -1 (true), so result of (b && c++) is 1 (true), meaning result of (a || (b && c++) is 1 (true)

After, the value of c++ is 0

Midterm Question 10

Evaluate the expressions below, and give the values of the named variables after the expression has been
evaluated. If the expression contains a syntax error, or if a value is undefined, say so. Treat each part as
separate; that is, assume the following variable values for all parts, regardless of whether a previous part has
changed them.

 int a = 0, b = 4, c = 5, d = −2, x; double dx;

a) x++ = a + b; give values of x

b) x = (a || b++) && (c++ || a++); give values of x, a, b, c

May 21, 2024 ECS 36A, Spring Quarter 2024 7

x++ is an expression and you cannot assign a value to an expression. Syntax error.

a = 0 (false), and b = 4 (true), so (a || b++) is 1 (true);
c = 5 (true), so (c++ || a++) is 1 (true); thus x = 1 (true)
Initially a = 0, and a++ isn't evaluated, so a = 0
Initially b = 4, and b++ is evaluated, so b = 5
Initially c = 5, and c++ is evaluated, so c = 6

Midterm Question 10

Reminder: int a = 0, b = 4, c = 5, d = −2, x; double dx;

c) x = a + b / c; give value of x

d) dx = x = 3.2; give values of x and dx

e) x = (c % d) + ((c / d) * d); give value of x

May 21, 2024 ECS 36A, Spring Quarter 2024 8

Division has higher precedence than addition, so do b / c first
As b and c are ints, this is integer division, so 4 / 5 = 0
Adding a (0) to that gives x = 0

Assigning a double to an int truncates the double, so x = 3
Assigning an integer to a double does not restore the fractional part, so dx = 3

By the C standard, integer division and remainder are defined so that this expression
evaluates to c, so x = c = 5.

A Quick Review of Pointers

• A pointer is simply an address
• It’s just like a constant or variable

• A pointer constant cannot be changed
• int pc [30]; /* here pc is a pointer constant and cannot be changed */

• A pointer variable can be changed
• int *p; /* here p is a pointer variable and can be changed */

May 21, 2024 ECS 36A, Spring Quarter 2024 9

Midterm Question 11

• Setup:
static int ar[] = { 10, 15, 4, 25, 3, -4 };
int *p;
p = &ar[2];

• In pictures:

May 21, 2024 ECS 36A, Spring Quarter 2024 10

10 15 4 25 3 -4

0 1 2 3 4 5

ar (100)

‘Z’p (300)

Midterm Question 11(a)

• Value of:
*(p+1)

• In pictures:

May 21, 2024 ECS 36A, Spring Quarter 2024 11

10 15 4 25 3 -4

0 1 2 3 4 5

ar (100)

p (300)
p = &ar[2]; p+1 points to the next array element, so
(p+1) = &ar[3], so *(p+1) = 25

Midterm Question 11(b)

• Value of:
p[-1]

• In pictures:

May 21, 2024 ECS 36A, Spring Quarter 2024 12

10 15 4 25 3 -4

0 1 2 3 4 5

ar (100)

p (300)
p[-1] = *(p-1), p = &ar[2]; p-1 points to the previous array
element, so *(p-1) = 15

Midterm Question 11(c)

• Value of:
p - ar

• In pictures:

May 21, 2024 ECS 36A, Spring Quarter 2024 13

10 15 4 25 3 -4

0 1 2 3 4 5

ar (100)

p (300)
p = &ar[2] = ar + 2, so p – ar = p + 2 – ar = 2;

Midterm Question 11(d)

• Value of:
ar[*p++]

• In pictures:

May 21, 2024 ECS 36A, Spring Quarter 2024 14

10 15 4 25 3 -4

0 1 2 3 4 5

ar (100)

p (300)
p = &ar[2], so *p = 4, and ar[4] = 3

Midterm Question 11(e)

• Value of:
*(ar + ar[2])

• In pictures:

May 21, 2024 ECS 36A, Spring Quarter 2024 15

10 15 4 25 3 -4

0 1 2 3 4 5

ar (100)

p (300)
ar[2] = 4, so *(ar + ar[2]) = *(a + 4) = ar[4] = 3

Midterm Question 13

int testandinc(int x)
{ return(x++); }

int p1testandinc(int *x)
{ return(*x++); }

int p2testandinc(int *x)

