
Analyzing Critical Section Solutions
This handout presents several proposed solutions to the 2 process critical section problem, and analyzes them. In
these solutions, one process is numbered 0 and the other is numbered 1. The variable i holds the number
corresponding to the process executing the code, and the variable j holds the number corresponding to the other
process. All the code shown is shared by both processes, but the variables i and j hold different values.

First Proposed Solution
Here, turn contains the number of the process whose turn it is to execute the critical section.

1 int turn;
/* entry section */

2 while (turn != i)
3 /* do nothing * / ;

/* critical section */
...

/* exit section */
4 turn = j;

Second Proposed Solution
Here, inCS[0] is true when process 0 is in the critical section, and false otherwise. A similar statement holds for
inCS[1].

1 int inCS[2] = { 0, 0 };
/* entry section */

2 while (inCS[j])
3 /* do nothing * / ;
4 inCS[i] = 1;

/* critical section */
...

/* exit section */
5 inCS[i] = 0;

Third Proposed Solution
Here, interested[0] is true when process 0 wants to enter the critical section, and false otherwise. A similar
statement holds for interested[1].

1 int interested[2] = { 0, 0 };
/* entry section */

2 interested[i] = 1;
3 while (interested[j])
4 /* do nothing * / ;

/* critical section */
...

/* exit section */
5 interested[i] = 0;

Fourth Proposed Solution
This combines the first and third proposed solutions.

1 int interested[2]; = { 0, 0 };
2 int turn;

/* entry section */

ECS 150, Operating Systems Spring Quarter 2008

Version of April 7, 2008 at 11:00 AM Page 1



3 interested[i] = 1;
4 turn = j;
5 while (interested[j] && turn == j)
6 /* do nothing * / ;

/* critical section */
...

/* exit section */
7 interested[i] = 0;

ECS 150, Operating Systems Spring Quarter 2008

Version of April 7, 2008 at 11:00 AM Page 2


