ECS 150, Operating Systems

Spring Quarter 2008

Introduction

Types of Schedulers

This chart shows the function of each of the three types of schedulers (long-term, short-term, and medium-term) for
each of three types of operating systems (batch, interactive, and real-time).

Chart

batch

interactive

real-time

long-term

job admission based on
characteristics and resource
needs

sessions and processes
normally accepted unless
capacity reached

processes either permanent or
accepted at once

medium-term

usually none—jobs remain in
storage until done

processes swapped when
necessary

processes never swapped

short-term

processes scheduled by
priority; continue until wait
voluntarily, request service,
or are terminated

processes scheduled on rotat-
ing basis; continue until ser-
vice requested, time quantum
expires, or pre-empted

scheduling based on strict
priority with immediate pre-
emption; may time-share pro-
cesses with equal priorities

Version of April 22, 2008 at 4:45 PM

Page 1



ECS 150, Operating Systems

Spring Quarter 2008

Introduction

This handout shows how the various job scheduling algorithms work.

First Come, First Serve (FCFS)

Job Scheduling Algorithms

This policy services jobs in the order they arrive.

job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 0 10 10 0 1.0
B 1 29 10 39 38 9 1.3
C 2 3 39 42 40 37 13.3
D 3 7 42 49 46 39 6.6
E 4 12 49 61 57 45 4.8
mean 38 26 5.4
Shortest Job Next (SJN)
This policy services the shortest job next.
job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 0 10 10 0 1.0
B 1 29 32 61 60 31 2.1
C 2 3 10 13 11 8 3.7
D 3 7 13 20 17 10 2.4
E 4 12 20 32 28 16 23
mean 25 13 2.3
Pre-emptive Shortest Job Next (PSJN)
This policy services the shortest job next, pre-emptively.
job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 0 2 pre-empted by C

8 12 20 20 10 2.0
B 1 29 32 61 60 31 2.1
C 2 3 2 5 3 0 1.0
D 3 7 5 12 9 2 1.3
E 4 12 20 32 28 16 23
mean 24 12 1.7
Highest Response Ratio Next (HRN)
This policy services the job with the highest response ratio next.
job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 0 10 10 0 1.0
B 1 29 32 61 60 31 2.1
C 2 3 10 13 11 8 3.7
D 3 7 13 20 17 10 2.4
E 4 12 20 32 28 16 23
mean 25 13 2.3
Version of April 22, 2008 at 4:45 PM Page 2



ECS 150, Operating Systems

Spring Quarter 2008

Round Robin (RR)
This policy services jobs for a fixed quantum (here, 5).
job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 0 5 end of quantum; B starts
5 23 28 28 18 2.8
B 1 29 5 10 end of quantum, C starts
24 28 33 end of quantum; D starts
19 40 45 end of quantum, E starts
14 47 61 60 31 2.1
C 2 3 10 13 11 8 3.7
D 3 7 13 18 end of quantum, E starts
2 33 35 32 25 4.6
E 4 12 18 23 end of quantum; A starts
7 35 40 end of quantum; B starts
2 45 47 43 31 3.5
mean 35 23 3.3

Multilevel Feedback (MLFB)

The variant of this class of scheduling algorithms uses three levels:

* processes at level 1 are scheduled round robin; the relevant quantum is 2, and when a quantum expires the job is
moved to level 2.

»  processes at level 2 are scheduled round robin; the quantum is 4, and processes are allowed 2 quanta before being
moved to level 3.

* processes at level 3 are serviced first come first serve.

The jobs A, B, C, D, and E have been augmented by F, a 1-second job arriving at time 13, and G, an 11-second job
arriving at time 50. These are to demonstrate that quanta are usually not interrupted.

