
ECS 36A, May 28, 2024

May 28, 2024 ECS 36A, Spring Quarter 2024 1

Pseudorandom Numbers

• int rand(void)
• Generate pseudorandom number between 0 and RAND_MAX inclusive
• This function is dangerous — avoid it!! In older versions, it is not

pseudorandom in the low order bits. (On newer Linux systems, it’s OK)

• long random(void)
• Generate pseudorandom number between 0 and 231–1 inclusive

• All require a starting point – called a seed

May 28, 2024 ECS 36A, Spring Quarter 2024 2

Pseudorandom Number Seeds

• void srand(unsigned int seed)
• Initialize the rand() pseudorandom number generator with seed

• void srandom(unsigned int seed)
• Initialize the random() pseudorandom number generator with seed

• Pick seed as randomly as possible
• There are defaults, useful for regenerating the same sequence for

debugging
• rand/srand default seed is 1
• random/srandom default seed is 1

May 28, 2024 ECS 36A, Spring Quarter 2024 3

Random Numbers

• Linux has a pool of bits generated from sources such as hardware
timings and other natural sources that are considered random
• They are not generated by an algorithm as pseudorandom numbers are
getrandom(void *buf, size_t sz, unsigned int flags)

• Generates sz random bytes and store them in the given buf
• Returns number of bytes stored in buf
• Flags:
• GRND_NONBLOCK prevents getrandom() from blocking; if it would block it

returns –1 and sets errno to EAGAIN
• GRND_RANDOM draws from a random source more limited than the one

used when this flag is given (avoid using this one)

May 28, 2024 ECS 36A, Spring Quarter 2024 4

Example Use

unsigned int rnd;

int count;

count = getrandom(&rnd, sizeof(unsigned int), GRND_NONBLOCK);

if (count == –1)

 perror("getrandom");

else

 for(i = 0; i < count; i++)

 printf("0x%02x\n", count, (rnd>>i)&0xff);

May 28, 2024 ECS 36A, Spring Quarter 2024 5

String Functions

• strcpy, strcat, strcmp, strncpy, strncat, strncmp, strlen
• You’ve seen these

• char *strdup(char *s): make a duplicate of string s
• Space is malloc’ed

• char *strchr(char *s, int c): return pointer to first occurrence of
character c in s; NULL if not there
• char *strrchr(char *s, int c): like strchr, but points to last occurrence
• char *strstr(char *s, char *t): like strchr, but looks for first occurrence

of string t

May 28, 2024 ECS 36A, Spring Quarter 2024 6

String Functions

• char *strtok(char *s, char *delim): breaks a string into a sequence of
0 or more nonempty tokens (substrings)
• On first call, s points to string to be parsed
• On subsequent calls for the same string, set s to NULL
• delim is a string of characters that delimit tokens
• strtok returns NULL when there are no more tokens to return
• strtok always returns a nonempty token
• Warning: strtok overwrites delimiters with ‘\0’, so don’t give it a read-only

string

• int strcasecmp(char *a, char *b): useful for homework; look it up

May 28, 2024 ECS 36A, Spring Quarter 2024 7

Memory Functions

• void *memcpy(void *dest, void *src, unsigned int n): copy n bytes
from src to dest
• Behavior undefined if src, dest overlap

• int memcmp(void *s1, void *s2, unsigned int n): compare first n bytes
of s1 and s2; returns negative, zero, positive depending on whether
s1 is less than, equal to, greater than s2

May 28, 2024 ECS 36A, Spring Quarter 2024 8

Math Functions

• double floor(double d), double ceil(double d): round d down, up to the
nearest integer
• double log(double d), double log10(double d): return the natural log, base

10 log of d
• double exp(double d), double pow(double m, double e): return ed, me

• double sin(double d): compute sine of d in radians
• same with cos, tan

• double atan(double x): return principal value of arctan of d
• In range [–π/2, +π/2)

• double atan2(double x, double y): return arctan of y/x
• Handles cases where x is 0; returns value in range [-π, π]

