
ECS 36A, May 23, 2024

May 23, 2024 ECS 36A, Spring Quarter 2024 1

Last C Operator

• Abbreviated “if”
x = a ? b : c

• If a evaluates to non-zero, b is evaluated and assigned to x
• c is ignored

• If a evaluates to zero, c is evaluated and assigned to x
• b is ignored

June 5, 2023 ECS 36A, Spring Quarter 2023 2

Examples

a = 0;
b = 1;

c = 2;

x = a ? b++ : c--;

As a = 0, c-- is evaluated, so
x = 2 and c = 1

a = 3;
b = 1;

c = 2;

x = a ? b++ : c--;

As a ≠ 0, b++ is evaluated, so
x = 1 and b = 2

June 5, 2023 ECS 36A, Spring Quarter 2023 3

Function Pointers

• Pointers are addresses
• Functions are in memory, and so have addresses
• So a function pointer contains the address of a function
• Example declaration:

int (*func)(char *)

 this points to a function that takes a character pointer as an argument
and returns an integer

May 21, 2024 ECS 36A, Spring Quarter 2024 4

Example Usage
int add(int x) { return(x + 4); }
int sub(int y) { return(y – 4); }

…
int main(void)
{

int (*f)(int);
…
f = add;
z = f(5);
…
f = sub;
z = f(5);
…

May 21, 2024 ECS 36A, Spring Quarter 2024 5

Background

• System calls: interfaces to operating system functions
• Example: some Linux system calls
• I/O: reading, writing, networking, etc.
• Files: chown, chgrp, stat, etc.
• Resource usage: ulimit, getrlimit, etc.
• Timing: gettimeofday, time

• Library functions provide system-independent interface to them
• Also provide other features

May 23, 2024 ECS 36A, Spring Quarter 2024 6

C Library Functions

• The C library provides many functions that do useful things
• Standard I/O C library
• Math library

• Character type
• String to integer or float/double types
• Handling options
• Time
• Random numbers
• String and memory manipulation

May 23, 2024 ECS 36A, Spring Quarter 2024 7

Standard I/O Functions

• Implements open, read, write, close, and others
• Requires #include <stdio.h>
• Basis: streams or files
• Usually FILE * types
• Buffers input, output
• Predefined streams: stdin (input), stdout (output), stderr (error output)

May 23, 2024 ECS 36A, Spring Quarter 2024 8

Buffering

• For efficiency; goal is to reduce number of read, write system calls
• On read, the library reads a block of data
• The number of bytes in a block here depends on the system
• This is not the same thing as a block in a program; it’s a chunk of data

• The library then returns the amount of data requested, and keeps the
rest in memory
• On next library call, it returns the next byte without doing another call

to system
• This explains why ungetc() can only guarantee one char of pushback

May 23, 2024 ECS 36A, Spring Quarter 2024 9

Full Buffering in Standard I/O Library

• Typically used when reading/writing files
• Read: call to system call fills buffer; next call is when a read occurs

and buffer is empty
• Write: call to system call empties buffer; next call is when a write

occurs and the buffer is full
• Flushing: emptying the buffer; as noted, done automatically
• Use fflush() to do this manually

• On exit or return from main(), all buffers are flushed

May 23, 2024 ECS 36A, Spring Quarter 2024 10

Line Buffering in Standard I/O Library

• Typically used with line-oriented devices such as terminals
• Buffers flushed when newline encountered or buffer is full
• Doesn’t matter if buffer is for reading or for writing
• Also output is flushed when process reads from a line-buffered or unbuffered

stream

• Idea is to act like fully buffered I/O, except that reading/writing in
blocks is infeasible, as process can’t read a terminal beyond what has
been typed
• On exit or return from main(), all buffers are flushed

May 23, 2024 ECS 36A, Spring Quarter 2024 11

Unbuffered Streams in Standard I/O Library

• Don’t buffer anything
• On input, byte immediately made available to process
• Terminals usually need to be put into a special mode (called ``raw’’ mode) in

which no character processing is done; usual mode is called ``sane’’ or
``cooked’’

• On output, character is immediately written to device or file

May 23, 2024 ECS 36A, Spring Quarter 2024 12

Useful Functions: Positioning for Read/Write

• Every stream has a read/write pointer (rw-pointer) pointing to where the
next byte is to be read or written
• fgetpos(fp, pos): gets current position pos of rw-pointer of fp

• ftell(fp, pos): return position of rw-pointer of fp
• fsetpos(fp, pos): set current position pos of rw-pointer of fp

• rewind(fp): reset rw-pointer to 0 (the beginning of the file)
• fseek(fp, offset, whence): set current position of rw-pointer of fp to offset

bytes from whence
• whence is SEEK_SET (beginning), SEEK_CUR (current position), or SEEK_END (from

the end)
• ftell(fp): return location of rw-pointer of fp

May 23, 2024 ECS 36A, Spring Quarter 2024 13

More C Library Functions

• time
• (pseudo)random numbers
• string functions
• memory functions
• math functions

May 23, 2024 ECS 36A, Spring Quarter 2024 14

Get Time

• Use system call time_t time(time_t *tick)
• If tick is NULL, then the current time is returned
• Time measured in seconds from the epoch (Jan 1, 1970, 00:00:00)

• To get time as a string: char *ctime(&tick)
• On success, generates a string of the following form:

Sun Sep 16 01:03:52 1973
 (This has a trailing nnewline)
• On failure, it returns NULL

May 23, 2024 ECS 36A, Spring Quarter 2024 15

Time Structure

struct tm {
 int tm_sec; /* 0-59 seconds */
 int tm_min; /* 0-59 minutes */
 int tm_hour; /* 0-23 hour */
 int tm_mday; /* 1-31 day of month */
 int tm_mon; /* 0-11 month */
 int tm_year; /* 0- year - 1900 */
 int tm_wday; /* 0-6 day of week (Sunday = 0) */
 int tm_yday; /* 0-365 day of year */
 int tm_isdst; /* flag: daylight savings time in effect */
 /* the following are not present on all systems */
 long tm_gmtoff; /* offset from GMT in seconds */
 char **tm_zone; /* abbreviation of time zone */

};

May 23, 2024 ECS 36A, Spring Quarter 2024 16

Getting Structure Values for Time

• struct tm *localtime(const time_t *timep): fills in local time
• struct tm *gmtime(const time_t *timep): fills in GMT (UTC) time
• Here timep is a pointer to what time returns

• char *asctime(struct tm *tm): return a ctime-type string for tm
• time_t mktime(struct tm *tm): return time since the epoch given by
tm

May 23, 2024 ECS 36A, Spring Quarter 2024 17

Random Numbers

• int rand(void)
• Generate pseudorandom number between 0 and RAND_MAX inclusive
• This function is dangerous — avoid it!! In older versions, it is not

pseudorandom in the low order bits. (On newer Linux systems, it’s OK)

• long random(void)
• Generate pseudorandom number between 0 and 231–1 inclusive

• All require a starting point – called a seed

May 23, 2024 ECS 36A, Spring Quarter 2024 18

Random Number Seeds

• void srand(unsigned int seed)
• Initialize the rand() pseudorandom number generator with seed

• void srandom(unsigned int seed)
• Initialize the random() pseudorandom number generator with seed

• Pick seed as randomly as possible
• There are defaults, useful for regenerating the same sequence for

debugging
• rand/srand default seed is 1
• random/srandom default seed is 1

May 23, 2024 ECS 36A, Spring Quarter 2024 19