In what follows, the number in parentheses in the comment field is the remaining service time for the job.

time level 1

0 A
1 AB
2 BC
3 BCD
4 CDE
6 DE
8 E
10 —
13 F
14 F
15 —
19 —
20 —
24 —
28 —
32 —
36 —
37 —
41 —
50 G
60 G

level 2

A

A
AB
ABC

ABCD
ABCDE

ABCDE
ABCDE
ABCDE
ABCDE
ABDE
ABDE
ABDE
BDE
DE

level 3

comments
A(10) arrives, runs
B(29) arrives, A continues quantum
C(3) arrives, A's quantum expires (8), moves to level 2, B runs
D(7) arrives, B continues quantum
E(12) arrives, B's quantum expires (27), moves down, C runs
C's quantum expires (1), moves down, D runs
D's quantum expires (5), moves down, E runs
E's quantum expires (10), moves down, A runs from level 2 (level 1 is
empty)
F(1) arrives, A's quantum continues
A's quantum expires (4), F runs (at level 1)
F finishes, B runs from level 2 (level 1 is empty)
B's quantum expires (23), C runs
C finishes, D runs
D's quantum expires (1), E runs
E's quantum expires (6), A runs
A finishes, B runs
B's quantum expires (19), moves down, D runs
D finishes, E runs
E's quantum expires (2), moves down, B runs from level 3 (since there is
nothing in higher levels)
G arrives(11), B continues to run
B finishes, G runs (since it is in the highest level)

Version of April 22, 2008 at 4:45 PM

Page 3



ECS 150, Operating Systems

Spring Quarter 2008

time level 1 level 2 level 3 comments
62 — G E G's quantum expires (9), moves down, G runs from level 2
66 — G E G's quantum expires (5), G runs
70 — — EG G's quantum expires (1), moves down, E runs
72 — — G E finishes, G runs
73 — — — G finishes
The relevant numbers (ignoring start and finish time) are:
job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 0 2 preempted by B
8 10 14 preempted by F
4 28 32 32 22 32
B 1 29 2 4 preempted by C
27 15 19 preempted by C
23 32 36 preempted by D
19 41 60 59 30 2.0
C 2 3 4 6 preempted by D
1 19 20 18 15 6.0
D 3 7 6 8 preempted by E
5 20 24 preempted by E
1 36 37 34 27 4.9
E 4 12 8 10 preempted by A
10 24 28 preempted by A
6 37 41 preempted by B
2 70 72 68 56 5.7
F 13 1 14 15 2 1 2.0
G 50 11 60 70 preempted by E
1 72 73 23 12 2.1
mean 33.7 233 3.7
Version of April 22, 2008 at 4:45 PM Page 4



ECS 150, Operating Systems Spring Quarter 2008

Fair Share Scheduler

Introduction

A fair share scheduler is used when CPU time is to be divided equally between groups of processes. For this schedul-
ing algorithm, processes are divided into groups based upon external factors. Such factors include the organizational
divisions of the owners of the computer, or classes of customers, or other criteria.

For example, suppose group A has 1 process, group B has 2 processes, group C has 3 processes, and group D has 4
processes. Under a regular scheduler, each of the 10 processes would get 10% of the CPU. Under a fair share sched-
uler, each of the 4 groups would get 25% of the CPU.

Example

Suppose there are 3 processes. Process p; is in group A, and processes p, and ps are in group B. The following for-
mula assigns process p; a priority P;:

P, = (p;’s recent CPU usage)/2 + (p;’s group CPU usage)/2
In addition, a decay function decrements the current CPU usage of all processes. This “spreads out” the priority of the
processes in the ready queue. The decay D; for p; is:

D; = (p;’s recent CPU usage)/2
In this system, the lower the numerical value of P;, the higher the priority of process p;.

The following shows how processes execute, given a quantum of 60 ticks. All arithmetic is integer arithmetic, and the
decay function is applied after the most recent CPU time is added in, but before the priorities are computed.