May 28, 2024 ECS 36A, Spring Quarter 2024 9

Bug: Stack Smashing

• Problem: failure to check input
length
• Going back to the stack, here is

what it looks like when a
function is called:

May 28, 2024 ECS 36A, Spring Quarter 2024 10

variable

return address

other control stuff
parameter

The Program bad.c

#include <stdio.h>
char *gets(char *);
int main(void)
{
 int above = 100;
 char input[24];
 int below = 200;
 printf("BEFORE INPUT: above = %#010x; below = %#010x\n", above, below);
 if (gets(input) == NULL){
 fprintf(stderr, "Unexpected EOF\n");
 return(1);
 }
 printf(" AFTER INPUT: above = %#010x; below = %#010x\n", above, below);
 return(0);
}

May 28, 2024 ECS 36A, Spring Quarter 2024 11

A Program Run

• BEFORE INPUT: above = 0x00000064; below = 0x000000c8

• aaaaaaaaaaaaaaaaaaaaaaaaaa
• AFTER INPUT: above = 0x00000064; below = 0x00006161

May 28, 2024 ECS 36A, Spring Quarter 2024 12

26 a's (overflowing input by 2 chars) 'a' is represented by the number
0x61 in the computer

May Change Variable Values Unexpectedly

• Here is the stack frame after
gets is called

May 28, 2024 ECS 36A, Spring Quarter 2024 13

input

return address

other control stuff
parameter

above

below

variables in
main()

control data
and parameters
for gets()

Writing a Program with Random Numbers

• Monty Hall problem:
• In a game, Monty asks a contestant to pick one of three doors. Behind one

is a valuable prize; behind the other two are joke prizes (like a goat or a
wheelbarrow full of mud).
• The contestant picks a door.
• Monty says, "Before I show you what is behind that door let me show you

what is behind one of the doors you did not select". They pick such a door,
it is opened, and behind it is a joke prize.
• Monty asks if the contestant wants to switch to the other, unopened door.
• The problem asks, should the contestant do so?

May 28, 2024 ECS 36A, Spring Quarter 2024 14

Programming Step 1

• First, we decide how to represent the doors
• 3 doors, so call them 1, 2, and 3

• How do we determine which one has the good prize?
• Let's pick one of the doors at random

• Which door does the contestant pick?
• We can do this
• We can have the computer select randomly among the 3 doors

• What happens if the contestant:
• Switches?
• Doesn't switch?

May 28, 2024 ECS 36A, Spring Quarter 2024 15

Programming Step 2

• First draft of program: human does everything:
1. Human picks where the prize goes
2. Human picks which door the contestant picks
3. Human picks door to open (it cannot be the one with the prize)
4. Human decides whether to switch
• This lets us create the framework for the program.

May 28, 2024 ECS 36A, Spring Quarter 2024 16

First Version – monty1.c

• Written as outlined above
• Oops . . . There's a bug:

Select door where prize is > 1

Select door for contestant > 2

I will show you door 3

Does contestant switch doors? > y

y or n please! > y

You picked door 1, but the prize is behind door 1 -- you
win!

• Let's use gdb to debug it

May 28, 2024 ECS 36A, Spring Quarter 2024 17

First Version – monty1.c

• Aha! We forgot to eat the rest of the line after scanf reads the
entered number!
• We'll fix this in the next version
• Returning to the design . . .

May 28, 2024 ECS 36A, Spring Quarter 2024 18

First Version – monty1.c

• Looks pretty complicated – can we simplify it?
• We go through an awful lot to figure out what door the contestant switches

to, if they switch
• Do we really need to do this?

May 28, 2024 ECS 36A, Spring Quarter 2024 19

First Version – monty1.c

• Looks pretty complicated – can we simplify it?
• We go through an awful lot to figure out what door the contestant switches

to, if they switch
• Do we really need to do this?