{ return((*x)++); }

int a = 2;
int arr[3] = { 3, 4, 5 };

int *b = arr;

int *c = &arr[1];
d = testandinc(a);

e = p1testandinc(b);

f = p2testandinc(c);

May 21, 2024 ECS 36A, Spring Quarter 2024 16

Midterm Question 13
int a = 2;

int arr[3] = { 3, 4, 5 };

int *b = arr;

int *c = &arr[1];
d = testandinc(a);

e = p1testandinc(b);

f = p2testandinc(c);

May 21, 2024 ECS 36A, Spring Quarter 2024 17

2a

3 4 5arr

b
c

d f
e

Approach

• Go through the program, and then get the values

May 21, 2024 ECS 36A, Spring Quarter 2024 18

Midterm Question 13
int testandinc(int x)

{

 return(x++);

}

. . .

d = testandinc(a)

May 21, 2024 ECS 36A, Spring Quarter 2024 19

2x

2a

3 4 5arr

b
c

d
e

f

Midterm Question 13
int testandinc(int x)

{

 return(x++);

}
. . .

d = testandinc(a)

Return value of x

May 21, 2024 ECS 36A, Spring Quarter 2024 20

2x

2a

3 4 5arr

b
c

d 2
e

f

Midterm Question 13
int testandinc(int x)

{

 return(x++);

}
. . .

d = testandinc(a)

Add 1 to the value of x

May 21, 2024 ECS 36A, Spring Quarter 2024 21

3x

2a

3 4 5arr

b
c

d 2
e

f

Midterm Question 13
int testandinc(int x)

{

 return(x++);

}
. . .

d = testandinc(a)

Function ends

May 21, 2024 ECS 36A, Spring Quarter 2024 22

2a

3 4 5arr

b
c

d 2
e

f

Midterm Question 13
int p1testandinc(int *x)

{

 return(*x++);

}

. . .

e = p1testandinc(b)

May 21, 2024 ECS 36A, Spring Quarter 2024 23

x

2a

3 4 5arr

b
c

d 2
e

f

Midterm Question 13
int p1testandinc(int *x)

{

 return(*x++);

}

. . .

e = p1testandinc(b)

May 21, 2024 ECS 36A, Spring Quarter 2024 24

x

2a

3 4 5arr

b
c

d 2
e

f3

Midterm Question 13
int p1testandinc(int *x)

{

 return(*x++);

}

. . .

e = p1testandinc(b)

May 21, 2024 ECS 36A, Spring Quarter 2024 25

x

2a

3 4 5arr

b
c

d 2
e

f3

Midterm Question 13
int p1testandinc(int *x)

{

 return(*x++);

}
. . .

e = p1testandinc(b)

Function ends

May 21, 2024 ECS 36A, Spring Quarter 2024 26

2a

3 4 5arr

b
c

d 2
e

f3

Midterm Question 13
int p2testandinc(int *x)

{

 return((*x)++);

}

. . .

f = p2testandinc(c)

May 21, 2024 ECS 36A, Spring Quarter 2024 27

2a

3 4 5arr

b
c

d 2
e

f3

Midterm Question 13
int p2testandinc(int *x)

{

 return((*x)++);

}

. . .

f = p2testandinc(c)

May 21, 2024 ECS 36A, Spring Quarter 2024 28

2a

3 4 5arr

b
c

d 2
e

f3

x

Midterm Question 13
int p2testandinc(int *x)

{

 return((*x)++);

}

. . .

f = p2testandinc(c)

May 21, 2024 ECS 36A, Spring Quarter 2024 29

2a

3 4 5arr

b
c

d 2
e

f3

x

4

Midterm Question 13
int p2testandinc(int *x)

{

 return((*x)++);

}

. . .

f = p2testandinc(c)

May 21, 2024 ECS 36A, Spring Quarter 2024 30

2a

3 5 5arr

b
c

d 2
e

f3

x

4

Midterm Question 13
int p2testandinc(int *x)

{

 return((*x)++);

}
. . .

f = p2testandinc(c)