First 60-Tick Interval

At the beginning of this interval, all priorities are equal, so the process to run is chosen randomly. Say p is selected

to run. It runs, and at the end of the interval, its CPU usage is updated to 60. The group CPU usage for group A, to
which p; belongs, also is updated to 60. The decay function is then applied, cutting both to 30. The CPU usage for p,

and p3, and for group B, are 0, so the decay function does not change them. The priority P; of p; becomes
P =(p;’s recent CPU usage)/2 + (p;’s group CPU usage)/2 =30/2 +30/2=15+15=30

Second 60-Tick Interval

At the beginning of this interval, P, and P5 are equal, and both are less than Py, so either p, or p; will run. Say p, is

selected to run. It runs, and at the end of the interval, its CPU usage is updated to 60. The group CPU usage for group
B, to which p, belongs, also is updated to 60. The decay function is then applied, cutting both to 30. It also cuts the

CPU usage of p; to 15, and the group CPU usage of group A to 15. The CPU usage for p5 is 0, so the decay function
does not change it. The priorities become

P = (py’s recent CPU usage)/2 + (p;’s group CPU usage)/2 =15/2+152=7+7=14

P, = (p,’s recent CPU usage)/2 + (p,’s group CPU usage)/2 =30/2 +30/2=15+15=30

P5 = (p;’s recent CPU usage)/2 + (p3’s group CPU usage)/2 =0/2+302=0+15=15

Third 60-Tick Interval

At the beginning of this interval, Py is less than P, or P, so p; runs. At the end of the interval, its CPU usage is
updated to 15 + 60 = 75. The group CPU usage for group A, to which p; belongs, is similarly updated to 15 + 60 = 75.
The decay function is then applied, cutting both to 37. It also cuts the CPU usage of p, to 15, and the group CPU
usage of group B to 15. The CPU usage for p5 is 0, so the decay function does not change it. The priorities become

P =(p;’s recent CPU usage)/2 + (p,’s group CPU usage)/2=37/2+37/2=18 + 18 =36

P, = (py’s recent CPU usage)/2 + (p,’s group CPU usage)/2 =15/2+152=7+7=14

P5 = (p;’s recent CPU usage)/2 + (p3’s group CPU usage)/2=0/2+152=0+7=7

Version of April 22, 2008 at 4:45 PM Page 5



ECS 150, Operating Systems Spring Quarter 2008

Fourth 60-Tick Interval

At the beginning of this interval, P5 is less than P, or P,, so p; runs. At the end of the interval, its CPU usage is
updated to 0 + 60 = 60. The group CPU usage for group B, to which p, belongs, is similarly updated to 15 + 60 = 75.
The decay function is then applied, cutting p;’s CPU usage to 30 and the group CPU usage to 37. It also cuts the CPU
usage of p; to 18, the CPU usage of p, to 7, and the group CPU usage of group A to 18. The priorities become

Py = (py’s recent CPU usage)/2 + (p;’s group CPU usage)/2 =18/2 + 18/2=9+9 =18

P, = (p,’s recent CPU usage)/2 + (p,’s group CPU usage)/2 =7/2 +37/2=3+ 18 =21

P5 = (p;’s recent CPU usage)/2 + (p3’s group CPU usage)/2 =30/2 +37/2=15+ 18 = 33

Summary Table

This table summarizes the first 8 seconds. The figures shown are for after the ticks, and after the calculations of prior-
ities.

Priorities CPU Usage After Decay  Group CPU Usage After Decay

ticks P P2 P3 P1 1) P3 A B runs
0 0 0 0 0 0 0 0 0 A
60 30 0 0 30 0 0 30 0 B
120 14 30 15 15 30 0 15 30 A
180 36 14 7 37 15 0 37 15 C
240 18 21 33 18 7 30 18 37 A
300 38 10 16 39 3 15 39 18 B
360 18 34 22 19 31 7 19 39 A
420 38 16 10 39 15 3 39 19 C

Version of April 22, 2008 at 4:45 PM Page 6