• It doesn't matter what door they pick – what matters is whether they
wind up picking the prize door

May 28, 2024 ECS 36A, Spring Quarter 2024 20

Second Version – monty2.c

• Try another approach using that observation
1. Human picks where the prize goes
2. Human picks which door the contestant picks
3. Human picks door to open (it cannot be the one with the prize)
4. If user decides to switch:

a. If user picked prize door, they lose
b. If user did not pick prize door, they win

May 28, 2024 ECS 36A, Spring Quarter 2024 21

Third Version – monty3.c

• Now we add randomness
• Wherever user asked for a number, generate a random one
• So we change ask_user() to return a random number of 1, 2, or 3

• Consider whether it is necessary to show which door Monty shows

May 28, 2024 ECS 36A, Spring Quarter 2024 22

Third Version – monty3.c

• Now we add randomness
• Wherever user asked for a number, generate a random one
• So we change ask_user() to return a random number of 1, 2, or 3

• Consider whether it is necessary to show which door Monty shows
• It isn't; all we care about is whether the contestant switches their

selection of doors

May 28, 2024 ECS 36A, Spring Quarter 2024 23

Fourth Version – monty4.c

• We delete the monty_shows_door() routine
• Next, do we need to ask user whether to switch?

May 28, 2024 ECS 36A, Spring Quarter 2024 24

Fourth Version – monty4.c

• We delete the monty_shows_door() routine
• Next, do we need to ask user whether to switch?

May 28, 2024 ECS 36A, Spring Quarter 2024 25

Fourth Version – monty4.c

• We delete the monty_shows_door() routine
• Next, do we need to ask user whether to switch?
• No; we can get the relevant result utilizing symmetry
• If the user does not switch:
• If the first selected door is the same as the prize door, a win
• If the first selected door is the not same as the prize door, a loss

• If the user switches:
• If the first selected door is the same as the prize door, a loss
• If the first selected door is the not same as the prize door, a win

May 28, 2024 ECS 36A, Spring Quarter 2024 26

Fifth Version – monty5.c

• We rewrite the main() routine to implement the above
• Now we can delete switch_or_not()
• Program is messy, though, so need to clean it up

May 28, 2024 ECS 36A, Spring Quarter 2024 27

Sixth Version – monty6.c

• We clean up some things and add a clearer statement of the output
• Now our program works – for 1 game. So we still cannot answer our

question.
• To do so, we need to play a lot of games, counting how many win with

switching and how many win without switching, and compare the
numbers against the total number of games played
• To do this, we make a loop of what is in main()
• For now, we'll assume 10,000 games

May 28, 2024 ECS 36A, Spring Quarter 2024 28

Seventh Version – monty7.c

• Some more clean up
• First, delete print message for the random number routine and

rename it appropriately
• Next, the two routines picking the prize and contestant door are 1

line once you remove the printf statements, so put the line into the
main function

May 28, 2024 ECS 36A, Spring Quarter 2024 29

Seventh Version – monty7.c

• Some more clean up
• First, delete print message for the random number routine and

rename it appropriately
• Next, the two routines picking the prize and contestant door are 1

line once you remove the printf statements, so put the line into the
main function
• Do we always want 10,000 runs – maybe when you get to 100,000 or

1,000,000 games, the ratio between the switching and not switching
becomes closer to 0.5 or something else?

May 28, 2024 ECS 36A, Spring Quarter 2024 30

Eighth Version – monty8.c

• Make the 10,000 games a macro and define it at the head of the file
• This way, we can change the number without searching the program

for the number

May 28, 2024 ECS 36A, Spring Quarter 2024 31

Eighth Version – monty8.c

• Make the 10,000 games a macro and define it at the head of the file
• This way, we can change the number without searching the program

for the number
• But to change the number we have to edit the source code and

recompile it. We should allow the user to change it without doing
this.

May 28, 2024 ECS 36A, Spring Quarter 2024 32

Ninth (and Final) Version – monty9.c

• We can either read the number as input or as a command-line
argument
• monty9.c implements the latter
• The former is left as an exercise to the student 🙂

• Whichever you choose, do not forget to check for errors!
• If the argument is not present, use a default value
• If there is more than 1 number given, report an error

May 28, 2024 ECS 36A, Spring Quarter 2024 33