Function ends

May 21, 2024 ECS 36A, Spring Quarter 2024 31

2a

3 5 5arr

b
c

d 2
e

f3 4

Midterm Question 13 Answers

variable value

a 2

b arr or &arr[0]
c arr+1 or &arr[1]
d 2

e 3

f 4

arr[0] 3

arr[1] 5

arr[2] 5

May 21, 2024 ECS 36A, Spring Quarter 2024 32

2a

3 5 5arr

b
c

d 2
e

f3 4

Rules for Pointers

• Treat a pointer like a constant or a variable
• If it’s used as an array name, assume it’s a constant
• Otherwise, assume it’s a variable
• Note: in a function parameter list, it’s a variable, even if declared as an array

• A pointer p is an address
• *p is the value stored at the address in p
• &x is the address of the variable x
• You can’t take the address of a constant, so this is illegal: char c[10]; d = &c;

• Draw pictures! They are very helpful

May 21, 2024 ECS 36A, Spring Quarter 2024 33

Recursion Speed-Up Technique

• When recursion recomputes a value, it adds time (and resources like
memory use), which slows the program down
• Example: Fibonacci numbers, defined as f0 = f1 = 1, fn = fn–1 + fn–2
• To compute f5:
• f5 = f4 + f3
• f4 = f3 + f2 f3 = f2 + f1 f2 = f1 + f0 f2 = f1 + f0

• f3 = f2 + f1 f2 = f1 + f0

• Notice the repetitions: f3 is computed 2 times, and f2 3 times
• Now think of computing f100 . . .

May 21, 2024 ECS 36A, Spring Quarter 2024 34

Memos

• Instead of recomputing, save intermediate values in an array
• The array is like a memo book, hence the term "memo"

int arr[5] = { –1, –1, –1, –1, –1 };

• When you compute f0, f1, . . . insert the computed values into
arr[0], arr[1], . . .

• Now the recursive call first checks arr[n] to see if fn has been
computed already
• If yes, just return it; no recursion
• If no, compute it, store the result in arr[n], and return it

May 21, 2024 ECS 36A, Spring Quarter 2024 35

How Numbers and Letters Are Represented

• The computer stores these in binary representations
• Examples:
• 345 in binary is 0000 0000 0000 0000 0000 0001 0101 1001
• –345 in binary is 1111 1111 1111 1111 1111 1110 1010 0111

• This is two’s complement; flip the bits, add 1, and ignore overflow
• If you add these, you get 0000 0000 0000 0000 0000 0000 0000 0000
• ‘a’ is 97, which is 0110 0001
• Floats use a different format:
• 2.456 is 0100 0000 0001 1101 0010 1111 0001 1011

May 21, 2024 ECS 36A, Spring Quarter 2024 36

sign bit exponent mantissa

Type Coercion

int n;
float j = 2.456;

. . .

n = (int) j;
printf(“float is %f, int is %d\n”, j, n);

prints
 float is 2.456000, int is 2

May 21, 2024 ECS 36A, Spring Quarter 2024 37

Representation of Data

• But if we want the bitwise representation of 2.456, we need to use a
union

May 21, 2024 ECS 36A, Spring Quarter 2024 38

Unions

• Allows data to be viewed as multiple types
• Syntax is like a structure:
union intfloat {

 int un;
 float uj;

} t;

May 21, 2024 ECS 36A, Spring Quarter 2024 39

Unions

• So to get the representation of 2.456 in hexadecimal:
t.uj = 2.456

printf(“bit representation is 0x%x\n”, t.un);

• And this prints
bit representation is 0x401d2f1b

May 21, 2024 ECS 36A, Spring Quarter 2024 40

Converting Hexadecimal to Binary

bit pattern hex digit bit pattern hex digit bit pattern hex digit bit pattern hex digit

0000 0 0100 4 1000 8 1100 c or C

0001 1 0101 5 1001 9 1101 d or D

0010 2 0110 6 1010 a or A 1110 e or E

0011 3 0111 7 1011 b or B 1111 f or F

May 21, 2024 ECS 36A, Spring Quarter 2024 41

So 0x401d2f1b is 0100 0000 0001 1101 0010 1111 0001 1011
Similarly, 0000 0000 0000 0000 0000 0001 0101 1001 is 0x00000159
Easiest way to do this:
• Binary to hexadecimal: group binary digits in sets of 4, starting at the end; then

use the table to translate
• Hexadecimal to binary: translate each hexadecimal digit to the 4 corresponding

digits in the table above and merge them

Decimal to Binary

• Repeatedly divide by 2, then stop when you get 0
• Record the remainders; those are the binary digits
• Example: 345 in decimal:

• 345 / 2 = 172 r 1
• 172 / 2 = 86 r 0
• 86 / 2 = 43 r 0
• 43 / 2 = 21 r 1
• 21 / 2 = 10 r 1
• 10 / 2 = 5 r 0
• 5 / 2 = 2 r 1
• 2 / 2 = 1 r 0
• 1 / 2 = 0 r 1

• So 345 in base 10 is 101011001 in base 2

May 21, 2024 ECS 36A, Spring Quarter 2024 42

Binary to Decimal

• Each digit is a power of 2, starting from the right (which is 20)
• So 101011001 in base 2 is:
• 1×28 + 0×27 + 1×26 + 0×25 + 1×24 + 1×23 +0×22 + 0×21 +1×20 =
• 256 + 0 + 64 + 0 + 16 + 8 + 0 + 0 + 1 = 345

May 21, 2024 ECS 36A, Spring Quarter 2024 43

Dealing with Bits: Operation Tables

and (&) 0 1

0 0 0

1 0 1

May 21, 2024 ECS 36A, Spring Quarter 2024 44

or (|) 0 1

0 0 0

1 0 1

Examples:
• 10 & 01 = 00
• 11 & 01 = 11

Examples:
• 10 | 01 = 11
• 11 | 01 = 11

xor (^) 0 1

0 0 1

1 1 0

Examples:
• 10 ^ 01 = 11
• 11 ^ 01 = 10

not (~) 0 1

1 0

Examples:
• ~10 = 01
• ~11 = 00

Dealing with Bits: Shift Operations

May 21, 2024 ECS 36A, Spring Quarter 2024 45

• b << n: shift b left n bits
• Bits shifted beyond the end of the word are discarded
• 0 bits are inserted at the right

• b >> n: shift b right n bits
• If b is signed, the high-order (most significant) bit is propogated
• If b is unsigned, 0 bits are inserted at the left
• Bits shifted beyond the end of the word are discarded

How to Extract Bits

• Number the bits from 31 to 0
• To get the i-th bit of unsigned int x:
b = (x>>i)&01
Example: 345 in binary:
0000 0000 0000 0000 0000 0001 0101 1001
Extract bit 8:
b = (345>>8)&01 =
 (0000 0000 0000 0000 0000 0001 0101 1001>>8)&01 =
 (0000 0000 0000 0000 0000 0000 0000 0001)&01 = 1
May 21, 2024 ECS 36A, Spring Quarter 2024 46

bit 8 bit 0

How to Extract Groups of Bits

• Number the bits from 31 to 0
• To get the i-th through j-th bits of unsigned int x:
b = (x>>j)&0xZ where Z is the hex representation of i–j bits
Example: 345 in binary:
0000 0000 0000 0000 0000 0001 0101 1001
Extract bits 8 to 5:
b = (345>>5)&0xf = (345>>5)&0xf =
 (0000 0000 0000 0000 0000 0001 0101 1001>>5)&0xf =
 (0000 0000 0000 0000 0000 0000 0000 0101)&0xf = 0101 = 5
May 21, 2024 ECS 36A, Spring Quarter 2024 47

bits 8–5 bit 0

Background

• System calls: interfaces to operating system functions
• Example: some Linux system calls
• I/O: reading, writing, networking, etc.
• Files: chown, chgrp, stat, etc.
• Resource usage: ulimit, getrlimit, etc.
• Timing: gettimeofday, time

• Library functions provide system-independent interface to them
• Also provide other features

May 21, 2024 ECS 36A, Spring Quarter 2024 48

C Library Functions

• The C library provides many functions that do useful things
• Standard I/O C library
• Math library

• Character type
• String to integer or float/double types
• Handling options
• Time
• Random numbers
• String and memory manipulation

May 21, 2024 ECS 36A, Spring Quarter 2024 49

